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We present a quantum sensing technique that utilizes a sequence of 7 pulses to cyclically drive the qubit
dynamics along a geodesic path of adiabatic evolution. This approach effectively suppresses the effects of
both decoherence noise and control errors while simultaneously removing unwanted resonance terms, such
as higher harmonics and spurious responses commonly encountered in dynamical decoupling control. As a
result, our technique offers robust, wide-band, unambiguous, and high-resolution quantum sensing
capabilities for signal detection and individual addressing of quantum systems, including spins. To
demonstrate its versatility, we showcase successful applications of our method in both low-frequency and
high-frequency sensing scenarios. The significance of this quantum sensing technique extends to the
detection of complex signals and the control of intricate quantum environments. By enhancing detection
accuracy and enabling precise manipulation of quantum systems, our method holds considerable promise

for a variety of practical applications.
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Introduction.—Accurate characterization of the qubit
environment holds significant importance across a range
of applications, spanning from quantum information
processing to quantum sensing [1-4]. A widely utilized
technique for achieving this is the implementation of
dynamical decoupling (DD) pulse sequences [5,6]. These
sequences serve to filter out environmental noise, thereby
extending the quantum coherence time, as well as to extract
and amplify signals of specific frequencies [3,4,7].
Consequently, qubits under such sequences become highly
sensitive quantum sensors, presenting diverse applications.
For instance, nitrogen-vacancy (NV) centers [8—10] sub-
jected to DD pulse sequences enable nanoscale nuclear
magnetic resonance (NMR) [7,11-27], spin label detection
[28-30], spin cluster imaging [31-39], and ac field sensing
[40-51]. Furthermore, they can be employed for control-
ling nearby single nuclear spins [52—57] in the context of
quantum information processing [58,59], quantum simu-
lations [60], and quantum networks [61-64].

However, DD pulse sequences used for quantum sens-
ing, such as the commonly employed Carr-Purcell-
Meiboom-Gill (CPMG) [65,66] and XY8 [67] sequences
encounter an issue known as spectral leakage and spurious
resonance. These complications make the interpretation of
the sensor’s recorded signal challenging and can result in
ambiguous signal identification [68,69]. DD pulses intro-
duce abrupt temporal state flipping of the qubit sensor,
causing a pronounced frequency modulation at a specific
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frequency [indicated by the gray line in Fig. 1(d)]. This
modulation leads to a strong resonance when the flipping
frequency w matches the signal frequency v, i.e., ® = v,
enabling frequency-selective sensing. However, it also
generates resonances at other harmonic frequencies w =
v/k (k=3,5,7,...), as evident in its Fourier transform
[represented by the gray squares in Fig. 1(d)]. On the other
hand, the limited power of control pulses further introduces
spurious signals at unexpected frequencies, @ = sv/k with
s€{2,4,...} [68]. Moreover, quantum heterodyne meth-
ods employed to down-convert high-frequency signals for
sensing can exacerbate signal overlap [48-50]. These
factors collectively present obstacles to reliably measuring
environmental signals, particularly when various back-
ground noise sources are not fully characterized. With this
goal in mind, sequence timing has been optimized [70,71]
to eliminate low harmonics (e.g., kK = 3) and sequence
randomization has been explored to mitigate spurious
signals (i.e., s # 1) [72,73]. However, both approaches
can address only specific their aspects and can solve these
only partially. Obtaining a universal method to address
these problems (e.g., by numerical optimization algo-
rithms) is challenging considering the unavoidable control
errors and the unknown, potentially quantum, environment,
as well as the demanding computing resources.

In this Letter, we present a novel approach called cyclic
geodesic driving to solve these problems, enabling unam-
biguous sensing of signals across a broad frequency range
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FIG. 1. Quantum sensing via geodesic jumping. (a) Upper
panel: repeated application of a sequence of N x pulses realizes
cyclic quantum adiabatic evolution along the geodesic in (b) or
(c). Lower panel: combined with synchronized readout tech-
niques for arbitrary frequency resolution. (b) GD,, where the
closed geodesic is sampled by N z pulses. The red solid line
illustrates the trajectory of the state evolution starting at |1) for
N = 12. When @, matches the frequency v, of the target, a
resonance occurs. (c) As (b) but for GD, which uses a horizontal
geodesic, e.g., for robust heterodyne sensing of high-frequency
signal. The resonant condition is accurately tuned by T, and the
frequency w., of control field. (d) The resulting modulation
function F(¢) (red line for N = 20) and its Fourier components
(red cycles) where f;, =0 for all 1 < k < N — 1. The gray line
and squares are the corresponding ones for DD pulse sequences.

on qubit sensors. Our method involves the application of a
sequence of 7z pulses to implement accelerated high-fidelity
quantum adiabatic driving, effectively inducing periodic
evolution of the quantum sensor along the geodesic path on
the Bloch sphere. As a result, the resonance frequency of
the quantum sensor aligns with the frequency of the
periodic evolution, while simultaneously mitigating the
impact of environmental background noise. By employing
this technique, each individual frequency signal generates a
single, distinct signal response within the wide frequency
band. This eliminates undesirable signal overlap, enabling
precise characterization of complex external environments
and signals. Our approach can be applied to more complex
quantum sensing problems. For example, we show that it
can be combined with the idea of signal frequency down-
conversion [48-50] and can be combined with synchron-
ized readout techniques [44,45] for achieving arbitrary high
frequency resolution. Furthermore, our approach exhibits
remarkable resilience against control errors, as it is the

counterpart of quantum adiabatic control. Overall, our
proposed method of cyclic geodesic driving offers a robust
and effective solution for wide-band, unambiguous signal
sensing, enabling accurate analysis of intricate quantum
systems and external environments.

