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The postselected quantum metrological scheme is especially advantageous when the final measurements
are either very noisy or expensive in practical experiments. In this Letter, we put forward a general theory
on the compression channels in postselected quantum metrology. We define the basic notions character-
izing the compression quality and illuminate the underlying structure of lossless compression channels.
Previous experiments on postselected optical phase estimation and weak-value amplification are shown to
be particular cases of this general theory. Furthermore, for two categories of bipartite systems, we show that
the compression loss can be made arbitrarily small even when the compression channel acts only on one
subsystem. These findings can be employed to distribute quantum measurements so that the measurement
noise and cost are dramatically reduced.
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Quantum metrology utilizes quantum coherence and
entanglement to boost the measurement precision quanti-
fied by the quantum Fisher information (QFI) [1–4]. In
standard quantum metrology, given an ensemble of met-
rological samples, quantum mechanics allows one to
optimize the quantum measurements so that the informa-
tion about the signal is maximally extracted. Yet, another
metrological scheme, called postselected quantum metrol-
ogy arises in the context of weak-value amplification
(WVA) [5–11], where a postselection measurement is
performed to select a subensemble of the samples before
the information-extracting measurement. Comparing to
standard metrology, though the QFI encoded in the sub-
ensemble averaged over its postselection probability cannot
be larger than the QFI in standard metrology [12–17], there
are several advantages due to postselection when the cost of
the postselection measurement becomes cheap: (i) WVA
outperforms the standard metrology in the presence of
certain types of technical noise [18]. (ii) WVA can be
viewed as a filter to reduce the number of detected samples
in standard metrology without losing the precision
significantly. As such, in Hamiltonian learning [19,20],
postselection can be employed to reduce the sample
complexity [21], i.e., the number of samples to achieve
a given precision. Practically speaking, when the final
information-extracting measurements are subjected to vari-
ous kinds of imperfections, such as detector saturation,

limited memory and computational power, etc., postse-
lected quantum metrology is provably outperforms the
standard one [22–26].
Recently, postselection has been applied in a broad

context in quantum metrology beyond the setup of
WVA [27]. The advantage of postselection as a filter or
compression channel persists in this broad context as
demonstrated in the experiment of optical phase estimation
[28]. While postselection can be also applied to classical
metrology, previous works [27,29] show that the non-
classicality can further boost the precision. However,
despite these advances, a comprehensive theory for design-
ing the lossless postselection measurement channels in the
most general setups beyond WVA remains uncharted. In
standard quantum metrology, for arbitrary parameter-de-
pendent quantum states, the optimal measurements satu-
rating the quantum Cramér-Rao bound were studied by
Braunstein and Caves [30] and recently applied to the case
of noisy detection [31]. Analogously, in postselected
metrology a similar fundamental question has not been
addressed.
In this work, we answer this question by proposing a

theory that unifies weak-value metrology, postselected
metrology, as well as standard metrology. The crucial
observation is that standard metrology only makes use
of the measurement statistics and discards the postmeasure-
ment states completely while postselected metrology uti-
lizes a specific set of postmeasurement states and discards
the rest. As such, we generalize the optimal measurement
condition from standard metrology to postselected metro-
logy. By keeping track of these conditions, we identify the
generic structure of the lossless postselection channel for
pure states. Previous setup on postselected metrology
[21,27,28,32] and WVA [17] are special cases of this
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general theory. Finally, for bipartite entangled states, when
the compression channel is restricted to one subsystem, we
construct two categories of examples, which can be com-
pressed substantially with only a negligible amount of loss.
Generalized optimal measurement condition.—We con-

sider a pure quantum state of a quantum sensor described
by ρx ¼ jψxihψxj, where x is the estimation parameter.
The QFI associated with this state is IðρxÞ ¼
4gðρxÞ ¼

