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We introduce and study a novel class of classical integrable many-body systems obtained by generalized
TT̄ deformations of free particles. Deformation terms are bilinears in densities and currents for the
continuum of charges counting asymptotic particles of different momenta. In these models, which we dub
“semiclassical Bethe systems” for their link with the dynamics of Bethe ansatz wave packets, many-body
scattering processes are factorized, and two-body scattering shifts can be set to an almost arbitrary function
of momenta. The dynamics is local but inherently different from that of known classical integrable systems.
At short scales, the geometry of the deformation is dynamically resolved: either particles are slowed down
(more space available), or accelerated via a novel classical particle-pair creation and annihilation process
(less space available). The thermodynamics both at finite and infinite volumes is described by the equations
of (or akin to) the thermodynamic Bethe ansatz, and at large scales generalized hydrodynamics emerge.
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Introduction.—Since the inception of generalized hydro-
dynamics (GHD) in 2016 [1,2], there has been a resurgence
of interest in understanding the nature of the dynamics in
integrable systems. GHD has proven to be a powerful and
universal tool that captures it at large scales, and its
predictions have been tested against cold-atom experiments
in different platforms [3–5]. GHD has also been studied
beyond the quantum realm and applied to classical systems
including various types of hard rods [6–8], the Toda
chain [9,10], the nonlinear Schrödinger equation [11,12],
the Calogero-Moser model [13] and the sinh- and sine-
Gordon models [14–16]. It provides the statistical frame-
work [17] for the theory of soliton gases [18,19]. The
structure of GHD is extremely general, and it requires only
limited data from the underlying system, such as the two-
body scattering shift.
Yet, a full understanding of how GHD emerges from the

microscopic dynamics is still lacking. In the hard-rod and
box-ball systems, rigorous proofs from slowly varying
ensembles are available [8,20,21]: in soliton gases they
are obtained from finite-gap solutions [18,22–24], ab initio
derivations exist from kinetic theory [25] and Bethe-ansatz
semiclassical principles [26], and the equations of state are
well understood [27,28]. But every model has specific
properties. To understand the universality of GHD, it is

important to construct new integrable systems that can
access the full space of GHD equations.
In this Letter, we do just that. We define a new class of

classical many-particle systems with short-range inter-
actions that are integrable, and that cover a very large
space of scattering functions. The new systems are shown
to arise from generalized TT̄ deformations. TT̄ deforma-
tions were introduced in relativistic quantum field theory
[29–31] as integrability-preserving deformations based on
local conserved currents that modify the scattering matrix
by “Castillejo-Dalitz-Dyson factors” [30,31]. Matrix ele-
ments of local fields have been recently studied [32–34],
and TT̄ deformations have been adapted to systems of
different kinds [35–41]; see the review [42]. Here, “gen-
eralized TT̄ deformations” are those proposed in [43],
based on the larger space of extensive conserved charges
first studied in the context of the nonequilibrium dynamics
of integrable systems [44–46]. One admits conserved
quantities measuring the density of asymptotic momenta,
and generalized TT̄ deformations modify the scattering
matrix by an arbitrary momentum function, although no
explicit construction was made. Our models provide the
explicit construction for classical Galilean particle systems.
We confirm that they are Liouville integrable, that many-
particle scattering is elastic and factorizes into two-body
shifts, and that the two-body shift can be chosen as an
almost arbitrary function of momenta.
Constructing effective, fully integrable many-particle

Hamiltonians for other objects such as solitons in nonlinear
media is an old problem; see, e.g., [47]. Our models are the
first to do that, and give in particular the potential for
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precise initial state preparation in inhomogeneous soliton
gases [18,19], a problem of current relevance.
In [39] it was shown that “mass-momentum” TT̄

deformations simply change the length of particles. This
can also be interpreted as a local change of the effective
space particles freely travel through, a special case of a
geometric interpretation [48] much like in GHD [49], but
the exact local properties of (generalized) TT̄ deformation
are nebulous. We obtain an explicit microscopic dynamics
implementing the geometry, generalizing the change of
particle lengths. Particles are tracers for their asymptotic
momenta and “go through” each other: additional available
space is implemented by a slowing down at particles’
proximity, while reduced space is accounted for by a novel
process of creation and annihilation of pairs of particles and
anti-particles, which effectively gives an acceleration.
We further provide an expression for the free energy,