Adiabatic shortcut by jumping.—Our sensing scheme
utilizes a sequence of periodic z pulses [Fig. 1(a)] which
achieves cyclic quantum adiabatic evolution along a geo-
desic [74-77] defined by the control Hamiltonian for the
qubit sensor

E(t

H#.(1) = ED (11 )4y -

=) (=0). (1)
where the instantaneous eigenstates |+,) are varied by a
parameter ¢ = ¢p(t) starting with ¢(0) = 0 at the initial
time ¢ = 0. In the quantum adiabatic approximation, the
evolution operator takes the form [74,78,79]

[=p) (=0l (2)

which transfers the initial state |+) to the instantaneous
eigenstate [+,) at a later time. We use the Born-Fock gauge
(£4/(d/dp)|£4) = 0 such that (1) = +3 [I E(¢)dl are
the dynamic phases. To realize the adlabatlc evolution
U.(¢) by H.(r) with high fidelities in finite times, we

choose
o =cos(% ) o) -+sin(5) 1=

- ==sin(%) o +eos($) i O

which connect two orthonormal states |+,) via a geodesic
curve [80]. In our scheme we apply a sequence of control z
pulses via Eq. (1) with ¢ =¢; at the moments T; =
Toanl(2j—1)/2N] (j =1,2,...), where N is the pulse
number in one periodic of evolution, see Fig. 1(a). We use
the linear relation ¢p; = @y T j, Where frequency @ye,, can
be negative or positive depending on the change of ¢; in
time. Each control  pulse has a time duration #; such that

the pulse area fT”Lt ’/22 E(t)dt = n. Between the r pulses,

there is no control, i.e., E(f) = 0 if ¢ ¢ {¢;}. We remove
the dynamic phases at the final time of the evolution; we
introduce a 7 phase shift to the pulses in the second-half of
the sequence. According to Refs. [74-76], the sequence
realizes U.(¢) with unit fidelity at the middle of any
successive path points ¢ = ¢ i = (¢j+1 + ¢;)/2. For other
values of ¢ & {¢;}, the difference between U, .(¢) and the
actual evolution implemented by H.(7) is negligible when
N is sufficiently large. See Figs. 1(a) and 1(b) for how the
evolution of an initial eigenstate follows the path defined by
the directions of successive z pulses (i.e., by the eigenstates

Uel) = 700 g) (o + €700
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of the 7 pulse control). In contrast to conventional shortcuts
to adiabaticity [79] to accelerate the adiabatic process, in
our method the instantaneous eigenstates of the control
Hamiltonian H (7) are the same as the evolution path |4)
in Eq. (2). This avoids the use of counterdiabatic fields and
retains the intrinsic robustness of a traditional adiabatic
process [76].

Unambiguous wide-bandwidth robust sensing.—To
demonstrate the concept of quantum sensing through the
aforementioned geometric control, we examine a qubit
coupled to its environment via the interaction Hamiltonian

Hin (1) = 5 0.B(1), 4)

where the Pauli operator o, = [1)(1| —|0)(0| and B(r)
could be a classical field or a quantum operator in a rotating
frame which includes possible dephasing noise. We use the
control Hamiltonian H.(t) = A(t)(6./2) + Q(1)(0,/2)
and the states |+() = |1) and |—q) = |0) for the geodesic
in Eq. (3) for sensing. This geodesic driving around the y
axis (GDy) is sketched in Fig. 1(b). In the rotating frame
of H.(t), Hy(f) becomes fiim(t)z%UIazUcB(t). For
the evolution Eq. (2), we find the approximated trans-
formations [81]

UZazUczcosqﬁaZ; UZUXUCzsindmz; UiayUczO, (5)

which have the nice property that they only depend on the
geometric parameter ¢(t). We obtain [81]

Hiy (1) » F(1) 2 B(1). (6)

When the number of pulses N is sufficiently large, the
modulation function F(#) & cos(@ye,t) has only one Fourier
component over a large frequency band, see Fig. 1(d).
Conventional DD sequences [3,4] also induce modulation
factors F(t) to the o, operator with F(t) € {£1} for ideal
sequences [3.4,85]. However, those modulation factors have
multiple Fourier components that complicate the interpre-
tation of the sensor’s signal [68—70], see Fig. 1(d) for equally
spaced DD sequences [3,4,65-67,86—88].

In Figs. 2(a)-2(d) we simulate the measured spectrum of
a classical ac field with B(¢) = le bjcos(v;t +0;),
where v; are the frequencies of different components.
For the result of Fig. 2(a) obtained by the widely used
robust XY8 sequence with an interpulse duration z [67], all
the frequencies ({v;/2z} = {500, 1500.05,2499.88} kHz)
cause transitions of the sensor states at 1/(27) ~ 500 kHz
via the first, third, and the fifth harmonics. This problem of
ambiguous spectral overlap is not solved even when we
improve the frequency resolution sufficiently high via the
synchronized readout technique (Qdyne) [44,45], see
Fig. 2(c), because all the frequency components contribute
to the readout signal in Qdyne. However, using GD,;, only
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FIG. 2. Quantum spectroscopy. (a) Population signal of XY8
sequence (blue solid line) for spectroscopy of ac fields with the
frequencies {v;/2z} = {500, 1500.05,2499.88} kHz by varying
the pulse interval 7. The 1500.05 kHz and 2499.88 kHz ac fields
distort the signal centered at 500 kHz via the third and fifth
harmonics, respectively. Yellow dashed line is the result when
there is dephasing noise (with a control-free decoherence time
T5 ~2 ps) and control errors (with about 20% drift on the
amplitude of control field). (b) As (a) but by using GD,. The
500 kHz signal dip is not distorted by the 1500.05 kHz and
2499.88 kHz ac fields. (c) Power spectrum for the ac signal fields
in (c) by using the synchronized readout technique in
Refs. [44,45]. The resonances due to higher harmonics make
the signal unidentifiable even through the expected spectral
resolution is about 1 Hz. (d) As (c) but by using GD;,. (¢) Signal
of XY8 sequence for the detection of a 'H spin with its frequency
indicated by a red arrow. The spurious resonance (centered
around the pink vertical line) produced by a '3C spin in diamond
distorts the 'H spin signal. Yellow dashed line is the result when
there is a 2z x 2 MHz detuning error and 30% of amplitude drift
in the control field. (f) As (e) but by using GD,, where the
spurious signals disappear. See [81] for details of the simulation.