P
ω∈Ω IωðρxÞ, where gðρxÞ≡ h∂⊥x ψxj∂⊥x ψxi,

j∂⊥x ψxi≡ j∂xψxi − hψxj∂xψxijψxi [30,33,34], IωðρxÞ≡
4h∂⊥x ψxjEωj∂⊥x ψxi, and Eω is a positive-operator-valued
measure (POVM) operator, satisfying Eω ≥ 0 andP

ω∈Ω Eω ¼ I [35]. In postselected quantum metrology,
a postselection measurement channel denoted as fKωg is
performed on the system, where ω∈Ω and Ω is the set of
all measurement outcomes. As shown in Fig. 1, such a
generalized measurement can be implemented by a unitary
operation entangling the system and ancilla, followed by a
projective measurement on the ancilla. After performing
the postselection channel, but before postselection is made,
the joint state of the system and the ancilla becomes
σSAx ¼ P

ω∈Ω pðωjxÞσxjω ⊗ jπAωihπAωj, where pðωjxÞ ¼
hψxjEωjψxi and σxjω ¼ KωjψxihψxjK†

ω=pðωjxÞ [36].
Throughout this work, states and operators that do not
act on the system only will be specified through the
superscript, “A”, “SA” etc. The QFI corresponding to
σSAx is [13,37], IðσSAx Þ ¼ P

ω∈Ω IωðσSAx Þ, where

IωðσSAx Þ≡ IclωðpðωjxÞÞ þ pðωjxÞIðσxjωÞ; ð1Þ

and IclωðpðωjxÞÞ≡ ½∂xpðωjxÞ
�
2=pðωjxÞ. The physicalmean-

ingofEq. (1) is clear:TheQFI for eachmeasurementoutcome
ω consists of two parts, the classical QFI and the average
QFI for the postmeasurement states. Clearly, the postselection
channel cannot increase the QFI, i.e., IðσSAx Þ ≤ IðρxÞ.
A more refined statement is the following [37]:

IωðσSAx Þ ≤ IωðρxÞ: ð2Þ

If Eq. (2) is saturated for all measurement outcomes,
then IðσSAx Þ ¼ IðρxÞ.

To compress the number of samples without sacrificing
the precision, we demand the discarded set contains no
information. Therefore, a precondition to reaching this goal
is that Eq. (2) must be saturated even before the selection
process is made. For a regular POVM measurement, where
hψxjEωjψxi ≠ 0 (see [37] and Ref. [33] for an elaborated
definition), the necessary and sufficient condition to
saturate the inequality (2) is given by Eq. (T1) in Table I.
For a null POVM measurement where hψxjEωjψxi ¼ 0,
IclωðpðωjxÞÞ ¼ IωðρxÞ and IðσxjωÞ ¼ 0, see Ref. [33] for
details. Thus no information is left in the postmeasurement
state σxjω. As a consequence, if σxjω is the state one would
like to retain, one should avoid designing Eω as a null
POVM measurement operator.
In standard quantum metrology, the postmeasurement

states are all discarded and only the measurement statistics
is retained. In this case, one would like to saturate the
inequality, IclωðpðωjxÞÞ ≤ IωðρxÞ, which was studied by the
classic work of Braunstein and Caves [30] and the recent
work Ref. [31], see also Eq. (T5). In postselected metrol-
ogy, we require the average QFI of the retained post-
measurement state saturates the quantum limit, i.e.,
pðωjxÞIðσxjωÞ ≤ IωðρxÞ. Finally, for the measurement out-
come or the corresponding postmeasurement state to be
discarded, we would like them to carry no information, i.e.,
IclωðpðωjxÞÞ ¼ 0 or IðσxjωÞ ¼ 0. The saturation conditions
of these bounds are given in Table I. We shall call
Eqs. (T1)–(T5) as the generalized optimal measurement
conditions, as they generalize the results by Braunstein and
Caves [30] to account for the case where the information
about the parameter is losslessly encoded either in the
measurement statistics or the postmeasurement states. As
we will see, they play a fundamental role in the theory of
compression channels.
Lossless compression channel.—In the standard metrol-

ogy, the discarded set, as indicated by the red trash bin in
Fig. 1, is fσxjωgω∈Ω and no QFI is left in the postmeasure-
ment states. In postselected metrology, we require all the
QFI to be transferred to the desired postmeasurement states
and the discarded set contains no information. We use
ω∈✓ and ω∈× to indicate the desired and undesired