showing at infinite volume the thermodynamic Bethe
ansatz (TBA) with Boltzmann-Maxwell statistics (see,
e.g., [50]); and, remarkably, a similar structure at finite
volumes generalizing the recent result [51] in hard rods [52]
(we are not aware of any other examples). We then show
that the GHD equation emerges in the large space-time
limit in the generality of arbitrary two-body shift. We
confirm this by numerical simulations.
The models we introduce are different from most known

classical integrable systems, whose dynamics are not of
tracer type. They widely generalize hard-rod gases [6,8],
and are closely related to the quantum Bethe ansatz and the
gas of Bethe wave packets introduced recently [26]. We
refer to them as “semiclassical Bethe systems.” Some of the
results presented here are proved rigorously in the separate
paper [53].
The model.—Consider the N-particle classical phase

space with canonical coordinates ðy; θÞ∈R2N , fyi; θjg ¼
δij—which will be identified with asymptotic coordinates
—and the free-particle Hamiltonian Hðy; θÞ ¼ P

N
i¼1 θ

2
i =2.

Let ψðx; θÞ satisfy ψð−x;−θÞ ¼ ψðx; θÞ and
jxj∂xψðx; θÞ → 0 (jxj → ∞). The generating function

Φ½ψ �ðx; θÞ ¼
X
i

xiθi þ
1

2

X
i;j

ψðxi − xj; θi − θjÞ ð1Þ

induces the following canonical transformation to the
“real” coordinates ðx; pÞ as y ¼ ∇θΦ½ψ �, p ¼ ∇xΦ½ψ �:

yi ¼ xi þ
X
j≠i

∂θψðxi − xj; θi − θjÞ ð2Þ

pi ¼ θi þ
X
j≠i

∂xψðxi − xj; θi − θjÞ; ð3Þ

where ∂x (∂θ) means derivative with respect to the first
(second) argument of ψðx; θÞ. The Hamiltonian takes the
form

H½ψ �ðx; pÞ ¼
XN
i¼1

θiðx; pÞ2
2

¼
XN
i¼1

p2
i

2
þ V ½ψ �ðx; pÞ; ð4Þ

where θiðx; pÞ are obtained by solving (3) (see below) and
the “quasipotential” V ½ψ �ðx; pÞ is defined by the second
equation. The trajectories in phase space t ↦ ½xðtÞ; pðtÞ�
are induced from the free dynamics y → yðtÞ ¼ yþ θt via
the change of coordinates Eqs. (2) and (3). Note that there
could be multiple trajectories that are admissible when
∂x∂θψðx; θÞ is negative.
Three statements hold: (i) the Hamiltonian (4) is

Liouville integrable, i.e., there are N-independent con-
served quantities, including the Hamiltonian, that Poisson
commute with each other and are nice enough functions of
phase space. Indeed a natural set is Qa ¼

P
i θiðx; pÞa ¼P

i p
a
i þ V ½ψ �

a , a ¼ 1;…N. (ii) The quasipotentials are
short-range. This is in the weak sense that whenever
particles lie on well-separated intervals, A1; A2 ⊂ R,
distðA1; A2Þ → ∞, I1 ∪ I2 ¼ f1;…; Ng, xIi ⊂ Ai, then

these do not interact, V ½ψ �
a ðx; pÞ → P

i V
½ψ �
a ðxIi ; pIiÞ. An

important consequence is that one can define conserved
densities qaðxÞ such that Qa ¼

R
dx qaðxÞ, and with

fqaðx1Þ; qa0 ðx2Þg → 0 for xi ∈Ai. Thus, in the limit
of N large for physically sensible finite-density distribu-
tions, conserved densities commute at large distances.
(iii) The multiparticle scattering processes are elastic—
the sets of incoming and outgoing momenta are the same—
and factorize into two-body scattering processes. The
two-body scattering shift for incoming momenta θ1, θ2
is given by φðθ1 − θ2Þ, where φðθÞ ¼ limx→∞½∂θψðx; θÞ−
∂θψð−x; θÞ�. Factorized scattering means that in an N-body
scattering event, outgoing particle θ is shifted, with respect
to the straight trajectory of incoming particle θ, by the sum
ωðθÞ ¼ P

