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We compute the potential-photon contributions to the classical relativistic scattering angle of two
charged nonspinning bodies in electrodynamics through fifth order in the coupling. We use the scattering
amplitudes framework, effective field theory, and multiloop integration techniques based on integration
by parts and differential equations. At fifth order, the result is expressed in terms of cyclotomic
polylogarithms. Our calculation demonstrates the feasibility of the corresponding calculations in general
relativity, including the evaluation of the encountered four-loop integrals.
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Introduction.—The spectacular detection of gravitational
waves [1] has opened a new window on the universe.
The expected increase in precision of up to 2 orders of
magnitude for the next generation gravitational wave
detectors [2] requires commensurate advances in theoreti-
cal predictions. Analytic perturbative approaches based on
post-Newtonian (PN) [3] and post-Minkowskian (PM) [4]
expansions have seen major advances in recent years—see
the reviews, e.g., Ref. [5] for further details and references.
The connection of these approaches to quantum field
theory (QFT) scattering processes has been long under-
stood [6,7]. This has recently invigorated the PM approach
by leveraging advances in QFT scattering, including
generalized unitarity, the double copy [8], and advanced
integration techniques. The double copy [8] expresses
gravitational scattering amplitudes in terms of simpler
gauge-theory amplitudes, while generalized unitarity [9]
builds loop integrands from simpler tree-level amplitudes.
Integration by parts (IBP) methods [10] allow the reduction
of integrands to a set of independent master integrals whose
values can usually be determined from differential equa-
tions [11,12]. The extraction of classical physics from
quantum scattering is greatly simplified by basic concepts
from effective field theories (EFTs), systematized for the
gravitational-wave problem in Ref. [13] and applied to the

PM framework in Ref. [14]. These methods have pushed
the state of the art to 4PM OðG4Þ [15–23]. By combining
perturbative, numerical relativity [24] and self force [25]
results, the effective one-body (EOB) approach [26] can
yield high-precision waveform templates for both bound
and unbound motion [7]. Despite some technical questions
regarding the inclusion of radiation reaction, the strikingly
good agreement between EOB-improved 4PM scattering
predictions and numerical relativity [27] provides strong
motivation for pursuing PM calculations to ever higher
orders to help match the precision of future measurements.
Amplitude methods efficiently solve the problem of con-

structing integrands for thegravitational two-body problem to
high PM orders. These methods use tree-level amplitudes as
building blocks for loop-level integrands and their efficiency
derives from the physical nature of the former. The primary
difficulty for high-order predictions is often the evaluation
of the resulting loop integrals. In particular, the integrals
encountered in the classical gravitational two-body problem
at 5PM (four-loop) order are overwhelmingly more involved
than those encountered at lower orders.
To explore possible solutions to such difficulties, we

turn to the simpler theory of electrodynamics (QED). It is a
useful toy model for general relativity (GR) [28–33] because
it retains certain essential features while having far
fewer integral topologies due to the absence of photon
self-interactions. Moreover, while in the quantum theory the
two-derivative nature of gravitational interactions leads to far
more complicated integrals, the classical limit restricts the
number of loop momenta in each diagram’s numerator so
that the gravitational integrals are of a similar complexity
as the QED ones. Our QED example demonstrates the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 251601 (2024)

0031-9007=24=132(25)=251601(7) 251601-1 Published by the American Physical Society

https://orcid.org/0000-0001-6770-2822
https://orcid.org/0000-0001-5573-6267
https://ror.org/046rm7j60
https://ror.org/04p491231
https://ror.org/010pmpe69
https://ror.org/01nrxwf90
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.251601&domain=pdf&date_stamp=2024-06-17
https://doi.org/10.1103/PhysRevLett.132.251601
https://doi.org/10.1103/PhysRevLett.132.251601
https://doi.org/10.1103/PhysRevLett.132.251601
https://doi.org/10.1103/PhysRevLett.132.251601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


necessary performance of the IBP reduction for carrying out
four-loop calculations. This gives us confidence that our
integration setup is applicable in GR. Here we use FIRE [34]
and LITERED [35]. We also have written a special purpose
IBP code for cross-checking results.
In this Letter, we compute potential photon contributions

to the conservative QED scattering angle of two charged
nonspinning objects to fifth order in the fine structure
constant α, leaving aside conservative contributions from
radiation photons. In the following, we will refer to this
expansion as the “post-Lorentzian” (PL) expansion, which
is in direct correspondence to the PM expansion in GR.
Similarly, we refer to the analog of the PN expansion as the
post-Coulombian (PC) expansion.
Unlike GR, this calculation does not exhibit divergences

