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Single electrons trapped on solid-neon surfaces have recently emerged as a promising platform for charge
qubits. Experimental results have revealed their exceptionally long coherence times, yet the actual quantum
states of these trapped electrons, presumably on imperfectly flat neon surfaces, remain elusive. In this Letter,
we examine the electron’s interactions with neon surface topography, such as bumps and valleys. By
evaluating the surface charges induced by the electron, we demonstrate its strong perpendicular binding to the
neon surface. The Schrödinger equation for the electron’s lateral motion on the curved 2D surface is then
solved for extensive topographical variations. Our results reveal that surface bumps can naturally bind an
electron, forming unique quantum ring states that alignwith experimental observations.We also show that the
electron’s excitation energy can be tuned using amodestmagnetic field to facilitate qubit operation. This study
offers a leap in our understanding of electron-on-solid-neon qubit properties and provides strategic insights on
minimizing charge noise and scaling the system to propel forward quantum computing architectures.
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The success of quantum computing relies on qubits with
long coherence times and swift operation [1,2]. Among
various types of qubits, charge qubits are noted for their fast
operation speeds, resulting from strong coupling to electric
fields. However, traditional semiconductor and supercon-
ducting charge qubits face challenges with charge noise,
which limits their coherence times to about 1 μs [3–5]. On
the other hand, charge qubits composed of electrons bound
to the surfaces of ultraclean quantum fluids and solids are
predicted to exhibit prolonged coherence times [6–10].
Over the past two decades, significant advancements have
been made in comprehending these systems [7,11–24]. In
particular, in a recent breakthrough, electron-on-solid-neon
(eNe) qubits were shown to achieve coherence times on the
order of 0.1 ms, positioning them at the forefront of this
endeavor [25,26].
The eNe qubit platform utilizes a hybrid quantum circuit

structure consisting of a trap electrode placed inside a
superconducting microwave resonator, accompanied by a
number of guard electrodes, as shown schematically in
Fig. 1(a) [25,26]. The trap electrode can be coated with a
layer of solid neon. When an excess electron approaches
the neon surface, the induced image charge in neon results
in an attractive potential V⊥ðzÞ ¼ −½ðϵ − ϵ0Þ=ðϵþ ϵ0Þ�e2=
16πϵ0z, where ϵ0 is the vacuum permittivity, ϵ ¼ 1.244ϵ0 is
the dielectric constant of solid neon, and z is the vertical
distance from the flat surface. On the other hand, due to
Pauli exclusion between the excess electron and the
atomic shell electrons, the solid neon appears as an
energy barrier of about 0.7 eV to the electron [27–30].

These combined effects confine the electron in the z
direction with a ground-state wave function peaked
at around 1 nm above the neon surface [see Fig. 1(b)].

FIG. 1. (a) A schematic showing an electron trapped on the
surface of solid neon in a superconducting microwave resonator.
(b) Potential energy and the ground-state wave function of the
electron near the flat solid-neon surface.
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The ground-state energy is −15.8 meV, and the excitation
energy to the first excited state in the z direction is about
12.7 meV, equating to an activation temperature of 147 K.
At typical experimental temperatures around 10 mK, the
electron’s motion perpendicular to the surface remains
firmly in the ground state. When suitable voltages are
applied to the guard electrodes, the electron’s lateral motion
can be confined within the elliptical trap region depicted in
Fig. 1(a). By adjusting these voltages, one can align the
transition from the electron’s lateral ground state to its first
excited state with the resonator’s microwave photons for
qubit operations [25]. The electron, hovering in a near
vacuum above the noble-element substrate, offers a qubit
platform with minimal charge noise and hence exceptional
coherence time. This qubit platform largely resolves the
surface vibration and instability issues inherent in the
electron-on-liquid-helium qubit platform, which was pro-
posed over two decades ago [6,7] and has been extensively
studied [7,13–24].
Nevertheless, recent experimental observations have

revealed some intriguing behavior within the eNe qubit
system. When the electric confining potential was reduced,
the shift in the excitation spectrum associated with the
electron’s lateral motion was notably less than expected.
Moreover, in some experimental runs, the electrons could
remain anchored to the neon surface even after the con-
fining potential was removed. These observations hint at
the existence of alternative mechanisms affixing the elec-
tron on the neon surface. In this Letter, we consider the
interaction between the electron and deformations on the
neon surface, such as bumps and valleys. These surface
features may arise from the Stranski-Krastanov growth
mode of neon at temperatures below its triple point [31,32].
Additionally, electrodes made of superconducting niobium
deposited on silicon substrates inherently possess their
own surface irregularities. Our analysis demonstrates that
small surface bumps can capture the electron, resulting in
unique quantum ring states that align with the experimental
observations.
Without loss of generality, we consider a Gaussian bump

on the neon surface as shown in Fig. 2, defined by the
position vector r⃗s¼ r⃗sðrs;θs;zsÞ, with zs¼Hexpð−2r2s=w2Þ.
Here, H and w denote the bump’s height and width,
respectively. To evaluate the interaction between an excess
electron and this surface bump, the key is to determine the
surface charge density σðr⃗sÞ induced by the electron. To
achieve this, we adopt an adaptive polar mesh around the
electron’s location to discretize the bump surface (see Supple-
mental Material [33]). For a surface element ΔSðr⃗sÞ,
the continuity of the electric displacement across the
surface requires [34] ϵ0½E⃗eþΔE⃗sþ

