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Most high-energy constructions that realize a phase of cosmic inflation contain many degrees of
freedom. Yet, cosmological observations are all consistent with single-field embeddings. We show how
volume selection effects explain this apparent paradox. Because of quantum diffusion, different regions of
space inflate by different amounts. In regions that inflate most, and eventually dominate the volume of the
Universe, a generic mechanism is unveiled that diverts the inflationary dynamics towards single-field
attractors. The formalism of constrained stochastic inflation is developed to this end.
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Introduction.—Cosmic inflation [1–6] is a phase of
accelerated expansion that occurred in the early
Universe, during which vacuum quantum fluctuations were
amplified by gravitational instability and gave rise to
density fluctuations on large scales. These fluctuations
constitute the seeds of all cosmological structures, and the
validity of this scenario has been confirmed by a wealth of
high-precision astrophysical measurements, ranging from
the temperature and polarization fluctuations of the cosmic
microwave background (CMB) [7], to galaxy and large-
scale-structure surveys [8–10]. This makes inflation the
leading paradigm to describe the early Universe.
Most physical setups that have been proposed to embed

inflation contain a large number of high-energy degrees
of freedom, see, e.g., [11–23]. This is because inflation is
expected to occur at very high energies, ranging from GeV
to 1015 GeV scales. The extensions to the standard model
of particle physics that have been proposed to describe
physics at those scales (supersymmetry, supergravity, string
theory, etc.) usually come with many additional fields.
The presence of multiple fields during inflation is expected
to leave specific imprints, such as non-Gaussianities or
entropic perturbations. However, all observations per-
formed so far have failed to detect such features and are
consistent with single-field models of inflation [24,25].
Therefore, a crucial question that remains open for inflation
is: why do we observe single-field phenomenology, while
inflation is expected to be realized in multiple-field setups?
In this Letter, we show how this question can be naturally

answered by volume-selection effects. Because of quantum
fluctuations, different regions in space inflate by different
amounts. In a multiple-field landscape, it is shown that the
regions that inflate the most reach an effectively single-field
behavior when the scales observed in the CMB are being

produced. Since such regions expand their physical volume
by a larger amount, they eventually dominate the content of
the universe, which explains how single-field phenomeno-
logy emerges from multifield setups.
This mechanism, which plays a central role in explaining

why inflation looks single field to us, is unveiled using the
formalism of stochastic inflation [26]. In this approach, as
quantum fluctuations cross out the Hubble radius during
inflation, they become part of the large-scale classical fields
and randomly shift the background configurations. The
dynamics of the fields thus become stochastic at large scales,
which in practice is described by Langevin equations. The
time required to terminate inflation is promoted to a random
variable, and its statistics can be studied using first-passage-
time techniques. It is related to the observed curvature
perturbation in the stochastic-δN formalism [27–29].
In order to focus on the realisations of the Langevin

equations that inflate for the longest period of time, and
which thus dominate the volume of the Universe, a direct
approach consists in simulating a large number of realiza-
tions numerically and keeping only those that inflate more
than a certain threshold. However, this method becomes
prohibitively expensive when the threshold increases since
most realisations are discarded. Moreover, since it relies
on numerical sampling, it is not propitious for analytical
insight. This is why, in this Letter, methods from the theory
of “constrained stochastic processes” [30–32] are bor-
rowed, in order to derive modified Langevin equations
that only generate realizations of a fixed duration (or a
duration larger than a given bound). This allows us to study
the statistics of the original stochastic process, conditioned
to its duration.
We find that imposing a long duration for inflation leads

to large realizations of the noises to be sampled at early
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time, which drifts the system towards the lightest field
direction. This explains why, starting from initial condi-
tions that would normally result in substantial multiple-
field signatures to be produced, predictions are aligned with
the single-field behavior once the selection on the duration
of inflation is applied. We also show that the early phase of
large-noise realizations lies in general outside the observ-
able window, hence it does not threaten the viability of the
currently preferred models of inflation.
Natural units are used with c ¼ ℏ ¼ 1 and MP ¼