θ0≠θ sgnðθ0 − θÞφðθ − θ0Þ of the two-body shifts
with all particles that it has crossed. Factorized scattering
is a fundamental property of many-body integrable systems
[54]. Here, because ψðx; θÞ becomes constant in x as
x → �∞, at long times pi ∼ θi, and xi ∼ yiðtÞ þ s�i with
sþi − s−i ¼ ωðθiÞ. Thus, θi are asymptotic momenta and yi
are simply related to the impact parameters of the scattering
process. Note that each particle i has the same incoming
and outgoing momentum θi: thus, it is a tracer for where the
asymptotic momentum lies at finite times. We call this a
“tracer dynamics”.
For any real symmetric φðθÞ, we may choose

ψðx; θÞ ¼ fðxÞϕðθÞ, where ϕðθÞ ¼ R
θ
0 dθ0 φðθ0Þ and fðxÞ

interpolates between −1=2 and 1=2, e.g., fðxÞ ¼
ðx=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ α2

p
Þ for some α ≠ 0. Therefore, this is a new

family of classical Liouville integrable, short-range, factor-
ized-scattering models, covering a large class of two-body
shift functions. Only a few shift functions are known to date
to correspond to classical integrable models, hence this is a
large extension. Note that fixing the scattering does not fix
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the dynamics: there is still freedom in ψðx; θÞ. In [53],
assuming that ψ is twice continuously differentiable, and
that ∂θ∂xψðx; θÞ ≥ 0 [thus φðθÞ ≥ 0] along with a finite-
range condition, we rigorously show the statements above,
and we show that (2), (3) have unique continuously differ-
entiable solutions. We believe much of this stays true under
weaker conditions, but uniqueness can be broken, leading to
important physical effects that we discuss below.
By a judicious choice of ψðx; θÞ one can reproduce

the hard-rod dynamics [6,8,39]; see the Supplemental
Material [55]. The generating function (1) has the structure
of a phaseΦ for Bethe wave functionsΨ ¼ eiΦ, with Bethe
roots θi and dynamics from semiclassical arguments:
p ¼ ∇xΦ are physical momenta, and y ¼ ∇θΦ evolve
trivially. In the Lieb-Liniger model, gases of wave packets
are indeed described by ψ llðx; θÞ ¼ 1

2
sgnðxÞϕðθÞ with ϕðθÞ

the quantum scattering phase [26], and we expect a similar
relation for most quantum many-body integrable systems.
Microscopic dynamics.—The effect of the interaction

can be seen as a particle-dependent, dynamical change of
metric from x to y space where it is free: the change of
infinitesimal length is dyi ¼ KiðxiÞdxi where KiðxÞ ¼
ð1þP

j≠i ∂θ∂xψðx − xj; θi − θjÞÞ measures the effective
“free” space. It can best be pictured in the two-particle case;
see Fig. 1 and [55]. For φðθÞ > 0 (e.g., ψ ll) particles slow

down during scattering, giving an effective backward
displacement [Fig. 1(a)] interpreted as the presence of
additional, hidden space where particles must travel. If
ψðx; θÞ ¼ 1

2
sgnðxÞϕðθÞ for some ϕðθÞ, they “stick” and

acquire an internal clock that accounts for this extra space
at collisions [26]. For φðθÞ < 0, (2) does not necessarily
have a unique solution. In case it does, particles speed up,
giving an effective forward displacement and a reduction of
effective space; hard rods of positive lengths are a limiting
case, where the displacement—which traces the momen-
tum being transferred—is instantaneous. But for most
choices of ψðx; θÞ with φðθÞ < 0, solutions to (2) can
become multivalued. Then trajectories appear to go back-
ward in time, and the generating function (1), although
locally inducing a canonical transformation, globally does
not on the standard phase space. One may consider three
“regularizations,” without affecting the large-scale physics,
all implementing a reduction of effective space. (i) Choose
any branch, e.g., follow one branch until it disappears, then
jump to another branch [Fig. 1(b)]. This is similar to the
flea gas [60] (we do not know if there exist choices of
ψðx; θÞ and branch that would exactly reproduce the flea
gas algorithm). But, like for the flea gas, this regularization
is not Hamiltonian or time reversible. (ii) Using the “hard-
core” picture [39], relabel particles at the first collision
[Fig. 1(c)]. This gives a time-reversible dynamics (no
longer a tracer dynamics), as long as such collisions always
appear before any time-backward parts of trajectories; this
relabeling gives the rods in the hard-rod case. (iii) Inspired
by Feynman’s picture, interpret time-backward parts of
trajectories as antiparticles [Fig. 1(d)]. The proximity of a
particle (say orange in the figure) occasions a spontaneous
particle-antiparticle pair creation (blue and green); the
antiparticle (green) later annihilates with the incoming
particle (blue), leaving the created particle (also blue) as
outgoing physical particle. This is time-symmetric, and we
believe it might define a canonical flow on the “Fock phase
space” F ¼ ⨁gR