P
r⃗0s≠r⃗sΔE⃗ðr⃗0sÞ� · n̂⊥¼

ϵ½E⃗e−ΔE⃗sþ
P

r⃗0s≠r⃗sΔE⃗ðr⃗0sÞ� · n̂⊥, where E⃗e¼ð−e=4πϵ0Þ×
½ðr⃗s− r⃗eÞ=ðjr⃗s− r⃗ej3Þ� is the electric field produced at r⃗s due
to the electron located at r⃗e, ΔE⃗s ¼ ðσðr⃗sÞ=2ϵ0Þn̂⊥ denotes

the electric field generated by the induced charge atΔS itself
with n̂⊥ as the unit vector normal to ΔS, and ΔE⃗ðr⃗0sÞ ¼
f½ΔSðr⃗0sÞσðr⃗0sÞ�=ð4πϵ0Þg½ðr⃗s − r⃗0sÞ=ðjr⃗s − r⃗0sj3Þ� is the elec-
tric field produced at r⃗s by a surface element at r⃗0s. This
condition leads to the following expression for σsðr⃗sÞ:

σðr⃗sÞ ¼
1

2π

ϵ − ϵ0
ϵþ ϵ0

�
−e

ðr⃗s − r⃗eÞ
jr⃗s − r⃗ej3

þ
X
r⃗s 0≠r⃗s

ΔSðr⃗0sÞσðr⃗0sÞ
ðr⃗s − r⃗0sÞ
jr⃗s − r⃗0sj3

�
· n̂⊥: ð1Þ

The above equation can be solved iteratively using an initial
charge density σð0Þðr⃗sÞ ¼ ð−e=2πÞ½ðϵ − ϵ0Þ=ðϵþ ϵ0Þ�×
½ðr⃗s − r⃗eÞ · n̂⊥=jr⃗s − r⃗ej3�, which is indeed the exact solution
for a flat surface (see Supplemental Material [33]). In
principle, for any given electron position r⃗e, the associated
surface charge density σðr⃗sÞ should be determined. The
electric potential energy of the electron can then be calculated
as Vðr⃗eÞ ¼

P
r⃗sð1=4πϵ0Þ½−eΔSðr⃗sÞσðr⃗sÞ=jr⃗s − r⃗ej�. This

Vðr⃗eÞ, together with the 0.7-eV energy barrier from the
curved neon surface, should be included in the Schrödinger
equation for the electron to solve for its eigen wave functions
in 3D space. However, this method is computationally
intensive, limiting its feasibility for extensive investigations
of diverse bump geometries.
Alternatively, we can calculate the electric force exerted

on the electron due to the surface charge as F⃗ðr⃗eÞ ¼P
r⃗s
f½−eΔSðr⃗sÞσðr⃗sÞ�=4πϵ0g½ðr⃗s − r⃗eÞ=ðjr⃗s − r⃗ej3Þ�. From

this, the forces parallel F⃗kðr⃗eÞ and perpendicular F⃗⊥ðr⃗eÞ to
the local neon surface can be determined. For all the
examined bump parameters fH;wg, we have found that
F⃗⊥ðr⃗eÞ at any location above the curved neon surface only
deviates minimally from the force on the electron from a
flat surface (see Supplemental Material [33]). Therefore,
the electron tends to bind at about 1 nm above the
neon surface, exhibiting a distribution profile jψ⊥ðhÞj2
perpendicular to the surface similar to that represented by
the red curve in Fig. 1(b). This behavior is due to the bump
surface’s curvature radius being always substantially larger
than 1 nm. Given this, we can focus on the electron’s lateral

FIG. 2. A schematic showing the coordinate system adopted in
our analysis of the electric forces acting on the electron near a
curved solid-neon surface.
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motion along the curve neon surface, simplifying the 3D
problem into a more manageable quasi-2D analysis.
Upon fixing the electron at a height h above the neon

surface, the potential energy associated with the electron’s
lateral motion can be calculated as VkðlÞ ¼