1=
ffiffiffiffiffiffiffiffiffi
8πG

p
≃ 2.4 × 1018 GeV denotes the reduced Planck

mass.
Stochastic inflation.—On a homogeneous and isotropic

background, fields are conveniently expanded into Fourier
modes,

ϕðx; NÞ ¼ ϕ−ðx; NÞ þ ϕþðx; NÞ;

ϕ�ðx; NÞ≡
Z

d3k
ð2πÞ3 Θ½�ðk − σaHÞ�ϕkðNÞeik·x: ð1Þ

Here, ϕ is a vector that contains all field configurations and
momenta, and time is labeled with the number of e-foldsN,
related to cosmic time t through dN ¼ Hdt, where
H ¼ ȧ=a is the Hubble parameter and a the scale factor.
The coarse-grained field ϕ− contains all wavelengths larger
than the Hubble radius 1=H (rescaled by the constant
parameter σ), while ϕþ contains smaller wavelengths. As
comoving Fourier modes cross out the Hubble radius, they
go from ϕþ to ϕ−, and contribute a white Gaussian noise ξ
to the dynamics of ϕ− (simply denoted ϕ hereafter) that
reads [26]

dϕ
dN

¼ FðϕÞ þ GðϕÞξðNÞ: ð2Þ

Here, F describes the homogeneous (in the limit σ ≪ 1),
classical dynamics of the fields, while the amplitude of the
noise G is obtained from evolving quantized cosmological
perturbations from the Bunch-Davies vacuum at small
scales. For a scalar field ϕ in the slow-roll regime,
F ¼ −V 0=3H2 and G ¼ H=2π, where H2 ¼ V=3M2

P and
V is the potential energy of the fields, while the field
momentum is set by the slow-roll attractor [33]. Inflation
terminates when ä stops being positive. This defines a final
hypersurface C in the field space on which absorbing
boundary conditions are imposed.
The Langevin equation (2) gives rise to a Fokker-Planck

equation for the probability density Pðϕ; NÞ of ϕ at time N,

∂P
∂N

¼
�
−∇ · Fþ 1

2
∇ ⊗ ∇∶G2

�
P: ð3Þ

Hereafter, Itô’s convention is adopted for explicitness
(although extensions to other discretization conventions
are straightforward [34]) and Frobenius inner product’s

notation ∇ ⊗ ∇∶G2 ¼ ð∂2=∂ϕi
∂ϕjÞGj

kG
ki is used where ∇

is the field space gradient.
Starting from the initial condition ϕ, the number

of e-folds elapsed until the first crossing of C is a random
variable denoted by N and referred to as the first-passage
time. Its distribution function, PFPTðϕ;N Þ, obeys the
adjoint Fokker-Planck equation [29,35]

∂PFPT

∂N
¼

�
F · ∇þ 1

2
G2∶∇ ⊗ ∇

�
PFPT ≡ LPFPT: ð4Þ

This partial differential equation needs to be solved with the
boundary condition PFPTðϕ;N Þ ¼ δDðN Þ forϕ∈ C, where
δD is the Dirac distribution. At large N , the upper tail of
PFPT decays exponentially with N [35,36], which makes
the sampling of long-lasted realizations numerically
challenging.
Constrained stochastic processes.—Consider the subset

of realisations of the stochastic process (2) starting from ϕ0

that realize a fixed number of e-folds NF. At time N,
they follow a distribution function that is denoted by
Pðϕ; NjNFÞ. Using Bayes theorem, this can be written
in terms of quantities defined above in the unconstrained
process,

Pðϕ; NjNFÞ ¼
PFPTðϕ; NF − NÞPðϕ; NÞ

PFPTðϕ0; NFÞ
: ð5Þ

Here, we used that, for Markovian processes, the proba-
bility to realize a total NF e-folds if the system is at ϕ at
time N, is equal to the probability to realize NF − N e-folds
starting from ϕ. Since P and PFPT satisfy (3) and (4),
respectively, the above leads to [37]