the frequency v /27 = 500 kHz contributes to the dip at
the resonance w,.,, = v, because we have the effective
Hamiltonian H, ~1b, cos@ 0, from Eq. (6) after the
rotating wave approximation [81]. The phase dependence
on the effective Hamiltonian (and hence the signal) allows
for arbitrary frequency resolution with synchronized read-
out, see Figs. 2(d) and 1(a). The results also show that our
protocol is more resistant to control errors and dephasing
noise. The already strong robustness of GD, is enhanced
further with an increasing number N of pulses, see Fig. 4.

It is interesting that cyclic geodesic driving also
fully solves the problems of spurious response due to
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FIG. 3. (a) Quantum heterodyne spectroscopy of a signal field
with frequencies {v;} = o, + 27 x {-84, -68, =56, =50, —42,
—2,72,90} kHz by using the protocol in Refs. [48,49] with the
CPMG sequences. The blue solid line (the line with yellow
filling) is the simulation with (without) dephasing noise that
induces a control-free decoherence time 75 =~ 2 ps. The pulse
interval 7 is varied to measure the spectrum. Because for each ac
signal frequency v; resonance dips occur whenever 1/(27) =
(v; — wer)/ (27k), (k= =£1,£3,4£5,...), the true dips at
1/(27) = (v; — wy)/(2x) indicated by red vertical arrows are
obscured by other resonance dips (vertical lines). Different
number N’ of 7z pulses are used for different range of 7 to insure
that the sequence times are smaller than 1 ms. (b) [(c)]: As (a) but
by using GD, with fixed Ay, = 0 (@geqn = 27 x 80 kHz). All
the dips only appear at the right frequencies v;. See [81] for
details of simulation.

finite-width pulses [68], as detailed in [81]. In Figs. 2(e)
and 2(f), we simulate the quantum sensing of a single
proton spin (H) by an NV center. A *C spin in diamond is
also coupled to the NV center as a noise source. For this
case B(r) is a quantum operator [53,54,81]. For the result
Fig. 2(e) obtained by XY8 sequences, the spurious
response from the '*C spin disturbs the target proton spin
signal and leads to misidentification of *C nuclei for
proton. On the contrary, GD, provides a clean signal dip in
the spectrum [Fig. 2(f)], because when w,,, matches the
frequency v, of the target 'H, H;y ~Lafo I{ (where I} is
the 'H spin operator and a} is the hyperfine strength [81])
and the effect of the '*C spin is removed.

Unambiguous heterodyne sensing.—The idea can be
generalized to other settings. Consider the sensing of a
multifrequency signal field B(f) = (B,.B,.B,) with

frequencies v; much larger than the Rabi frequency of

the control field. We use GD, [see Fig. 1(c)] with |+() =
(|0) £ |1))/+/2 for the geodesic in Eq. (3) to sense the
traverse part B (t) = B, + iB, = }_; b;e' cos(v;t 4 6;).
The relevant Hamiltonian reads

1 1

H= 3 (0, +6,)0, + <§BL(t)a+ + H.c.) + H,
where w,, is the frequency of the qubit and 6, is an unknown
fluctuation. For NV qubits, o, (e.g., w, = D +y,.B, with
D =27 x2.87 GHz and y, ~27 x 2.8 MHz/G) can be
adjusted by changing the magnetic field B,. The control
Hamiltonian H, = Q(¢) cos(wq.t + ¢)o, has a control-
lable detuning Ay, = @ — @,,. In the rotating frame with
respect to %(a)q +6,)0, + H.,, we obtain the effective
interaction [81]

1 ) .
Hy (1) » i D bielettieatowm=)ie, + He. (7)
J

Under the resonance condition for a signal frequency
Weyr + Ogeqn =V, and when b; < |v, —v;| for j#n,
Hip (1) ~1b,e" @96, + H.c. picks up the signal only
at the frequency v,,.

As exemplified in Fig. 3(a), the heterodyne sensing using
the CPMG sequences produces multiple dips at 1/(27) =
+(v; - w,)/k (k=1,3,5,...), which implies ambiguous
sensor responses especially when {v;} happen to be close
to the qubit frequency w,,. In contrast, our geodesic driving
gives clear signal dips for accurate determination of all the
signal frequencies, see Fig. 3(b). Our method is also more
resilient to dephasing noise (Fig. 3) and is more robust
against control errors (Fig. 4). The robustness can be further
enhanced by combining composite pulse techniques

y

-20 -10 0 10 20

CPMG , — 1 £ GD, — 10(Knill)

Amplitude error (%)

— o Fidelit

20 0 0 10 2
Frequency detuning (%)

FIG. 4. Control fidelity with respect to amplitude and detuning
errors for (a) XY8 sequence, (b) GD, with N = 20, (c) GD,, with
N =80, (d) CPMG sequence with 40 pulses for heterodyne
sensing, (¢) GD, with N = 10, (f) GD, with N = 10 but each
pulse is replaced by a Knill pulse. All the protocols have the same
sequence time length, and the ideal Rabi frequency of the control
is 2z x 50 MHz.
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[see Fig. 4(e) for the result where each pulse is replaced by
a Knill pulse [71,86,89] ].