R
∞
l F⃗kðl0Þ · d⃗l0,

where l is the coordinate mapped along the curved surface
as shown in Fig. 2. Given the correlation between l and r,
we can represent Vk in terms of r. Figure 3(a) shows the
computed VkðrÞ profile for the electron held at h ¼ 1 nm
above a representative neon bump with H ¼ 30 nm and
w ¼ 30 nm. Notably, F⃗k changes sign from negative at
large r to positive at about r ¼ 34 nm, which results in a
toroidal trapping potential encircling the bump with a
potential depth V trap ¼ −1.33 meV. This phenomenon
can be explained by considering how the distance between
the electron and the surface varies with l, as elucidated in
the Supplemental Material [33]. Considering the likelihood
jψ⊥ðhÞj2 of the electron appearing at h, we have calculated
Vkðr; hÞ at various h and averaged the results as
VkðrÞ ¼

R
Vkðr; hÞjψ⊥ðhÞj2dh. It turns out that the aver-

aged VkðrÞ profile shows little deviation from the curve
displayed in Fig. 3(a), especially in the toroidal trap region
(see Supplemental Material [33]). In subsequent analysis,
we will fix the electron at h ¼ 1 nm for convenient
exploration of various bump geometries.
To find the eigenstates associated with the electron’s

lateral motion, we solve the following Schrödinger

equation on the curved neon surface [35]:

Eψkðr; θÞ ¼ −
ℏ2

2me
∇2ψkðr; θÞ þ VkðrÞψkðr; θÞ

¼ −
ℏ2

2mer2

�
r
hr

∂r

�
r
hr

∂rψk

�
þ ∂

2
θψk

�

þ VkðrÞψk; ð2Þ

where me is the electron mass, ℏ is the reduced Planck’s
constant, and hr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð16Hr2=w2Þ exp½−ð4r2=w2Þ�

p
is

the Lamé coefficient for the Gaussian surface [36] (see
Supplemental Material for derivation [33]). The wave

function of an eigenstate can be expressed as ψk
nr;mzðr; θÞ ¼

Rnr;mz
ðrÞeimzθ, where nr and mz denote the radial and

angular quantum numbers, respectively. Figure 3(a) dis-

plays the radial profiles of both the ground state ψk
0;0 and

the first radially excited state ψk
1;0 of the electron over a

bump with H ¼ 30 nm and w ¼ 30 nm. The probability
densities of the electron on the bump surface and the
eigenenergies Enr;mz

for these and two angularly excited
states are shown in Fig. 3(c). Because of the geometry of
the trapping potential, the eigenstates of the electron exhibit
ring profiles around the bump.
We have also explored the interaction of the electron

with valleys on the neon surface. Figure 3(b) shows the
potential energy profile VkðrÞ for an electron bound on a

FIG. 3. (a) Potential energy profile associated with the electron’s motion along a representative neon surface bump. The radial profiles
of electron’s wave function in its ground state and the first radially excited state are also shown. (b) Potential energy profile and the
electron’s radial wave function profiles along a representative neon surface valley. (c) 2D profiles of the ground state and excited states’
wave functions of the electron bound to a surface bump with H ¼ 30 nm and w ¼ 30 nm.
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Gaussian-shaped valley with H¼−30nm and w ¼ 30 nm,
calculated using the same methodology applied for bumps.
Given the inverse surface curvature as compared to the
Gaussian bump shown in Fig. 3(a), the valley-associated
potential is repulsive for r ≥ 34 nm. For r < 34 nm, an
axially symmetric potential well exists. The eigenstates of
the electron confined in this potential well have been
determined, with the radial profiles of the ground and
the first radially excited states shown in Fig. 3(b). While
such surface valleys can laterally confine the electron, they
are not our primary focus. This is because when the
electrons approach the solid neon, they adhere closely
yet retain the ability to traverse the surface. From a
distance, they are attracted to surface bumps but are
repelled by valleys. Only upon exact positioning within
the potential well region of the valleys is there a possibility
of them becoming confined. Therefore, our subsequent
analysis will focus on surface bumps.
We have investigated a wide range of parameter combi-

nations fH;wg for neon surface bumps. In Fig. 4(a), the
derived trapping potential depth V trap is presented as a
function of H and w. The magnitude jV trapj increases with
increasing H or decreasing w and can reach a few meV,
sufficient for electron confinement even in the absence of
an applied electric trapping potential. Figure 4(b) displays
the calculated excitation energy ΔE�1 ¼ E0;�1 − E0;0 for
an optical transition from the ground state ψ0;0 to the
degenerate excited states ψ0;�1. Since this transition occurs
between the standing wave modes along the circumference
of the toroidal trapping potential, ΔE�1 depends strongly
on w and is nearly independent of H. For bumps with w of

about 32 nm, ΔE�1 ≃ 26 μeV, matching well the energy of
the microwave photons used in the experiments [25].
The degeneracy of the states ψ0;1 and ψ0;−1, which is

unfavorable for qubit operation, can naturally be lifted if
the bump lacks perfect axial symmetry. Alternatively, one
can apply a magnetic field to remove this degeneracy and to
align the excitation energy precisely with the resonator’s
photons. For an applied uniform magnetic field B⃗ ¼ −Bzẑ,

the eigenenergy of the electron is given by EðszÞ
nr;mz ¼

Er þ ðℏ2=2meÞh1=r2im2
z − μBBzðmz þ 2szÞ, where the

radial energy contribution Er is mildly influenced by mz
but strongly depends on nr [35] (see Supplemental Material
[33]), h1=r2i ¼ R