associated with the separation of potential and radiation
modes [36]. The scattering angles including radiation effects
were previously found through 3PL in Refs. [28,32,33].
It is worth noting thatQEDamplitudes at smallmomentum

transfer, i.e., QED amplitudes in the classical regime, are an
integral part of the analysis of ultraperipheral collisions at
particle colliders and enter the relevant cross sections through
interference with nuclear S-matrix elements. This so-called
Coulomb-nuclear interference is of current theoretical
and experimental interest in light of, e.g., the TOTEM
experiment [37] probing physics down to momentum-
squared transfer jtj ¼ 8 × 10−4 GeV2 and center-of-mass
energy

ffiffiffi
s

p ¼13TeV. It was first studied by Bethe in
Ref. [38] and reanalyzed from different perspectives in [39];
see Ref. [40] for a summary of various approaches and of the
relevant cross sections. Recent theoretical improvements
include effects of excited nuclei [41], an all-order-in α
analysis of the leading eikonal [42], and an interpretation
[43] of the data of Ref. [37] in light of a new treatment of IR
divergences [44]. Interestingly, the momentum transfer of
2PL and 3PL terms dominates (at low t) or is of the same
order, respectively, as the contribution of excited nuclei [41].
While analyzing them from this perspective is beyond the
scope of this Letter, it would be interesting to explore the
phenomenological consequences of higher-order terms.
Basic setup.—The starting point for our calculation are

quantum scattering amplitudes, from which classical
observables can be extracted via several approaches
[14–16,31,45]. Here we use the realization that the classical
elastic four-point scattering amplitude is an appropriately
defined exponential [17]

iMðqÞ ¼
Z
J
ðeiIrðJÞ − 1Þ; ð1Þ

of the classical radial action [46], IrðJÞ ¼
R
prdr, defined as

an integral of the radial momentum, pr, over the scattering
trajectory. The radial action is a function of the total angular
momentum J ¼ pb of the 2 → 2 scattering process of two
massive particles with center-of-mass momentum p and

impact parameter b; its Fourier conjugate variable is the
momentum transfer q. The radial action (and therefore the
classical limit of the amplitude) determines the scattering
angle,

χ ¼ −
∂IrðJÞ
∂J

: ð2Þ
The classical limit corresponds to large angular momentum
J ≫ 1 inℏ ¼ 1 units, see, e.g.,Refs. [14,16], and translates to
the hierarchy of scales s;m2

1; m
2
2 ∼ J2jtj ≫ jtj ¼ jqj2. The

phase space splits into two regions

hard∶ l ≫ jqj; soft∶ l ∼ jqj: ð3Þ
Classical physics is captured by the soft region, whereas the
hard region contributes only to quantum effects [15]. At L
loops, it is contained in the terms proportional to jqjL−2 ln jqj
and jqjL−2 for even and odd L, respectively. To refine these
contributions, we identify the potential and radiation sub-
regions [47], characterized by a small velocity v:

potential∶ l ∼ ðv; 1Þjqj; radiation∶l ∼ ðv; vÞjqj: ð4Þ
Here we focus on the contribution where all photon loop
momentali are in the potential region.As inGR, the potential
region does not account for all conservative effects, which,
starting at 4PM or 4PL [18], also require the inclusion of
radiation modes. At 5PL, we leave such contributions to
future work. However, in contrast to the gravitational case,
the potential-region contribution in QED gives rise to a
well-defined local classical potential due to the absence
of nonlinearities of the field equations and the associated
absence of tail effects [36]. Nonetheless, as is standard in
quantum field theory computations (see, e.g., Ref. [48]),
we use dimensional regularization, setting D ¼ 4 − 2ϵ, to
handle divergences in intermediate expressions.
QED and loop integrands.—To describe two electrically

charged classical spinless compact objects of mass m1 and
m2 at scales much larger than their size, we use the
minimally coupled scalar QED Lagrangian in Rξ gauge,