Conclusion.—We propose a quantum sensing scheme
based on a quantum adiabatic shortcut along a geodesic
path. This scheme offers the capability to resolve complex
broadband signals and addresses the issues of spectral
overlap and spurious signals that arise in existing DD-based
quantum sensing methods. Notably, our approach allows
for arbitrary frequency resolution through the utilization of
synchronized readout techniques. Moreover, it exhibits
robustness against control errors and effectively suppresses
unwanted decoherence noise, making our protocol easy to
be realized in experiments. The versatility of our method
extends beyond signal detection; it can also be employed
for the detection and control of various quantum objects,
including single nuclear spins, spin clusters, and mechani-
cal oscillators. Furthermore, our scheme holds promise for
applications aimed at mitigating crosstalk in qubit arrays. In
summary, our proposed quantum sensing scheme based on
a quantum adiabatic shortcut along a geodesic path
provides a universal solution for accurate signal detection,
offering improved performance over existing methods. Its
potential applications encompass a wide range of quantum
systems and address key challenges in the field.

This work was supported by National Natural
Science Foundation of China (Grant No. 12074131), the
Natural Science Foundation of Guangdong Province (Grant
No. 2021A1515012030), the ERC Synergy grant HyperQ
(Grant No. 856432), the EU project C-QuENS (Grant
No. 101135359), and the BMBF Zukunftscluster QSense:
Quantensenoren fiir die biomedizinische Diagnostik
(QMED) (Grant No. 03ZU1110FF).

*zhenyu.wang@m.scnu.edu.cn

[1] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[2] E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler,
1/f noise: Implications for solid-state quantum information,
Rev. Mod. Phys. 86, 361 (2014).

[3] C.L. Degen, F. Reinhard, and P. Cappellaro, Quantum
sensing, Rev. Mod. Phys. 89, 035002 (2017).

[4] J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart,
L. M. Pham, and R. L. Walsworth, Sensitivity optimization
for NV-diamond magnetometry, Rev. Mod. Phys. 92,
015004 (2020).

[5] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of
open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).

[6] W. Yang, Z.-Y. Wang, and R.-B. Liu, Preserving qubit
coherence by dynamical decoupling, Front. Phys. 6, 2
(2011).

[7] C. Munuera-Javaloy, R. Puebla, and J. Casanova, Dynami-
cal decoupling methods in nanoscale NMR, Europhys. Lett.
134, 30001 (2021).

[8] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.
Wrachtrup, and L. C. L. Hollenberg, The nitrogen-vacancy
colour centre in diamond, Phys. Rep. 528, 1 (2013).

[9] Y. Wu, F. Jelezko, M. B. Plenio, and T. Weil, Diamond
quantum devices in biology, Angew. Chem., Int. Ed. Engl.
55, 6586 (2016).

[10] J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B. B.
Buckley, C.G. Van de Walle, and D.D. Awschalom,
Quantum computing with defects, Proc. Natl. Acad. Sci.
U.S.A. 107, 8513 (2010).

[11] S. Kolkowitz, Q.P. Unterreithmeier, S.D. Bennett, and
M. D. Lukin, Sensing distant nuclear spins with a single
electron spin, Phys. Rev. Lett. 109, 137601 (2012).

[12] N. Zhao, J. Honert, B. Schmid, M. Klas, J. Isoya, M.
Markham, D. Twitchen, F. Jelezko, R. B. Liu, H. Fedder,
and J. Wrachtrup, Sensing single remote nuclear spins, Nat.
Nanotechnol. 7, 657 (2012).

[13] T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du,
C. A. Meriles, F. Reinhard, and J. Wrachtrup, Nuclear
magnetic resonance spectroscopy on a (5-Nanometer)?
sample volume, Science 339, 561 (2013).

[14] C. Miiller, X. Kong, J.-M. Cai, K. Melentijevi¢, A. Stacey,
M. Markham, D. Twitchen, J. Isoya, S. Pezzagna, J. Meijer,
J. Du, M.B. Plenio, B. Naydenov, L.P. McGuinness,
and F. Jelezko, Nuclear magnetic resonance spectro-
scopy with single spin sensitivity, Nat. Commun. 5, 4703
(2014).

[15] D. Rugar, H.J. Mamin, M. H. Sherwood, M. Kim, C.T.
Rettner, K. Ohno, and D. D. Awschalom, Proton magnetic
resonance imaging using a nitrogen-vacancy spin sensor,
Nat. Nanotechnol. 10, 120 (2015).

[16] S.J. DeVience, L. M. Pham, I. Lovchinsky, A. O. Sushkov,
N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H.
Zhang, M. Lukin, H. Park, A. Yacoby, and R. L. Walsworth,
Nanoscale NMR spectroscopy and imaging of multiple
nuclear species, Nat. Nanotechnol. 10, 129 (2015).

[17] D.R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and
R. L. Walsworth, High-resolution magnetic resonance spec-
troscopy using a solid-state spin sensor, Nature (London)
555, 351 (2018).

[18] J.E. Lang, J. Casanova, Z.-Y. Wang, M. B. Plenio, and T. S.
Monteiro, Enhanced resolution in nanoscale NMR via
quantum sensing with pulses of finite duration, Phys.
Rev. Appl. 7, 054009 (2017).

[19] M. Pfender, P. Wang, H. Sumiya, S. Onoda, W. Yang,
D. B.R. Dasari, P. Neumann, X.-Y. Pan, J. Isoya, R.-B. Liu,
and J. Wrachtrup, High-resolution spectroscopy of single
nuclear spins via sequential weak measurements, Nat.
Commun. 10, 594 (2019).