2πrdr½R2
nr;mz

ðrÞ=r2�, μB ¼ ðeℏ=2meÞ is
the Bohr magneton, and sz ¼ � 1

2
is the spin quantum

number. In the absence of the magnetic field (Bz ¼ 0),

EðszÞ
0;mz

largely follows the trend EðszÞ
0;mz

− EðszÞ
0;0 ∝ m2

z , with ψ0;0

being the lowest energy state. Figure 5(a) shows the

computed EðszÞ
0;mz

versus mz for an electron confined on a
bump with H ¼ 30 nm and w ¼ 30 nm. At finite Bz, the
originally degenerate spin states now split. Furthermore,
the linear term in mz in the eigenenergy expression can

cause a shift of the EðszÞ
0;mz

curve as shown in Fig. 5(a). Given

FIG. 4. (a) Trapping potential depth jV trapj and (b) excitation
energy ΔE�1 ¼ E0;�1 − E0;0 for the electron on neon surface
bumps with various H and w.

FIG. 5. (a) Eigenenergy versus angular quantum numbermz for
the electron on a bump with H ¼ 30 nm and w ¼ 30 nm.
(b) Calculated excitation energy ΔE�1 from the lowest energy
state at m� to the neighboring excited states at m� � 1 as a
function of the applied magnetic field Bz.

PHYSICAL REVIEW LETTERS 132, 250603 (2024)

250603-4



the considerable bump size, h1=r2i is small and hence the
shift caused by the linear term in mz can be significant,
which may result in the lowest energy state with
mz ¼ m� ≠ 0. The excitation energies ΔE−1 ¼ E0;m�−1 −
E0;m� and ΔEþ1 ¼ E0;m�þ1 − E0;m� associated with the
transitions from the new ground state at m� to the two
neighboring excited states at m� � 1 now depend on Bz. In
Fig. 5(b), we plot ΔE−1 and ΔEþ1 as functions of Bz. The
nearly linear dependence of ΔE�1 on Bz suggests a robust
capability of Bz to precisely adjust the qubit’s transition
frequency.
Our theoretical findings may have profound implications

for the design and optimization of eNe qubits. In previous
experiments, the injected electrons could bind to naturally
formed bumps of various sizes. Only when an electron
bound to a bump of the correct size and located within the
resonator cavity, did its states become manipulable by the
cavity photons. Electrons bound to neon bumps of mis-
matched sizes would fail to resonate with the cavity
photons. But these electrons could contribute to back-
ground charge noise, potentially leading to qubit
decoherence, limiting the coherence times of eNe qubits
to about 0.1 ms. Our research underscores the critical need
for a systematic study of the neon growth process under
various injection temperatures and pressures, aimed at
optimizing the procedure for producing high-quality neon
surfaces with minimal natural features. This effort is
anticipated to significantly reduce the number of back-
ground electrons and hence enhance the coherence times of
eNe qubits. On the other hand, one may intentionally
fabricate bumps of the right size on the trap electrode to
enhance the chances of trapping electrons for qubit oper-
ation. These bumps could be elongated in the direction of
the cavity electric field to lift the degeneracy of the ψ0;1 and
ψ0;−1 states and enhance the dipole coupling to the cavity
electric field. When two or more such bumps are fabricated
so that multiple electrons can be trapped simultaneously,
these electrons’ lateral states could be manipulated and
entangled using the cavity photons for various multiqubit
gate applications. [37].
It is alsoworth noting that the application of a nonuniform

magnetic field parallel to the neon surface can lead to
coupling between the electron’s lateral motion and its spin
degrees of freedom [38]. Such a concept has previously been
proposed for the electron-on-helium system [10,19,39,40]
and implemented in other systems like silicon qubits
[41–43]. The resonator’s photons can be employed to
stimulate and control the electron’s spin states. A recent
estimation suggests that the spin coherence time of the
eNe qubit could extend up to 81 s when using purified
neon [38]. The potential of constructing a fault-tolerant
quantum computer leveraging the spin states of eNe qubits
presents a compelling avenue for further research and
development.
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