FIG. 1. The protocol of postselected quantum metrology. “A”
denotes the ancilla. The unitary operation combined with the
following projective measurement on the ancilla implement the
postselection channel Kω. After postselection, measurements can
be further performed (not shown), as in standard metrology, on
these postselected states to extract information about the esti-
mation parameter.

TABLE I. The necessary and sufficient conditions for the
saturation of the bounds of various QFIs corresponding to a
regular POVM operator Eω with

ffiffiffiffiffiffi
Eω

p jψxi ≠ 0. See Supplemen-
tal Material for details [37].

Saturation Necessary and sufficient condition

IωðσSAx Þ ¼ IωðρxÞ, Imh∂⊥x ψxjEωjψxi ¼ 0. (T1)
IðσxjωÞ ¼ 0,

ffiffiffiffiffiffi
Eω

p j∂⊥x ψxi ¼ c
ffiffiffiffiffiffi
Eω

p jψxi, c∈C. (T2)
IclωðpðωjxÞÞ ¼ 0, Reh∂⊥x ψxjEωjψxi ¼ 0. (T3)
pðωjxÞIðσxjωÞ ¼ IωðρxÞ, ffiffiffiffiffiffi

Eω
p j∂⊥x ψxi⊥ ffiffiffiffiffiffi

Eω
p jψxi. (T4)

IclωðpðωjxÞÞ ¼ IωðρxÞ,
ffiffiffiffiffiffi
Eω

p j∂⊥x ψxi ¼ c
ffiffiffiffiffiffi
Eω

p jψxi, c∈R. (T5)

PHYSICAL REVIEW LETTERS 132, 250802 (2024)

250802-2



outcomes, respectively. Throughout this work, we consider
a minimum retained set fσxjωgω∈✓, where the discarded set
is Ω ∪ fσxjωgω∈× [38]. When

P
ω∈✓ pðωjxÞ < 1, we can

view the postselection as a compression channel. It is worth
noting that even if

P
ω∈✓ pðωjxÞ is small, resulting in a

small number of metrological samples in the postselected
ensemble in each round, the experiment is assumed to be
repeated for a sufficiently large number of rounds so that
the classical Cramér-Rao bound is saturated.
Let us first introduce the essential notions for the theory

of compression channels. The loss of the QFI per input
sample can be expressed as γ ≡ 1 −

P
ω∈✓ pðωjxÞ

IωðσxjωÞ=IðρxÞ. We define c≡ 1=
P

ω∈✓ pðωjxÞ as the
compression capacity for a postselection channel, charac-
terizing the ability of a designed postselection measurement
to reduce the number of samples. If γ ¼ 0 and c > 1 then a
postselection measurement is called a lossless compression
channel (LCC). We shall restrict our attention to efficient
postselection channels where c∈ ð1;∞Þ [39]. We further
define the compression gain, η≡P

ω∈✓ IωðσxjωÞ=IðρxÞ, as
the ratio between the postselected QFI and the one standard
metrology, characterizing information gain per detected
sample. This characterizes the advantage of the former over
the latter when the cost of final detection dominates over
the cost of postselection [27].
For generic quantum systems, we find LCC must satisfy