L ¼ −
1

4
F2
μν −

1

2ξ
ð∂μAμÞ2 þ

X2
i¼1

½jDμϕij2 −m2
i jϕij2�; ð5Þ

where the covariant derivative Dμ ¼ ∂μ − ieQiAμ contains
the photon field AμðxÞ and the electric charge Qi for each
object measured in terms of the elementary charge e, related
to the fine structure constant α ¼ e2=ð4πÞ ≃ 1=137. Below it
will be convenient to define an effective small coupling
αeff ¼ αQ1Q2=J in terms of the charges of the scattering
objects. The Maxwell field strength is Fμν ¼ ∂μAν − ∂νAμ.
The Feynman vertices of scalar electrodynamics used in the
calculation are derived from the Lagrangian in Eq. (5) using
standard procedures [49]. This allows us to construct QED
amplitudes via Feynman diagrams to higher orders in
perturbation theory. At leading order in α only a single
diagram contributes. At order α5 there are a total of 1536
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relevant Feynman diagrams, which we organize into 23
graphs containing only cubic vertices. Sample diagrams at
various orders in perturbation theory are shown in Fig. 1.
The primary calculation is performed in Feynman gauge
ξ ¼ 1, but we verified the ξ independence of the amplitudes
at one numerical kinematic point.
Soft expansion, integral reduction, and integration.—

With the L-loop integrand at hand we extract terms that can
contribute to the classical limit by expanding in the soft
region Eq. (3) to Lth order. Starting from the pi in Fig. 1,
special variables [51],

p̄1¼−p1þ
q
2
¼p4−

q
2
; p̄2¼−p2−

q
2
¼p3þ

q
2
; ð6Þ

which satisfy p̄1 · q ¼ p̄2 · q ¼ 0, p̄2
i ¼ m̄2

i simplify the
analysis. After the soft expansion, the dependence on q2

and m̄i is trivially fixed by scaling arguments. Therefore all
integrals are functions of the single kinematic variable,

y ≔
p̄1 · p̄2

m̄1m̄2

¼ 1þ x2

2x
¼ σ þOðq2Þ; ð7Þ

where the x parametrization is useful to simply the resulting
expressions, and σ ¼ p1 · p2=ðm1m2Þ ¼ ð1 − v2Þ−1=2.
The soft expansion yields many terms, some with higher-

rank tensor integrals and higher-power matter propagators.
Yet, the key factor characterizing the difficulty of the
calculation is not the number of integrals but rather their
“IBP complexity,” defined for each of them as the number
of irreducible numerators plus the number of “dots”
corresponding to doubled and higher powers of propaga-
tors. For QED at L loops, one obtains integrals with up
to rank L numerators and up to L additional dots for a
maximum IBP complexity of 2L. Remarkably, similar
counting in the classical limit shows that the maximum
IBP complexity in GR is identical to that of QED. We
should mention, however, that besides the appearance of
many more diagram families in GR, they require more
effort to evaluate at the same complexity ranking. In
contrast, the ladder diagrams of GR can be evaluated using
precisely the same setup as for QED.
The integral of the soft-expanded integrand is sub-

sequently reduced to a combination of master integrals
via IBP. These integrals are naturally organized in terms of
families of diagrams with only cubic vertices and their
contractions (contact diagrams). Different families share
many common contact integrals so that we find it conven-
ient to organize the computation in terms of a single set of

“global” master integrals shared across all families. The
global master integrals are evaluated via differential equa-
tions [11], following the steps described in Ref. [51]. In
particular, we use an implementation of Lee’s algorithm
[52], together with various software packages [53] to find a
basis of master integrals I⃗ðx; ϵÞ that brings the correspond-
ing differential equation to canonical form [12],

∂xI⃗ðx; ϵÞ ¼ ϵ
X
w∈W

wðxÞAwI⃗ðx; ϵÞ; ð8Þ

with rational matrices Aw and logarithmic kernels W.
To fully specify the solutions we supply boundary

conditions in the near-static limit x → 1 (equivalent to
v → 0) by expanding the master integrals in velocity as
explained in Ref. [51]. Another constraint is analyticity at
v → 0. The resulting solutions are a power series in ϵ
whose coefficients are generically generalized polylogar-
ithms [54] in x.
Potential-region scattering angles through Oðα4Þ.—

Equations (1) and (2) give the potential-region contribu-
tions to the scattering angles through fourth order as

χ1PLpot ¼ αeff
−2σffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ;

χ2PLpot ¼ α2eff
π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðσ − 1Þp ;

χ3PLpot ¼ α3eff
−2σð2σ2 − 3Þ þ 4νðσ − 1Þðσ3 þ 3σ2 − 3Þ

3½1þ 2νðσ − 1Þ�ðσ2 − 1Þ3=2 ;