∂P
∂N

¼
�
−∇ · F̃þ 1

2
∇ ⊗ ∇∶G2

�
P; ð6Þ

where

F̃ðϕ; NÞ≡ FðϕÞ þ G2ðϕÞ∇ lnPFPTðϕ; NF − NÞ: ð7Þ
One notices that (6) is of the same form as (3), i.e., it is a
Fokker-Planck equation, except that the drift function F̃
now explicitly depends on time. As such, (6) can equiv-
alently be written in the Langevin form

dϕ
dN

¼ F̃ðϕ; NÞ þ GðϕÞξðNÞ; ð8Þ

which is known as the Doob’s transformation of (2) [41].
The additional term in (7) is an effective force induced by

the selection effect. When N < NF, the boundary condi-
tion, PFPT ¼ δD on C, implies that the induced force is
infinitely repelling on the final surface, preventing realiza-
tions from finishing before NF. As N approaches NF, since
PFPTðϕ;N Þ ∝ exp½−fðϕÞ=N � for small time arguments,
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where f grows with the distance between ϕ and C [37], the
induced force becomes infinitely attracting towards the
final surface and inflation necessarily terminates at NF.
This guarantees that the duration of inflation is indeed fixed
in the constrained process. Let us stress that sampling (2)
and keeping only realizations that produce NF e-folds is
mathematically equivalent to sampling (8).
A regime of physical interest below is when the noise

amplitude G is small. In that limit, PFPTðN Þ is approxi-
mately Gaussian,

PFPTðϕ;N Þ ≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ðϕÞ

p exp

�
−
½N − μðϕÞ�2

2σ2ðϕÞ
�
; ð9Þ

where μ is the mean number of e-folds and σ is its standard
deviation. From (4), they satisfy Lμ ¼ −1 and
Lσ2 ¼ −G2∶ð∇μÞ ⊗ ð∇μÞ, with L ≃ F · ∇ at leading order
in the noise. This gives rise to the induced drift

F̃¼FþNF−N−μ

σ2
G2 ·

�
∇μþNF−N−μ

2σ2
∇σ2

�
: ð10Þ

Here, σ scales like G, hence the induced force is indepen-
dent of the noise amplitude. In that regime, the noise term
in (8) can thus be neglected [37], and the constrained
dynamics becomes quasi-deterministic. Note that, from the
point of view of the unconstrained dynamics, the noise
plays a crucial role in the realizations that produce NF
e-folds, especially if NF differs substantially from the mean
first-passage time. However, in the regime described here,
statistical fluctuations among the subset of constrained
realizations are negligible. This is why the noise can be
neglected in (8), but obviously not in (2).
Stochastic processes of a fixed duration are dubbed

“excursions” [31], but other constrained processes can be
sampled similarly, e.g., “meanders” in which only a lower
bound on the duration of inflation, N ≥ NF, is imposed.
In that case, one still obtains a modified Langevin equation
of the form (8), except that PFPTðϕ; NF − NÞ in (7) needs to
be replaced with

R
∞
NF−N dNPFPTðϕ;N Þ [37]. In the low-

diffusion limit, whether the volume selection effect during
inflation is implemented via excursions or meanders leads
to similar conclusions [37], hence in the following we focus
on excursions.
Single-field phenomenology from multifield inflation.—

Let us now apply the formalism presented above to
multiple-field models of inflation. For concreteness, a
double quadratic potential is considered [42–45],

VðϕÞ ¼ m2
1

2
ϕ2
1 þ

m2
2

2
ϕ2
2; ð11Þ

where
ffiffiffi
r

p ≡m2=m1 > 1 is assumed without loss of
generality. Upon introducing the rescaled variables,
x≡ ϕ1=MP, y≡ ϕ2=MP, and v0 ≡m2

1=24π
2M2

P, in the

slow-roll regime the unconstrained Langevin equation (2)
reads

d
dN

�
x

y

�
¼ −

2

x2 þ ry2

�
x

ry

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0ðx2 þ ry2Þ

q
ξðNÞ:

ð12Þ

Inflation terminates on the contour C defined by
2ðx2 þ r2y2Þ ¼ ðx2 þ ry2Þ2, on which an absorbing boun-
dary is placed. When the stochastic noise is neglected
in (12), inflation proceeds along the classical lines y ¼ cxr,
where c is conserved and depends on the initial condition.
This leads to the classical number of e-folds, μðx; yÞ ¼
ðx2 þ y2 − x2F − y2FÞ=4, where ðxF; yFÞ is the intersection of
the classical trajectory with C, and thus implicitly depends
on the initial conditions x and y.
Following [46], the prevalence of multifield effects can

be assessed by comparing the rate at which the trajectory
turns in field space, η⊥, with the rate at which it accelerates,
ηk. In other words, if v ¼ ðdx=dN; dy=dNÞT denotes the
field-space velocity, ηk is the component of dv=dN that is
parallel to v, and η⊥ is its orthogonal component. In the
model (11), one finds

λ≡ η⊥
ηk

¼ rðr − 1Þ wð1þ rw2Þ
r4w4 − ðr3 − 4r2 þ rÞw2 þ 1

; ð13Þ

where w≡ y=x. In what follows, quasi single-field phe-
nomenology will be associated with regions where λ < λc,
with λc a fixed threshold on which our conclusions do not
depend. When the two fields have the same mass, λ ¼ 0
and the setup is effectively single field. For a large
mass ratio, r ≫ 1, single-field phenomenology requires
w < λc=r2, which delineates a smaller field-space region as
r increases.
From a given initial condition, one can integrate the

classical dynamics and compute λ when the scales probed
in the CMB emerge, i.e., 60 e-folds before the end of
inflation. If λ < λc, this initial condition is said to yield
quasi single-field phenomenology, and is displayed in blue
in the left panels of Fig. 1. One can see that, as r increases,
the space of initial conditions compatible with single-field
phenomenology is enlarged, although the single-field
condition becomes more stringent as mentioned above.
This is because, when the heavy field is heavier, it gets
more quickly suppressed during inflation, and the system is
more efficiently attracted towards the light field direction.
Nonetheless, a fair fraction of the initial conditions yield
multifield effects.
Let us now turn on the selection effect, and impose that

NF e-folds are realized. In practice, CMB measurements
[24] constrain v0 to be of order 10−13, hence the noise
amplitude in (12) is highly suppressed and the Gaussian
approximation (9) can be used. There, μ was given above,
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and one finds σ2 ≃ v0½fðx; yÞ − fðxF; yFÞ�=48, where
fðx;yÞ¼ x6þ ry6þ3½rðrþ2Þ=ð2rþ1Þ�x2y4þ3½ð2rþ1Þ=
ðrþ2Þ�x4y2. At leading order in v0, the constrained
dynamics is deterministic, so one can apply the same
procedure as in the classical unconstrained setup and the
result is displayed in the middle and right panels of Fig. 1.
One can see that, if one imposes N ¼ NF, the realizations
of the noise that are selected divert the system towards a
large detour at larger-field values. This detour circles
clockwise, such that the system is much closer to the
light-field direction when it approaches the end of inflation
than what it would be without selection effects. As a
consequence, one notices that more initial conditions give
rise to single-field phenomenology once selection effects
are turned on.
When NF increases, the detour is wider and the prefer-

ence for single-field phenomenology is more pronounced.
Although this effect is shown explicitly in the two-field
model (11), we expect it to be generic. Indeed, in the
unconstrained setup, the stochastic noise may either take

the system closer to the heavy-field direction or to the light-
field direction. If the system gets closer to the heavy field, the
subsequent number of e-folds it realizes is smaller than if it
gets closer to the light field. As a consequence, imposing a
large duration of inflation necessarily results in a biased
sampling in favor of those noise realizations that bring the
system closer to the light field, i.e., to the field-space regions
with stronger single-field phenomenology. This generic
mechanism is present in any multiple-field model.
When do selection effects take place?.—Volume selec-