[20] D.B. Bucher, D.P.L. Aude Craik, M. P. Backlund, M. J.
Turner, O. Ben Dor, D.R. Glenn, and R.L. Walsworth,
Quantum diamond spectrometer for nanoscale NMR and
ESR spectroscopy, Nat. Protoc. 14, 2707 (2019).

[21] J. Casanova, E. Torrontegui, M.B. Plenio, J.J. Garcia-
Ripoll, and E. Solano, Modulated continuous wave control
for energy-efficient electron-nuclear spin coupling, Phys.
Rev. Lett. 122, 010407 (2019).

[22] N. Aharon, I. Schwartz, and A. Retzker, Quantum control
and sensing of nuclear spins by electron spins under power
limitations, Phys. Rev. Lett. 122, 120403 (2019).

250801-5


https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/RevModPhys.86.361
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.92.015004
https://doi.org/10.1103/RevModPhys.92.015004
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1007/s11467-010-0113-8
https://doi.org/10.1007/s11467-010-0113-8
https://doi.org/10.1209/0295-5075/ac0ed1
https://doi.org/10.1209/0295-5075/ac0ed1
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1002/anie.201506556
https://doi.org/10.1002/anie.201506556
https://doi.org/10.1073/pnas.1003052107
https://doi.org/10.1073/pnas.1003052107
https://doi.org/10.1103/PhysRevLett.109.137601
https://doi.org/10.1038/nnano.2012.152
https://doi.org/10.1038/nnano.2012.152
https://doi.org/10.1126/science.1231675
https://doi.org/10.1038/ncomms5703
https://doi.org/10.1038/ncomms5703
https://doi.org/10.1038/nnano.2014.288
https://doi.org/10.1038/nnano.2014.313
https://doi.org/10.1038/nature25781
https://doi.org/10.1038/nature25781
https://doi.org/10.1103/PhysRevApplied.7.054009
https://doi.org/10.1103/PhysRevApplied.7.054009
https://doi.org/10.1038/s41467-019-08544-z
https://doi.org/10.1038/s41467-019-08544-z
https://doi.org/10.1038/s41596-019-0201-3
https://doi.org/10.1103/PhysRevLett.122.010407
https://doi.org/10.1103/PhysRevLett.122.010407
https://doi.org/10.1103/PhysRevLett.122.120403

PHYSICAL REVIEW LETTERS 132, 250801 (2024)

[23] C. Munuera-Javaloy, Y. Ban, X. Chen, and J. Casanova,
Robust detection of high-frequency signals at the nanoscale,
Phys. Rev. Appl. 14, 054054 (2020).

[24] J. Cerrillo, S. Oviedo Casado, and J. Prior, Low field nano-
NMR via three-level system control, Phys. Rev. Lett. 126,
220402 (2021).

[25] J. Meinel, V. Vorobyov, P. Wang, B. Yavkin, M. Pfender, H.
Sumiya, S. Onoda, J. Isoya, R.-B. Liu, and J. Wrachtrup,
Quantum nonlinear spectroscopy of single nuclear spins,
Nat. Commun. 13, 5318 (2022).

[26] P. Wang, W. Yang, and R. Liu, Using weak measurements to
synthesize projective measurement of nonconserved ob-
servables of weakly coupled nuclear spins, Phys. Rev. Appl.
19, 054037 (2023).

[27] C. Munuera-Javaloy, A. Tobalina, and J. Casanova, High-
resolution NMR spectroscopy at large fields with nitrogen
vacancy centers, Phys. Rev. Lett. 130, 133603 (2023).

[28] F. Shi, Q. Zhang, P. Wang, H. Sun, J. Wang, X. Rong, M.
Chen, C. Ju, F. Reinhard, H. Chen, J. Wrachtrup, J. Wang,
and J. Du, Single-protein spin resonance spectroscopy under
ambient conditions, Science 347, 1135 (2015).

[29] I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S.
Choi, K. De Greve, R. Evans, R. Gertner, E. Bersin,
C. Miiller, L. McGuinness, F. Jelezko, R. L. Walsworth,
H. Park, and M.D. Lukin, Nuclear magnetic resonance
detection and spectroscopy of single proteins using quantum
logic, Science 351, 836 (2016).

[30] C. Munuera-Javaloy, R. Puebla, B. D. Anjou, M. B. Plenio,
and J. Casanova, Detection of molecular transitions with
nitrogen-vacancy centers and electron-spin labels, npj
Quantum Inf. 8, 140 (2022).

[31] N. Zhao, J.-L. Hu, S.-W. Ho, J. T. K. Wan, and R. B. Liu,
Atomic-scale magnetometry of distant nuclear spin clusters
via nitrogen-vacancy spin in diamond, Nat. Nanotechnol. 6,
242 (2011).

[32] F. Shi, X. Kong, P. Wang, F. Kong, N. Zhao, R. B. Liu, and
J. Du, Sensing and atomic-scale structure analysis of single
nuclear-spin clusters in diamond, Nat. Phys. 10, 21 (2014).

[33] J.E. Lang, R.B. Liu, and T.S. Monteiro, Dynamical
decoupling-based quantum sensing: Floquet spectroscopy,
Phys. Rev. X 5, 041016 (2015).

[34] Z.-Y. Wang, J. F. Haase, J. Casanova, and M. B. Plenio,
Positioning nuclear spins in interacting clusters for quantum
technologies and bioimaging, Phys. Rev. B 93, 174104
(2016).

[35] K. Sasaki, K. M. Itoh, and E. Abe, Determination of the
position of a single nuclear spin from free nuclear pre-
cessions detected by a solid-state quantum sensor, Phys.
Rev. B 98, 121405(R) (2018).

[36] J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and
C.L. Degen, Three-dimensional localization spectroscopy
of individual nuclear spins with sub-Angstrom resolution,
Nat. Commun. 9, 4678 (2018).