the following theorem:
Theorem 1.—For a pure state jψxi, the POVM operators

in an efficient LCC must satisfy

hψ⊥
x j
X
ω∈✓

Eωjψ⊥
x i ¼ 1; ð3Þ

h∂⊥x ψxjEωjψxi ¼ 0; ð4Þ

with pðωjxÞ > 0 for ω∈✓ and
P

ω∈✓ pðωjxÞ < 1, where
jψ⊥

x i≡ j∂⊥x ψxi=
ffiffiffiffiffiffiffiffiffiffiffi
gðρxÞ

p
is the normalized vector along

j∂⊥x ψxi direction. The proof is straightforward with the
following intuition: Eq. (3) guarantees that in the undesired
outcome, measurement statistics and postmeasurement
states contain no QFI, i.e., IωðρxÞ ¼ 0 for ω∈×; Eq. (4)
ensures that for the desired outcome where ω∈✓, the
measurement statistics again contains no QFI and retained
states reach the quantum limit given by Eq. (T4). As such,
the QFI is fully preserved after the postselection.
Alternatively, the following theorem illuminates the under-
lying structure of an LCC:
Theorem 2.—For a pure state jψxi, the POVM operators

in the retained set of an LCC can be expressed as follows:

Eω ¼ qωρ⊥x þ Λω; ð5Þ

where qω ∈ ð0; 1� satisfying
P

ω∈✓ qω ¼ 1, ρ⊥x ≡
jψ⊥

x ihψ⊥
x j and Λω is the gauge operator, which does not

contribute to the QFI and can be chosen in many ways as
long as it satisfies

hψ⊥
x jΛωjψ⊥

x i ¼ hψ⊥
x jΛωjψxi ¼ 0; ð6Þ

and hψxjΛωjψxi ¼ λω ∈ ð0; 1Þ. The compression capacity
and gain are c ¼ 1=

P
ω∈✓ λω and η ¼ P

ω∈✓ qω=λω,
respectively.
Theorems 1 and 2 are our second main results.

Practically, the LCC (5) depends on the true value of x,
so in general adaptive estimation is required [40–46]. If we
assume full accessibility of the postselection measurements
on the whole Hilbert space, i.e., Eq. (5) is always
implementable regardless of the choice of Λω, then λω
can be tuned arbitrarily small, say λω ¼ ε. Then we find
η ¼ Lc ¼ 1=ε, where L is the number of desired outcomes.
When η > 1, we know the QFI per detected sample in an

LCC is amplified, though it will be counterbalanced when
the postselection probability is accounted for [12,13,27].
While Ref. [27] relates such an amplification to the non-
commutativity of observables, here thanks to Theorems 1
and 2, we can directly compute the enhancement of the
parametric sensitivity of the postselected state to the
estimation parameter. For example, apart from an irrelevant
unitary rotation, one can take Kω ¼ ffiffiffiffiffiffi

qω
p

ρ⊥x þ ffiffiffiffiffi
λω

p
ρx,

corresponding to Λω ¼ λωρx. While the postmeasurement
state is still jψxi, the parameter derivative of the post-
selected state becomes [37]

∂x

�
Kωjψxi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðωjxÞ

p �
¼ j∂xψxi þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
qω=λω

p
− 1

�
×

ffiffiffiffiffiffiffiffiffiffiffi
gðρxÞ

p
jψ⊥

x i: ð7Þ

Finally, it is worthwhile to note that if λω ¼ 0, the
LCC (5) degenerates into a null measurement operator
qωρ⊥x . Using our prior knowledge about the estimation
parameter denoted as x�, the projector ρ⊥x� can approach to
quantum limit asymptotically as x� → x [33].
Binary postselection.—For a binary postselection, i.e.,

the desired set ✓ contains only one single outcome. In this
case, for simplicity we use ✓ as a shorthand notation for
ω∈✓. Apparently q✓ ¼ 1 and c ¼ η ¼ 1=λ✓, but there are
many choices of choosing Λ✓. If we take the gauge
operator Λ✓ ¼ λ✓ρx þ P0, where P0 is the projector to
the orthogonal complement to the subspace spanned by
jψxi and jψ⊥

x i, then Eq. (5) becomes E✓ ¼ ðλ✓ − 1Þρx þ I,
which is the LCC proposed in Refs. [21,32].
In two-level systems, the gauge operator Λ✓ is forced to

take the form Λ✓ ¼ λ✓ρx. Consider a parameter-dependent
state jψxi ¼ cos ðxΔ=2Þj0i þ i sin ðxΔ=2Þj1i, where Δ is a
known constant and fj0i; j1ig is a parameter-independent
basis. This is the example investigated in the experiment in
Ref. [28]. Our theory predicts that the postselected POVM
measurement operator in the basis of fj0i; j1ig is
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E✓ ¼
"
λ✓cos2ðxΔ2 Þ þ sin2ðxΔ