χ4PLpot ¼ α4eff
3π

8ð1þ 2νðσ − 1ÞÞ3=2

×
�
1þ ν

2ðσ2 − 1Þ
�
3σ4 − 11σ3 þ 3σ2 þ σ þ 14

−
7σ2 − 1

σ3
þ 2ð3σ3 − 4σ2 þ 9σ − 4Þ logðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1
p

þ ð3σ2 þ 1Þ
�
logðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
�
2
��

; ð9Þ

where ν ¼ m1m2=ðm1 þm2Þ2 is the symmetric mass ratio.
In Refs. [32,33], the scattering angles, including radiative
effects, were presented through α3. The α4 potential-region
contribution is new. For completeness, we have also
computed the conservative radiation contribution to the
scattering angle using the methods described in Ref. [18]
and provide the result in the Supplemental Material [55].
Interestingly, χ4PLpot is related by a derivative with respect to
logðxÞ (holding other appearances of σ fixed) to the energy-
loss at 3PL [32,33] in the Q3

1Q
3
2 charge sector

ΔEQ3
1
Q3

2
c:m: ∼ð3σ3−4σ2þ9σ−4Þþð3σ2þ1Þ logðxÞffiffiffiffiffiffiffiffiffiffiffiffi

σ2−1
p : ð10Þ

In GR, the 3PM energy loss is related to the divergent part
of the 4PM tail contribution [56] which in the full

FIG. 1. Sample Feynman diagrams describing the scattering of
two (macroscopic) charges at (a) leading, (b) fourth, and (c) fifth
order in α in an all-outgoing momentum convention.
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expression cancels against the divergent part of the poten-
tial-region scattering angle. In contrast, the relation appears
to hold for the finite part in QED but not in GR. It would be
interesting to investigate this further.
Scattering angles at Oðα5Þ.—Compared to lower orders,

where analogous GR calculations are available, our four-
loop result is at a previously unexplored order in the PM/PL
expansion and warrants some further details.
The complete 5PL amplitude is composed of 1536

Feynman diagrams of which we have to evaluate 213,
while the rest can be obtained by crossing. For the purpose
of the integrand reduction via integration by parts, we
organize the integrand into 23 ladder-type diagrams with
cubic vertices by multiplying and dividing by any missing
propagators. The soft expansion is straightforward. After
applying IBP reduction to the soft expanded four-loop
integrand we obtain a set of master integrals for each
family. Removing redundant master integrals between the
23 families leaves 1107 global master integrals. Here, we
again bring the master integral differential equations into
canonical form, see Eq. (8).
The logarithmic kernels for the differential equation at

four loops are explicitly given by

W ¼
�
1

x
;

1

1þ x
;

1

x − 1
;

2x
1þ x2

;
1þ 2x

1þ xþ x2
;

2x − 1

1 − xþ x2

�
≔ ff00; f02; f01; 2f14; 2f13 þ f03; 2f

1
6 − f06g; ð11Þ

and reexpressed via cyclotomic kernels fij ≔ xi=Φðj; xÞ;
Φðj; xÞ being the jth cyclotomic polynomial. Therefore, the
solutions of the differential equations are naturally written
in terms of cyclotomic harmonic polylogarithms (CPLs),
originally introduced in Ref. [57], and have appeared in
different contexts, see, e.g., Ref. [58],

Cb1;…;bn
a1;…;anðxÞ ¼

Z
x

0

dz fb1a1ðzÞCb2;…;bn
a2;…;anðzÞ; ð12Þ

with C0
0ðxÞ ≔ logðxÞ.

The boundary conditions are evaluated in the near-static
limit x → 1. Analyticity in this limit provides 814 boundary
conditions. The remaining 293 conditions correspond to
appropriately normalized scalar integrals which are fixed
by explicitly expanding in the near-static limit, as explained
in Ref. [51].
Inserting the master-integral values into the IBP-reduced

integrand yields the potential part of the classical amplitude
for the scattering of two charged particles,