tion diverts the inflationary dynamics towards single-field
looking regions, and a natural question is whether or not
this detour leaves observable effects. Indeed, the predic-
tions of inflationary models are usually derived along
the unconstrained trajectory, and one may wonder how
they change when computed along the constrained ones.
This question already arises in single-field models, so for
simplicity ϕ2 is set to 0 in (11).
In that case, the above formulas can be used with setting

y ¼ 0. The first-passage-time problem can be solved

FIG. 1. Random initial conditions are drawn inside a contour of equal e-folds, from which the inflationary dynamics is solved. λ is
computed 60 e-folds before the end of inflation, and the initial condition is marked in blue if λ < λc ¼ 0.1 (single-field phenomenology),
and in red otherwise. A few examples of inflationary trajectories are displayed with the black thick dashed lines, the initial conditions of
which are set on the contour x2 þ y2 ¼ 302 (hence μ ¼ hN i ¼ 225.5 e-folds are classically realized). The left panels correspond to the
unconstrained setup, where the gray dots realize less than 60 e-folds. The middle and right panels show the constrained setup. When NF
increases, more initial conditions give rise to single-field phenomenology (see also Fig. S5 in [37]).
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semi-analytically [37], but when v0 ≪ 1, the Gaussian
approximation (9) applies and the constrained dynamics
becomes deterministic. It is displayed in Fig. 2, where
one can see that by 60 e-folds before the end of inflation,
the constrained realizations have all collapsed to the
unconstrained one. This means that the part of the
inflationary era that is probed in cosmological surveys
is not affected by selection effects, and confirms that
standard results apply.
The reason why selection effects mostly take place early

on is because quantum diffusion is more prominent at early
stages of inflation (in the present model, F decays as 1=x
whileG grows as x). Since it is more likely for the system to
fluctuate away from the mean path when the amplitude
of the noise is larger, this explains why the selection detour
is imprinted at early stages, i.e., at scales larger than
those observed [47]. In the vast majority of single-field
models [17] quantum diffusion is larger at earlier times, but
there exist potentials that feature a transient phase of large
diffusion at late time, and which are relevant to primordial
black hole production for instance. The presence of
observable imprints from selection effects in these setups
would be interesting to further explore.
Conclusion.—We have developed the formalism of con-

strained random processes in the context of stochastic
inflation. This allowed us to derive effective Langevin
equations that select the realizations where quantum
diffusion leads to the longest duration of inflation. The
corresponding space-time regions dominate the volume of
the universe at late time and thus represent the most likely
past history of a given observer.
We have found that, in multiple-field setups, these

regions are efficiently diverted to single-field attractors.
As a consequence, the set of initial conditions that leads
to single-field phenomenology is much larger than in the
absence of volume-selection effects. This mechanism is
generic and helps to explain why, although inflation is most
commonly realized in high-energy constructions that
involve multiple additional degrees of freedom, cosmo-
logical observations are compatible with single-field mod-
els. If multifield signatures are detected in the future, it
would point towards the limited class of models where,

60 e-folds before the end of inflation, multifield effects are
produced everywhere in field space.
We have also shown that selection effects take place at

early time and barely affect the last 60 e-folds of inflation.
This implies that the standard predictions of inflation are
unaffected once the single-field attractor has been reached
(although possible observable imprints of selection effects
in models with substantial quantum diffusion towards the
end of inflation [50,51], or in the case of “just-enough
inflation” [52,53], require further investigations).
Note that, contrary to previous attempts to implement

volume-weighting procedures [54–58], our results do not
depend on a choice of a volume measure. Instead, it relies
on selecting the realizations that inflate the most, which are
shown to reach single-field attractors at late time. Single-
field phenomenology would therefore emerge for any
volume measure, only the strength of the attractor would
depend on the details of that measure.
Finally, let us mention that the formalism of constrained

random processes can be used more generally to sample
rare realizations, in complement with other importance-
sampling methods [59]. This may be of practical interest,
e.g., in situations leading to the formation of primordial
black holes.
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