2
Þ ið1 − λ✓Þ sinðxΔÞ

−ið1 − λ✓Þ sinðxΔÞ cos2ðxΔ
2
Þ þ λ✓sin2ðxΔ2 Þ

#
:

ð8Þ

It should be noted that unlike Ref. [28] which assumes
small values of xΔ, Eq. (8) is the exact LCC for any values
of x. Of course, when xΔ ≪ 1, to the zeroth order of xΔ, it
recovers the LCC in Ref. [28], i.e., E✓ ¼ λ✓j0ih0j þ j1ih1j.
Restricted postselections.—When jψxi is a bipartite

entangled state between two subsystems A and B, the
postselection measurement on only A generically leads to
loss, i.e., γ > 0. This is because the LCC, according to
Theorem 2, in general acts globally on both the system and
the environment. Nevertheless, we demonstrate the exist-
ence of approximate LCC for two classes of examples,
where the loss is very tiny. To proceed, let us define
CABx ≡ j∂⊥x ψAB

x ihψAB
x j, CAx ¼ TrBCABx , ϱ⊥A

x ¼ TrBρ⊥AB
x ,

ϱAx ¼ TrBρABx . Consider a postselection channel on the

subsystem A only, i.e., EðAÞ
ω ⊗ IðBÞ. Then Theorem 1

becomes Trðϱ⊥A
x

P
ω∈✓ EA

ωÞ ¼ 1, and TrðCAx EA
ωÞ ¼ 0,

ω∈✓, with TrðϱAx
P

ω∈✓ EA
ωÞ < 1.

The first category of examples is the weak-entanglement
limit, which includes WVA as a special case. We consider a
separable pure initial state jψAB

0 i≡ jϕA
0 i ⊗ jφB

0 i. The
Hamiltonian isHAB ¼ xðHA ⊗ HBÞ. By a judicious choice
of the initial states, one can always make hϕA

0 jHAjϕA
0 i ¼ 0

or hφB
0 jHBjφB

0 i ¼ 0 such that hψAB
0 jHABjψAB

0 i ¼ 0. The
QFI is IðρxÞ ¼ 4ðhϕA

0 jH2
AjϕA

0 ihφB
0 jH2

BjφB
0 iÞ. In local esti-

mation theory, x is usually considered to be very small. In
the limit x → 0, we find jψxi ¼ jϕA

0 i ⊗ jφB
0 i and j∂⊥x ψxi ¼

−iHAjϕA
0 i ⊗ HBjφB

0 i are disentangled. Then, it can
be readily calculated that ϱ⊥A

x ¼ HAjϕA
0 ihϕA

0 jHA=
hϕA

0 jH2
AjϕA

0 i, ϱAx ¼ jϕA
0 ihϕA

0 j, and CAx ¼ HAjϕA
0 ihϕA

0 j.
Now if hϕA

0 jHAjϕA
0 i ¼ 0, similar with Eq. (5), one can

construct

EA
ω ¼ qωϱ⊥A

x þ εjϕA
0 ihϕA

0 j; ð9Þ

where
P

ω∈✓ qω ¼ 1, ε is arbitrarily small. In this case
η ¼ Lc ¼ 1=ε as before, i.e., we can achieve arbitrarily
large compression capacity and gain without loss. On the
other hand, if hϕA