2Ng, which admits an arbitrary number g
of solutions to (2); however, this would need to be
investigated further. For smooth ψðx; θÞ, multivaluedness
can always be interpreted in this way, as the Eqs. (2), (3),
for x, p, t, define smooth curves in R2Nþ1. We now argue
that this picture naturally arises from TT̄ deformations.
TT̄ deformations.—Generalized TT̄ deformations, as

proposed in [43], are obtained as flows of Hamiltonians
HðλÞ → HðλÞ þ δHðλÞ parametrized by λ,

δHðλÞ ¼ δλ

Z
dθdαdxdx0 wðx − x0; θ − αÞ

× ðqðλÞθ ðxÞjðλÞα ðx0Þ − jðλÞθ ðxÞqðλÞα ðx0ÞÞ; ð5Þ

with wðx; θÞ some deformation function. Here, qðλÞθ ðxÞ and
jðλÞθ ðxÞ are the charge densities and currents, with continuity

FIG. 1. Trajectories of two particles during scattering for
(a) φðθÞ > 0 and (b)–(d) φðθÞ < 0. The thin dashed lines are
the asymptotic trajectories. We show three interpretations of the
multivalued solutions for φðθÞ < 0; (b) particles jump instanta-
neously; (c) particles are relabeled during collisions; (d) sponta-
neous creation of a particle-antiparticle pairs: starting from the
bottom, at a certain time (marked by a star) the blue and orange
particles are close enough to allow for two pair creations [there
are three solutions: two blue-orange (outer), one red-green
(inner)]. Later one particle of each pair (the red and green) each
annihilates one of the original particles (marked by a circle),
leaving the new blue and orange particles as outgoing.. We used
ψðx; θÞ ¼ ðx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ α2

p
Þ2 arctanðθ=cÞ, with c ¼ 0.5, α ¼ 0.4 for

(a) and c ¼ −1, α ¼ 1 for (b)–(d).
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equation ∂tq
ðλÞ
θ þ ∂xj

ðλÞ
θ ¼ 0, associated to the charge

QðλÞ
θ ¼ P

i δðθ − θðλÞi Þ that measures the density of asymp-
totic momenta at θ in the deformed system. It turns out that
if H is an integrable tracer dynamics, then so is HðλÞ, and
qðλÞθ ðxÞ and jðλÞθ ðxÞ exist and are short-range. Remarkably,
starting from a system of free particlesHð0Þ ¼ P

i p
2
i =2, the

deformed Hamiltonian HðλÞ is nothing else but H½ψλ�,
Eq. (4), with ψλðx; θÞ ¼ λ

R∞
−∞ dx0 sgnðx − x0Þwðx0; θÞ.

This generalizes the mass-momentum deformation yielding
hard rods [39]; see Ref. [55]. The semiclassical
Bethe systems are the first concrete example of generalized
TT̄ deformations. We have rigorous proofs of these state-
ments [53] under conditions guaranteeing invertibility of
(2), (3), where H½ψλ� can be constructed on the standard
phase space.
Going further, here we make the crucial observation that

the relation Eq. (2), be it invertible or not, is still the correct
TT̄ deformation of the impact-parameter-position relation
yi ¼ xi. Indeed, TT̄ deformations (5) can be obtained as
canonical flows [35,39,53,61], and Eq. (2) arises directly
from applying this flow. Thus,multivaluedness may appear
along the TT̄ flow, and pair creation and annihilation
processes occur [Fig. 1(d)], as claimed; see Ref. [55]. In
all cases, the dynamics remains local.
Thermodynamics.—Let us consider the generalized

Gibbs ensembles [62], with Boltzmann weights e−
P

a
βaQa .