M5 ¼ −J5α5eff jqj2 logðjqj2Þ
�
−4σð15 − 20σ2 þ 8σ4Þ

þ
X12
k¼1

�
νrð1Þk þ ν2rð2Þk

�
fk

�
þ iteration; ð13Þ

where the result is organized in terms of the symmetric
mass ration ν. The “iterations” are dictated by the

amplitude-action relation in Eq. (1) [17] and we verified
their connection with lower-loop amplitudes. We also
introduced a basis of transcendental functions fk and

algebraic coefficients rðiÞk ,

rð1Þ1 ¼15

σ2
−208σ6þ128σ5−625σ4−320σ3þ705σ2

þ240σþ65;

rð1Þ2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p �
−
60ð5σ2−1Þ

σ3
−80σð16σ2þ23Þ

�
;

rð1Þ3 ¼90ð6σ2−1Þ
σ4

−10ð350σ2þ319Þ;

rð1Þ4 ¼−
5760σffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p ;

rð1Þ5 ¼120ðσ2−1Þ3=2ð2σ2−1Þ;
rð1Þ8 ¼120ðσ2−1Þðσ2þσ−1Þ;
rð1Þ9 ¼rð1Þ12 ¼240ðσ2−1Þ2;
rð1Þ11 ¼120ðσ2−1Þðσ2þ2σ−1Þ;
rð1Þ6 ¼rð1Þ7 ¼rð1Þ10 ¼0;

rð2Þ1 ¼405σð15−44σ2Þ
16ð1−4σ2Þ2 −

15ð10σ2þ2σ−3Þ
σ3

þ−2048σ7þ6656σ6þ17872σ5þ20000σ4

16

þ−7740σ3−22560σ2−6635σ−2080

16
;

rð2Þ2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p �
45ð1232σ4−1168σ2þ287Þ

16ð4σ2−1Þ3

þ30ð20σ3−9σ2−4σþ3Þ
σ4

þ 5

16
ð1776σ4þ8192σ3þ10820σ2þ11776σþ3223Þ

�
;

rð2Þ3 ¼−
30ð16σ4þ36σ3−11σ2−6σþ3Þ

σ5

þ20ð212σ3þ350σ2þ328σþ319Þ;

rð2Þ4 ¼2880ðσþ1Þð3σþ1Þffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p ;

rð2Þ6 ¼480ðσ2−1Þ3=2ð2σ2−1Þ;
rð2Þ7 ¼45σðσ2−1Þ5=2;
rð2Þ9 ¼−480ðσ2−1Þðσ2−σ−1Þ;
rð2Þ10 ¼−135ðσ2−1Þ2;
rð2Þ12 ¼−480ðσ2−1Þðσ2−2σ−1Þ;
rð2Þ5 ¼rð2Þ8 ¼rð2Þ11 ¼0: ð14Þ
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The transcendental functions have compact representations
in terms of CPLs in the variable x

f1¼ 1; f2 ¼C0
0ðxÞ; f3 ¼C0;0

0;0ðxÞ; f4¼C0;0;0
0;0;0ðxÞ;

f5¼−C0;0
1;0ðxÞþC0;0

2;0ðxÞþ
π2

4
;

f6¼−C0;0
2;0ðxÞþC1;0

4;0ðxÞ−
π2

16
;

f7¼C0;0
3;0ðxÞþ2C1;0

3;0ðxÞþC0;0
6;0ðxÞ−2C1;0

6;0ðxÞþ
π2

6
;

f8¼−C0;0;0
0;1;0ðxÞþC0;0;0

0;2;0ðxÞþ
π2

4
C0
0ðxÞþ

7ζ3
2

;

f9¼−C0;0;0
0;2;0ðxÞþC0;1;0

0;4;0ðxÞ−
π2

16
C0
0ðxÞ−

21ζ3
16

;

f10¼C0;0;0
0;3;0ðxÞþ2C0;1;0

0;3;0ðxÞþC0;0;0
0;6;0ðxÞ−2C0;1;0

0;6;0ðxÞ

þ1

6
π2C0

0ðxÞþ
28ζ3
9

;

f11¼−C0;0;0
1;0;0ðxÞþC0;0;0

2;0;0ðxÞ−
7ζ3
4

;

f12¼−C0;0;0
2;0;0ðxÞþC1;0;0

4;0;0ðxÞþ
21ζ3
32

: ð15Þ

Remarkably, the amplitude (13) does not depend on the full
cyclotomic alphabet, but only on the subset