0 jHAjϕA
0 i ≠ 0 but hφB

0 jHBjφB
0 i ¼ 0. One

can simply take

EA
ω ¼ qωϱ⊥A

x : ð10Þ

In this case, the compression capacity is c ¼
hϕA

0 jH2
AjϕA

0 i=hϕA
0 jHAjϕA

0 i2, which is the ratio between
the second and first order moments of the energy of the
subsystem A. The compression gain is η ¼ Lc.
It is worth noting that WVA [5,17] falls into this

category. Considering the von Neumann measurement

model [47], where the system consists of a two-level
subsystem and the continuous-variable meter. The
Hamiltonian of the system is H ¼ xσz ⊗ Pu, where Pu ¼
−i∂=∂u and u is the position of the meter. The initial state is
jϕθi ⊗ jφ0i,where jϕθi ¼ cos ðθ=2Þj0i þ sin ðθ=2Þj1i and
jφni ¼

R
duφnðuÞjui with φnðuÞ is the nth order normal-

ized Hermite-Gaussian function defined as φnðuÞ ¼
ð1= ffiffiffiffiffiffiffiffiffi

2nn!
p Þð1=2πσ2Þ1=4e−u2=ð4σ2ÞHnðu=

ffiffiffi
2

p
σÞ, where HnðxÞ

is well-known Hermite polynomial [48]. The parameter-
dependent state is jψxi ¼ e−ixσz⊗P̂jϕi ⊗ jφ0i. The QFI
before postselection is IðρxÞ ¼ 1=σ2. One can readily
show hφ0jPujφ0i ¼ 0. In the limit x → 0, one can find
jψx¼0i ¼ jϕθi ⊗ jφ0i and jψ⊥

x¼0i ¼ jϕ−θi ⊗ jφ1i. The
WVA employs a binary postselection channel
EWVA
✓ ¼ jϕθ�ihϕθ� j ⊗ I, where jϕθ� i is almost orthogonal

to the initial spin state jϕθi, i.e., θ� ¼ θ − π þ 2ε and ε is an
arbitrarily small but nonzero real number. Apparently, the
WVA postselection channel satisfies Eq. (4), meaning the
measurement statistics associated with the retained set
contains no QFI. However, the loss γ ¼ cos2ðθ þ εÞ,
indicating there is information loss in the undesired
measurement statistics and undesired postmeasurement
states, unless θ ¼ π=2, where the loss is sin2 ε.
On the other hand, Eqs. (9) and (10) predict that the LCC

acting on the two-level system is of the same form as the
WVA postselection channel, but with a different choice of
θ�. Here, θ� ¼ −θ if θ ≠ π=2 and θ� ¼ −θ þ 2ε if
θ ¼ π=2. The compression gain is η ¼ c ¼ 1= cos2 θ if θ ≠
π=2 and 1= sin2 ε if θ ¼ π=2, which is consistent with
previous analysis. Furthermore, the same LCC can be
alternatively constructed by a judicious choice of the gauge
operator Λ✓ so that Eq. (5) becomes a one-body operator
that only acts on the two-level systems [37]. If we consider
postselecting on the meter, Eq. (9) predicts that E✓ ¼ I ⊗
ðjφ1ihφ1j þ εjφ0ihφ0jÞ is also an LCC with η ¼ c ¼ 1=ε2.
Interestingly, measurement of this type with ε ¼ 0 was
previously explored to reach the superresolution of inco-
herent imaging [49,50]. The performance of these LCCs is
numerically calculated in Fig. 2.
Another category of examples with negligible loss is

when the energy fluctuation of the postselected subsystems
dominates over the other if they are noninteracting but the
initial state is entangled. We consider the Hamiltonian
of the two systems is HAB ¼ xðHA þHBÞ. Denote the
eigenstates of HA as HAjEA

n i ¼ EA
n jEA

n i, where n ¼
1; 2…; dA ≡ dimHA and EA

1 ≤ EA
2 ≤ � � � ≤ EA

dA
. We then

split the Hilbert space into several orthogonal and disjoint
subspaces spanned by the energy eigenstates, i.e., HA ¼
⊕k VA