[37] J. Zopes, K. Herb, K.S. Cujia, and C.L. Degen, Three
dimensional nuclear spin positioning using coherent
radio-frequency control, Phys. Rev. Lett. 121, 170801
(2018).

[38] M.H. Abobeih, J. Randall, C.E. Bradley, H.P.
Bartling, M. A. Bakker, M. J. Degen, M. Markham, D.J.
Twitchen, and T. H. Taminiau, Atomic-scale imaging of a

27-nuclear-spin cluster using a quantum sensor, Nature
(London) 576, 411 (2019).

[39] K. S. Cujia, K. Herb, J. Zopes, J. M. Abendroth, and C. L.
Degen, Parallel detection and spatial mapping of large
nuclear spin clusters, Nat. Commun. 13, 1260 (2022).

[40] L. T. Hall, J. H. Cole, C.D. Hill, and L. C. L. Hollenberg,
Sensing of fluctuating nanoscale magnetic fields using
nitrogen-vacancy centers in diamond, Phys. Rev. Lett.
103, 220802 (2009).

[41] A. Laraoui, J. S. Hodges, and C. A. Meriles, Magnetometry
of random ac magnetic fields using a single nitrogen-
vacancy center, Appl. Phys. Lett. 97, 143104 (2010).

[42] A.Z. Chaudhry, Utilizing nitrogen-vacancy centers to mea-
sure oscillating magnetic fields, Phys. Rev. A 90, 042104
(2014).

[43] A.Z. Chaudhry, Detecting the presence of weak magnetic
fields using nitrogen-vacancy centers, Phys. Rev. A 91,
062111 (2015).

[44] S. Schmitt, T. Gefen, F. M. Stiirner, T. Unden, G. Wolff, C.
Miiller, J. Scheuer, B. Naydenov, M. Markham, S.
Pezzagna, J. Meijer, I. Schwarz, M. Plenio, A. Retzker,
L. P. McGuinness, and F. Jelezko, Submillihertz magnetic
spectroscopy performed with a nanoscale quantum sensor,
Science 356, 832 (2017).

[45] J. M. Boss, K. S. Cujia, J. Zopes, and C. L. Degen, Quantum
sensing with arbitrary frequency resolution, Science 356,
837 (2017).

[46] T. Joas, A. M. Waeber, G. Braunbeck, and F. Reinhard,
Quantum sensing of weak radio-frequency signals by pulsed
Mollow absorption spectroscopy, Nat. Commun. 8, 964
(2017).

[47] A. Stark, N. Aharon, T. Unden, D. Louzon, A. Huck, A.
Retzker, U. L. Andersen, and F. Jelezko, Narrow-bandwidth
sensing of high-frequency fields with continuous dynamical
decoupling, Nat. Commun. 8, 1105 (2017).

[48] Y. Chu, P. Yang, M. Gong, M. Yu, B. Yu, M. B. Plenio, A.
Retzker, and J. Cai, Precise spectroscopy of high-frequency
oscillating fields with a single-qubit sensor, Phys. Rev.
Appl. 15, 014031 (2021).

[49] J. Meinel, V. Vorobyov, B. Yavkin, D. Dasari, H. Sumiya, S.
Onoda, J. Isoya, and J. Wrachtrup, Heterodyne sensing of
microwaves with a quantum sensor, Nat. Commun. 12, 2737
(2021).

[50] G. Wang, Y.-X. Liu, J. M. Schloss, S. T. Alsid, D. A. Braje,
and P. Cappellaro, Sensing of arbitrary-frequency fields
using a quantum mixer, Phys. Rev. X 12, 021061 (2022).

[51] Z. Jiang, H. Cai, R. Cernansky, X. Liu, and W. Gao,
Quantum sensing of radio-frequency signal with NV centers
in SiC, Sci. Adv. 9, eadg2080 (2023).

[52] T. H. Taminiau, J. J. T. Wagenaar, T. van der Sar, F. Jelezko,
V. V. Dobrovitski, and R. Hanson, Detection and control of
individual nuclear spins using a weakly coupled electron
spin, Phys. Rev. Lett. 109, 137602 (2012).

[53] Z.-Y. Wang, J. Casanova, and M.B. Plenio, Delayed
entanglement echo for individual control of a large number
of nuclear spins, Nat. Commun. 8, 14660 (2017).

[54] J. F. Haase, Z.-Y. Wang, J. Casanova, and M. B. Plenio, Soft
quantum control for highly selective interactions among
joint quantum systems, Phys. Rev. Lett. 121, 050402
(2018).