W0 ¼
�
1

x
;

x
1 − x2

;
x − 1

ðxþ 1Þð1þ x2Þ ;
1 − x2

1þ x2 þ x4

�
: ð16Þ

Note that the last letter appears only in the ν2 sector of the
amplitude, while the second letter does not appear there.
The transcendental constants in Eq. (15) are chosen such
that the expansion of the functions around the static point
x ¼ 1 only involves rational numbers. Therefore the post-
Coulombian expansion of the amplitude is manifestly free
of these constants and it is natural to conjecture that this
property holds to all orders. This is in contrast to GR where
π2 is present at 4PM and is closely tied to the appearance
of elliptic integrals. For the particular combination of CPL’s
in the classical amplitude we find that there exists an
expression in terms of classical polylogarithms with real
arguments. The expression can be found in the
Supplemental Material to this Letter [55].
The Oðα5Þ angle follows from Eqs. (13), (1) and (2):

χ5PLpot ¼α5eff
1

30½1þ2νðσ−1Þ�2ðσ2−1Þ5=2

×

�
−4σð15−20σ2þ8σ4Þþ

X12
k¼1

�
νrð1Þk þν2rð2Þk

�
fk

�
:

ð17Þ
For both the 4PL and 5PL potential-region scattering angles
we performed a number of nontrivial checks. We verified
the independence of the result on the gauge parameter ξ

after IBP reduction to a master-integral basis, checking
much of the integrand and integral tables.
We have also computed the scattering angle to fourth

post-Coulombian order using the Fokker-type Lagrangian
of Wheeler-Feynman electrodynamics [50] from Eq. (4.1)
of Ref. [29], and applied a variant of their proposed
order-reduction procedure to eliminate higher time deriv-
atives [59]. For the overlapping terms, we find complete
agreement with the velocity expansion of our PL expres-
sions in the near-static limit. In particular we match the
expansion of the 5PL angle,

χ5PLpot ¼ α5eff

�
−

2

5v5
þ 4

3v3
þ 2ð8ν − 3Þ

3v
þ 8

9
νð5 − 18νÞv

þ ν

	
80ν2

3
−
532ν

27
þ 226

45



v3 þOðv5Þ

�
: ð18Þ

Notice that the Oðα5Þ potential starts contributing only at
Oðv3Þ, while Oðvn≤1Þ are fixed by lower PL orders.
The probe limit, ν → 0, in which one mass is much

smaller than the other, provides another important check.
In this limit the angle has a simple expression [46,60] to all
orders in α:

χð0Þ ¼ −π þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2eff

p arctan

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2eff

p
αeff

#
: ð19Þ

Expanding in small αeff ≪ 1, we obtain

χð0Þ ¼−αeff
2σffiffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p þα2eff
π

2
þα3eff

2σð2σ2−3Þ
3ðσ2−1Þ3=2

þα4eff
3π

8
−α5eff

2σð8σ4−20σ2þ15Þ
15ðσ2−1Þ5=2 þOðα6effÞ; ð20Þ

in agreement with the probe-limit of the explicit PL results
in Eqs. (9) and (17).
We note that χ5PLpot exhibits singularities at σ ¼ 0;�1=2

which lie outside of the physical scattering region 1 < σ.
Similar poles are present in the complete 4PM results in
GR [17–23]. It would be interesting to investigate their fate
after the analytic continuation to the bound regime [61].
QED offers a cleaner environment to study this issue due to
the absence of the tail effect.
Conclusions.—In this Letter we studied the scattering

of two classical charges through fifth order in the fine
structure constant α. While our primary objective was to
connect to the rapid progress in the post-Minkowskian
approach to gravitational-wave physics and explore the
feasibility of analogous calculations in GR, we point out
the possible phenomenological relevance of our 5PL QED
amplitude as well as of amplitudes at lower PL orders [33]
to ultraperipheral scattering as probed, e.g., at the TOTEM
experiment. These aspects deserve further study.
Amplitude-based approaches efficiently solve the prob-

lem of constructing integrands for the foreseeable future,
even in GR. The critical issue addressed here is whether the
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overwhelming increase in complexity of integrals encoun-
tered at 5PM and beyond impedes further progress.
Electrodynamics is an especially useful test case because
its diagram topologies are a subset of those appearing
in GR. In the overlap, the integrals have identical IBP
complexity in the classical limit and share the same set of
master integrals. Moreover, most of the master integrals
are also shared by more involved diagram topologies that
appear in the gravitational calculation. Our results indicate
that the powerful field-theory integration methods are
sufficient to meet the 5PM challenge. We anticipate much
more progress to follow in the near future.
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