k with VA
k ∩ VA

l ¼ f0g for k ≠ l so that one can
construct a set of mutually orthogonal states with the same
average energy, i.e., hϕA

k jHAjϕA
k i ¼ E with jϕA

k i∈VA
k is a

superposition of energy eigenstates to ensure nonvanish-
ing QFI.
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We consider entangled initial state jψAB
0 i ¼P

k
ffiffiffiffiffi
pk

p jϕA
k i ⊗ jφB

k i, where pk > 0 satisfying
P

k pk ¼ 1,
fjφB

k ig is a set of orthonormal basis on the subsystems B.
The QFI before postselection is IðρABx Þ ¼ 4ðδh2A þ δh2BÞ≈
4δh2A, where δhA;B ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðHA;BÞϱA;B
0

q
and δhB ≪ δhA is

assumed. While an LCC exists for arbitrary value of x [37],
as before, we focus on the local estimation for small x and
consider the following LCC:

EA
ω ¼

X
k

rωkjϕ⊥A
k ihϕ⊥A

k j þ εPsuppðϱA
0
Þ; ð11Þ

where ε is an arbitrarily small positive number,P
ω∈✓ rωk ¼ 1, jϕ⊥A

k i≡ ðHA − EÞjϕA
k i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðHAÞjϕA

k i
q

satisfying hϕ⊥A
k jϕA

l i ¼ 0 and hϕ⊥A
k jϕ⊥A

l i ¼ δkl and
PsuppðϱAÞ is any projector to the support of the reduced
density matrix ϱA0 ¼ P

k pkjϕA
k ihϕA

k j. Equation (11)
generalizes Eq. (5) beautifully while preserving the
similar structure. The scaling of loss, capacity, and gain
in this case are γ ∼O½ðδhB=δhAÞ2� þOðLεÞ, c ∼ 1=OðLεÞ,
and η ∼ f1 −O½ðδhB=δhAÞ2�g=OðεÞ.
For example, consider A and B consists of two qubits

and one qubit respectively with the Hamiltonian HA ¼
ω0ðσð1Þz þ σð2Þz Þ and HB ¼ Δσð3Þz . The initial state is
jψAB

0 i ¼ ffiffiffiffiffi
p1

p jϕA
1 i ⊗ jφB

1 i þ
ffiffiffiffiffi
p2

p jϕA
2 i ⊗ jφB

2 i, where

jϕA
1 i ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

, jϕA
2 i ¼ ðj01i þ j10iÞ= ffiffiffi

2
p

,
jφB

1 i ¼ jϕθi and jφB
1 i ¼ jϕθ−πi, where jϕθi is defined

previously. We consider binary postselection and employ
the LCC EA

✓ ¼ jϕ⊥A
1 ihϕ⊥A

1 j þ εjϕA
2 ihϕA

2 j, where jϕ⊥A
1 i ¼

ðj00i − j11iÞ= ffiffiffi
2

p
is orthogonal to jϕA

1 i and jϕ⊥A
2 i ¼ 0 so it

does not appear. The performance of this compression
channel is numerically calculated in Fig. 2.

Conclusion.—We propose a unified theory, which
implies that quantum measurements can be viewed as
either information-extracting apparatus as in the standard
quantum metrology, or information filters as in the post-
selected quantum metrology. It can be employed to
distribute the optimal measurements through postselections
so that the cost of the final detections are dramatically
reduced, in synergy with recent efforts on distributed
quantum sensing (see, e.g., [51–54]). As a result, we
anticipate our results will find applications in quantum
sensing technologies, such as optical imaging and inter-
ferometry [49,50,55], magnetometry [56], frequency
estimation [57], etc. Many problems are open for fu-
ture exploration, including the compression of mixed
states, multiparameter states [4,58], multipartite-entangled
states, etc.
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