We take more generally ðx; θÞ-dependent Lagrange param-

eters varying on scale L, with e−
R

dxdθ βðx=L;θÞqθðxÞ ¼
e−

P
i
βðxi=L;θiÞ. In [53] we show, using methods of graph

theory [63] and under certain further assumptions, that the
free energy density

fL ¼ −
1

L
log

X∞
N¼0

Z
dNxdNp

N!
e−
P

i
βðxi=L;θiðx;pÞÞ ð6Þ

is finite and given by fL ¼ −ð2πLÞ−1 R dxdθ e−εLðx;θÞ,
where the pseudo energy εLðx; θÞ satisfies

εLðx;θÞ¼β

�
x
L
;θ

�
−
Z

dx0dθ0

2π
∂θ∂xψðx−x0;θ−θ0Þe−εLðx0;θ0Þ:

ð7Þ

This is a TBA-like equation for Maxwell-Boltzmann
statistics (see, e.g., [50]). The TBA is well known
from quantum [64–66] and classical [9,10,12,14,15] inte-
grability, at infinite volumes. It is striking that even at
finite volumes the free energy possesses a TBA structure;
the only result we are aware about this is for (positive-
length) hard rods [52,67]. We postulate that the finite-
volume free energy in interacting quantum and classical
integrable systems is given by Eq. (7) under an appropriate
choice of ∂θ∂xψðx; θÞ reproducing the scattering shift φðθÞ.

The infinite-volume limit of Eq. (7) yields the expected
TBA equation εðx̄; θÞ ¼ limL→∞εLðLx̄; θÞ ¼ βðx̄; θÞ−R ðdθ0=2πÞφðθ − θ0Þe−εðx̄;θ0Þ, from which limL→∞ fL
follows. Thus, the thermodynamics of the semiclassical
Bethe systems is described by the standard machinery of
TBA, including its “local density approximation.”
The free energy gives thermodynamic averages and

fluctuations of conserved quantities. Interestingly, we also
have the exact thermodynamic average ρphysðpÞ ¼
nðθðpÞÞ=ð2πÞ for the physical momentum distribution
L−1P

i δðp − piÞ. Here, nðθÞ ¼ e−εðθÞ is the occupation
function and θðpÞ is the inverse of the “dressed momen-
tum” function pdrðθÞ. The latter is known to be the physical
momentum of an excitation at Bethe root θ in Bethe ansatz
systems, and is fixed by TBA equations; see Ref. [55]. As
physical momenta of particles change throughout their
trajectories, ρphysðpÞ is a quantity that is typically hard to
access in integrable models; this is the first exact expression
that we are aware of.
GHD.—We provide a heuristic argument for GHD to

emerge in the hydrodynamic limit, paralleling Ref. [26];
other techniques [20] should give rigorous results.
We take macroscopic space and time, x ¼ Lx̄, t ¼ Lt̄ (x̄,

t̄ finite, L → ∞), with scaled coordinates x̄iðt̄Þ ¼ xiðtÞ=L
and ȳi ¼ yi=L. The empirical density, ρeðθ; x̄; t̄Þ ¼
L−1P

i δðx̄ − x̄iðt̄ÞÞδðθ − θiÞ, is assumed to converge
“weakly”: ρeðθ; x̄; t̄Þ → ρpðθ; x̄; t̄Þ. Clearly,

∂t̄ρeðθ; x̄; t̄Þ þ ∂x̄

�
L−1

X
i

˙̄xiδðx̄ − x̄iÞδðθ − θiÞ
�

¼ 0: ð8Þ

Rewriting Eq. (2) as x̄iðt̄Þ ¼ ȳi þ θit̄ −
ð1=LÞPj≠i ∂θψðLðx̄iðt̄Þ − x̄jðt̄ÞÞ; θi − θjÞ, we assume that,
for every i, there is a fraction of particles j that tend to 1 as
L → ∞ such that x̄iðt̄Þ − x̄jðt̄Þ > 0. Then, we can replace
∂θψðLx̄; θÞ → ψ sgnðx̄ÞφðθÞ, where ψþ − ψ− ¼ 1. Taking
the t̄ derivative, we find