250801-6


https://doi.org/10.1103/PhysRevApplied.14.054054
https://doi.org/10.1103/PhysRevLett.126.220402
https://doi.org/10.1103/PhysRevLett.126.220402
https://doi.org/10.1038/s41467-022-32610-8
https://doi.org/10.1103/PhysRevApplied.19.054037
https://doi.org/10.1103/PhysRevApplied.19.054037
https://doi.org/10.1103/PhysRevLett.130.133603
https://doi.org/10.1126/science.aaa2253
https://doi.org/10.1126/science.aad8022
https://doi.org/10.1038/s41534-022-00653-w
https://doi.org/10.1038/s41534-022-00653-w
https://doi.org/10.1038/nnano.2011.22
https://doi.org/10.1038/nnano.2011.22
https://doi.org/10.1038/nphys2814
https://doi.org/10.1103/PhysRevX.5.041016
https://doi.org/10.1103/PhysRevB.93.174104
https://doi.org/10.1103/PhysRevB.93.174104
https://doi.org/10.1103/PhysRevB.98.121405
https://doi.org/10.1103/PhysRevB.98.121405
https://doi.org/10.1038/s41467-018-07121-0
https://doi.org/10.1103/PhysRevLett.121.170801
https://doi.org/10.1103/PhysRevLett.121.170801
https://doi.org/10.1038/s41586-019-1834-7
https://doi.org/10.1038/s41586-019-1834-7
https://doi.org/10.1038/s41467-022-28935-z
https://doi.org/10.1103/PhysRevLett.103.220802
https://doi.org/10.1103/PhysRevLett.103.220802
https://doi.org/10.1063/1.3497004
https://doi.org/10.1103/PhysRevA.90.042104
https://doi.org/10.1103/PhysRevA.90.042104
https://doi.org/10.1103/PhysRevA.91.062111
https://doi.org/10.1103/PhysRevA.91.062111
https://doi.org/10.1126/science.aam5532
https://doi.org/10.1126/science.aam7009
https://doi.org/10.1126/science.aam7009
https://doi.org/10.1038/s41467-017-01158-3
https://doi.org/10.1038/s41467-017-01158-3
https://doi.org/10.1038/s41467-017-01159-2
https://doi.org/10.1103/PhysRevApplied.15.014031
https://doi.org/10.1103/PhysRevApplied.15.014031
https://doi.org/10.1038/s41467-021-22714-y
https://doi.org/10.1038/s41467-021-22714-y
https://doi.org/10.1103/PhysRevX.12.021061
https://doi.org/10.1126/sciadv.adg2080
https://doi.org/10.1103/PhysRevLett.109.137602
https://doi.org/10.1038/ncomms14660
https://doi.org/10.1103/PhysRevLett.121.050402
https://doi.org/10.1103/PhysRevLett.121.050402

PHYSICAL REVIEW LETTERS 132, 250801 (2024)

[55] M. A. Perlin, Z.-Y. Wang, J. Casanova, and M. B. Plenio,
Noise-resilient architecture of a hybrid electron-nuclear
quantum register in diamond, Quantum Sci. Technol. 4,
015007 (2019).

[56] S.S. Hegde, J. Zhang, and D. Suter, Efficient quantum gates
for individual nuclear spin qubits by indirect control, Phys.
Rev. Lett. 124, 220501 (2020).

[57] H. P. Bartling, M. H. Abobeih, B. Pingault, M. J. Degen,
S.J.H. Loenen, C.E. Bradley, J. Randall, M. Markham,
D.J. Twitchen, and T. H. Taminiau, Entanglement of spin-
pair qubits with intrinsic dephasing times exceeding a
minute, Phys. Rev. X 12, 011048 (2022).

[58] J. Casanova, Z.-Y. Wang, and M. B. Plenio, Noise-resilient
quantum computing with a nitrogen-vacancy center and
nuclear spins, Phys. Rev. Lett. 117, 130502 (2016).

[59] S. Pezzagna and J. Meijer, Quantum computer based on
color centers in diamond, Appl. Phys. Rev. 8, 011308
(2021).

[60] J. Cai, A. Retzker, F. Jelezko, and M. B. Plenio, A largescale
quantum simulator on a diamond surface at room temper-
ature, Nat. Phys. 9, 168 (2013).

[61] L. Childress and R. Hanson, Diamond NV centers for
quantum computing and quantum networks, MRS Bull. 38,
134 (2013).

[62] N. Kalb, A.A. Reiserer, P.C. Humphreys, J.J. W.
Bakermans, S.J. Kamerling, N.H. Nickerson, S.C.
Benjamin, D.J. Twitchen, M. Markham, and R. Hanson,
Entanglement distillation between solid-state quantum net-
work nodes, Science 356, 928 (2017).

[63] P.C. Humphreys, N. Kalb, J. P.J. Morits, R. N. Schouten,
R.F. L. Vermeulen, D.J. Twitchen, M. Markham, and R.
Hanson, Deterministic delivery of remote entanglement on a
quantum network, Nature (London) 558, 268 (2018).

[64] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers,
P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J.
Tiggelman, L. dos Santos Martins, B. Dirkse, S. Wehner,
and R. Hanson, Realization of a multinode quantum net-
work of remote solid-state qubits, Science 372, 259 (2021).

[65] H. Y. Carr and E. M. Purcell, Effects of diffusion on free
precession in nuclear magnetic resonance experiments,
Phys. Rev. 94, 630 (1954).

[66] S. Meiboom and D. Gill, Modified spin-echo method for
measuring nuclear relaxation times, Rev. Sci. Instrum. 29,
688 (1958).

[67] T. Gullion, D. B. Baker, and M. S. Conradi, New, compen-
sated Carr-Purcell sequences, J. Magn. Reson. 89, 479
(1990).

[68] M. Loretz, J. M. Boss, T. Rosskopf, H. J. Mamin, D. Rugar,
and C. L. Degen, Spurious harmonic response of multipulse
quantum sensing sequences, Phys. Rev. X 5, 021009 (2015).

[69] V.M. Frey, S. Mavadia, L. M. Norris, W. de Ferranti, D.
Lucarelli, L. Viola, and M.J. Biercuk, Application of
optimal band-limited control protocols to quantum noise
sensing, Nat. Commun. 8, 2189 (2017).

[70] N. Zhao, J. Wrachtrup, and R.-B. Liu, Dynamical decou-
pling design for identifying weakly coupled nuclear spins in
a bath, Phys. Rev. A 90, 032319 (2014).

[71] J. Casanova, Z.-Y. Wang, J. F. Haase, and M. B. Plenio,
Robust dynamical decoupling sequences for individual
nuclear-spin addressing, Phys. Rev. A 92, 042304 (2015).

[72] Z.-Y. Wang, J. E. Lang, S. Schmitt, J. Lang, J. Casanova, L.
McGuinness, T. S. Monteiro, F. Jelezko, and M. B. Plenio,
Randomization of pulse phases for unambiguous and robust
quantum sensing, Phys. Rev. Lett. 122, 200403 (2019).