˙̄xi¼θi−
1

L

X
j≠i

δðx̄i− x̄jÞφðθi−θjÞð ˙̄xi− ˙̄xjÞ ðL→∞Þ: ð9Þ

Making the ansatz ˙̄xi ¼ fðx̄i; θiÞ, the second term on the
right-hand side is −

R
dθρeðθ; x̄i; t̄Þφðθi − θÞ½fðx̄i; θiÞ−

fðx̄i; θÞ�. Thus, fðx̄; θÞ ¼ veff½ρeð·;x̄;t̄Þ�ðθÞ solves

veff½ρ� ðθÞ¼θ−
Z

dθ0ρðθ0Þφðθ−θ0Þ½veff½ρ� ðθÞ−veff½ρ� ðθ0Þ�: ð10Þ

This is exactly the equation for the effective velocity in
GHD [1,2]. Putting this into Eq. (8) and taking the limit
L → ∞ we obtain the GHD equation,

∂t̄ρpðθ; x̄; t̄Þ þ ∂x̄ðveff½ρp�ðθ; x̄; t̄Þρpðθ; x̄; t̄ÞÞ ¼ 0: ð11Þ
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Thus, we have shown that, at large scales, the semiclassical
Bethe system satisfies the GHD equation. This is not
rigorous—in particular, in Eq. (9) one would need to use
a regularization of the delta function. We give an alternative
derivation of GHD in [55], based on the fact that the metric
change dyi ¼ KiðxiÞdxi converges to the GHD change of
metric KiðxÞ → 2πρsðθi; xÞ determined by the “space” or
“total” density ρsðθ; xÞ [49].
We numerically demonstrate that the GHD equation

correctly captures the large-scale behavior in an explicit
example; see Fig. 2. For illustration, we use the phase shift
from the quantum Lieb-Liniger model, but with an initial
state that breaks the maximal fermionic occupation allowed
by quantum mechanics (the maximal density of particle per
state is 6.264 > 1). This initial state is nevertheless real-
izable, and its hydrodynamics makes sense, as indeed it is
realized by a semiclassical Bethe system. The details of the
numerical simulations can be found in [55]. Compared to
the evolution of noninteracting particles the expansion of
the interacting particles is much slower, which is in line
with the intuitive meaning of a positive phase shift as an
effective time delay during the scattering of two particles.
Conclusions.—We introduced a new class of classical

integrable models, dubbed semiclassical Bethe systems for
their relation with the quantum Bethe ansatz, obtained as
generalized TT̄ deformations of classical noninteracting
particles. In these systems, each particle is a “tracer” that
has the same incoming and outgoing momentum. The class

is parametrized by a function determining the microscopic
dynamics, and displays factorized scattering with a
(largely) arbitrary two-body shift, including those found
in many quantum integrable models. The microscopic
dynamics displays special features, including pair creations
and annihilations; the thermodynamics in finite volumes
surprisingly takes a form akin to the thermodynamic Bethe
ansatz (TBA), reducing to the TBA at infinite volume; the
distribution in physical phase space can be evaluated
exactly; and the large-scale dynamics is described by
GHD, and therefore identical to that of any quantum or
classical integrable system with the same chosen two-body
shift. We conjecture that, with short-range interaction, the
agreement persists at higher orders: the models should
encode the universal hydrodynamic expansion of classical
many-body integrability, as corrections due to specific
interactions should be exponentially subleading. For in-
stance, particles’ positions in our models should approxi-
mate well the spatial distribution of solitons in dense
soliton gases, something that can be useful for initial state
preparation.
It would be interesting to construct the full particle-non-

conserving Hamiltonian description of trajectories (2), (3)
with negative shifts φðθÞ < 0 [Fig. 1(d)]. Finding the full
integrability structure of our models, perhaps connecting
with sine-Gordon soliton trajectories [68–70], would be
interesting, as would quantizing our models, perhaps
in the spirit of [26] (integrability of generalized TT̄-
deformed systems is established [43]); the notion of pair
creation and annihilation may play an important role.
Finally, adding an external potential is possible, and we
anticipate that rigorous proofs of the emergence of the
GHD equation can be obtained following ideas in the hard-
rod case [8,20]. This might also shed light on GHD beyond
the Euler scale.
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