[73] Z.-Y. Wang, J. Casanova, and M. B. Plenio, Enhancing the
robustness of dynamical decoupling sequences with corre-
lated random phases, Symmetry 12, 730 (2020).

[74] Z.-Y. Wang and M. B. Plenio, Necessary and sufficient
condition for quantum adiabatic evolution by unitary control
fields, Phys. Rev. A 93, 052107 (2016).

[75] K. Xu, T. Xie, F. Shi, Z.-Y. Wang, X. Xu, P. Wang, Y. Wang,
M. B. Plenio, and J. Du, Breaking the quantum adiabatic
speed limit by jumping along geodesics, Sci. Adv. §,
eaax3800 (2019).

[76] Y. Liu and Z.-Y. Wang, Shortcuts to adiabaticity with
inherent robustness and without auxiliary control, arXiv:
2211.02543.

[77] M. Gong, M. Yu, R. Betzholz, Y. Chu, P. Yang, Z. Wang,
and J. Cai, Accelerated quantum control in a three-level
system by jumping along the geodesics, Phys. Rev. A 107,
L040602 (2023).

[78] M. V. Berry, Transitionless quantum driving, J. Phys. A 42,
365303 (2009).

[79] D. Géury-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui,
S. Marinez-Garaot, and J. G. Muga, Shortcuts to adiaba-
ticity: Concepts, methods, and applications, Rev. Mod.
Phys. 91, 045001 (2019).

[80] D. Chruscinski and A. Jamiolkowski, Geometric
Phases in Classical and Quantum Mechanics (Birkhiuser,
Boston, 2004).

[81] See  Supplemental ~Material at  http://link.aps.org/
supplemental/10.1103/PhysRevLett.132.250801, which in-
cludes Refs. [82—84], for simulation details and additional
information about the spectral responses in quantum
sensing.

[82] J.-M. Cai, B. Naydenov, R. Pfeiffer, L. P. McGuinness,
K.D. Jahnke, F. Jelezklo, M. B. Plenio, and A. Retzker,
Robust dynamical decoupling with concatenated continuous
driving, New J. Phys. 14, 113023 (2012).

[83] C. Gardiner, Handbook of Stochastic Methods for Physics,
Chemistry, and the Natural Sciences (Springer-Verlag,
Berlin, 2004), Chap. 3.

[84] X. Wang, C.-S. Yu, and X. X. Yi, An alternative quantum
fidelity for mixed states of qudits, Phys. Lett. A 373, 58
(2008).

[85] L. Cywinski, R. M. Lutchyn, C. P. Nave, and S. Das Sarma,
How to enhance dephasing time in superconducting qubits,
Phys. Rev. B 77, 174509 (2008).

[86] C. A. Ryan, J.S. Hodges, and D. G. Cory, Robust decou-
pling techniques to extend quantum coherence in diamond,
Phys. Rev. Lett. 105, 200402 (2010).

[87] G.T. Genov, D. Schraft, N. V. Vitanov, and T. Halfmann,
Arbitrarily accurate pulse sequences for robust dynamical
decoupling, Phys. Rev. Lett. 118, 133202 (2017).

[88] G. A. Alvarez and D. Suter, Measuring the spectrum of
colored noise by dynamical decoupling, Phys. Rev. Lett.
107, 230501 (2011).

[89] R. Tycko and A. Pines, Iterative schemes for broad-band and
narrow-band population inversion in NMR, Chem. Phys.
Lett. 111, 462 (1984).

250801-7


https://doi.org/10.1088/2058-9565/aade5c
https://doi.org/10.1088/2058-9565/aade5c
https://doi.org/10.1103/PhysRevLett.124.220501
https://doi.org/10.1103/PhysRevLett.124.220501
https://doi.org/10.1103/PhysRevX.12.011048
https://doi.org/10.1103/PhysRevLett.117.130502
https://doi.org/10.1063/5.0007444
https://doi.org/10.1063/5.0007444
https://doi.org/10.1038/nphys2519
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1103/PhysRev.94.630
https://doi.org/10.1063/1.1716296
https://doi.org/10.1063/1.1716296
https://doi.org/10.1016/0022-2364(90)90331-3
https://doi.org/10.1016/0022-2364(90)90331-3
https://doi.org/10.1103/PhysRevX.5.021009
https://doi.org/10.1038/s41467-017-02298-2
https://doi.org/10.1103/PhysRevA.90.032319
https://doi.org/10.1103/PhysRevA.92.042304
https://doi.org/10.1103/PhysRevLett.122.200403
https://doi.org/10.3390/sym12050730
https://doi.org/10.1103/PhysRevA.93.052107
https://doi.org/10.1126/sciadv.aax3800
https://doi.org/10.1126/sciadv.aax3800
https://arXiv.org/abs/2211.02543
https://arXiv.org/abs/2211.02543
https://doi.org/10.1103/PhysRevA.107.L040602
https://doi.org/10.1103/PhysRevA.107.L040602
https://doi.org/10.1088/1751-8113/42/36/365303
https://doi.org/10.1088/1751-8113/42/36/365303
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/RevModPhys.91.045001
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250801
https://doi.org/10.1088/1367-2630/14/11/113023
https://doi.org/10.1016/j.physleta.2008.10.083
https://doi.org/10.1016/j.physleta.2008.10.083
https://doi.org/10.1103/PhysRevB.77.174509
https://doi.org/10.1103/PhysRevLett.105.200402
https://doi.org/10.1103/PhysRevLett.118.133202
https://doi.org/10.1103/PhysRevLett.107.230501
https://doi.org/10.1103/PhysRevLett.107.230501
https://doi.org/10.1016/0009-2614(84)85541-4
https://doi.org/10.1016/0009-2614(84)85541-4

