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The Knill-Laflamme conditions distinguish exact quantum error correction codes, and they have played
a critical role in the discovery of state-of-the-art codes. However, the family of exact codes is a very
restrictive one and does not necessarily contain the best-performing codes. Therefore, it is desirable to
develop a generalized and quantitative performance metric. In this Letter, we derive the near-optimal
channel fidelity, a concise and optimization-free metric for arbitrary codes and noise. The metric provides
a narrow two-sided bound to the optimal code performance, and it can be evaluated with exactly the
same input required by the Knill-Laflamme conditions. We demonstrate the numerical advantage of the
near-optimal channel fidelity through multiple qubit code and oscillator code examples. Compared to
conventional optimization-based approaches, the reduced computational cost enables us to simulate
systems with previously inaccessible sizes, such as oscillators encoding hundreds of average excitations.
Moreover, we analytically derive the near-optimal performance for the thermodynamic code and the
Gottesman-Kitaev-Preskill code. In particular, the Gottesman-Kitaev-Preskill code’s performance under
excitation loss improves monotonically with its energy and converges to an asymptotic limit at infinite
energy, which is distinct from other oscillator codes.
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Introduction.—Quantum error correction (QEC) has
central importance in scaling up quantum devices. The
seminal work [1] by Knill and Laflamme (KL) outlines the
necessary and sufficient conditions for exact QEC. The KL
conditions are celebrated for their conciseness and com-
putational efficiency. Practically, they have guided the
discoveries and analysis of many state-of-the-art qubit
codes [2–4] and oscillator codes [5–9].
The KL conditions deal with exact error correction, in

that they tell us whether or not any given error is exactly
correctable by a given code. However, there are two issues
with this: first, the set of correctable errors may not corres-
pond exactly to the errors that occur in real devices—one
often needs to approximate practical noise sources by
considering a truncated set of Kraus operators and/or
through techniques such as Pauli Twirling [10,11].
Furthermore, codes that exactly correct leading order errors
do not necessarily outperform codes that “approximately”
correct errors at all orders [4,12]. Therefore, it is critical to
develop a concise and efficiently computable metric (sim-
ilar to the KL conditions) that quantifies the capabilities of
general codes. Such an extension uncovers the fundamental
limit set by the encoding and noise, which is a critical
benchmark for code designs.
One such widely accepted benchmark is the channel

(or process) fidelity [13–17]. Under this metric, the optimal
recovery can be found through convex optimizations,

which motivated works in optimization-based QEC
[12–14,18–25]. The optimal recovery fidelity can also
serve as a guide for encoding designs [12,15,21,26]. How-
ever, these methods have two drawbacks. First, although
convex optimization algorithms are decently optimized,
they remain computationally expensive compared to opti-
mization-free methods. Consequently, past numerical
works only work with small Hilbert space sizes, such as
systems with fewer than five qubits [13,27,28] or oscillators
containing at most ten average excitations [12,20,29].
Second, these optimization techniques are inherently
numerical. While powerful, they do not yield analytical
forms for many of the quantities we are interested in, e.g.,
the parametric dependence of the code performance.
Near-optimal recoveries [25,30–35] have the potential to

circumvent these limitations. These channels have con-
structive forms and solve a relaxed optimization problem:
their performances provide two-sided bounds on the
optimal fidelity. These channels have led to attempts to
generalize the KL conditions [25,31,36–38], further lead-
ing to the development of codes like the thermodynamic
code [39–41]. However, the generalized conditions still
involve optimizations and/or the Bures metric, which are
generally challenging to analyze. The common solutions
were to derive bounds on the scaling of the near-optimal
fidelity assuming large system sizes, which no longer
provides a two-sided bound on the optimal performance.
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Moreover, the parametric dependence on other system
parameters remains unknown.
In this Letter, we derive a concise and optimization-free

performance metric, the near-optimal channel fidelity. The
metric is achievable by the transpose channel [30], also
known as the Petz channel [32,33,42], and provides a
narrow two-sided bound on the optimal fidelity. Crucially,
the only input to our expression is the QEC matrix, which
is exactly what is required to verify the KL conditions.
Therefore, our result is a quantitative generalization of the
KL conditions for arbitrary codes and noise processes. We
also develop a perturbative expression, providing intuition
on how codes’ performances are connected to the structures
of their error subspaces. More importantly, the perturbative
form well approximates the near-optimal fidelity and can
be computed analytically. Taking multiple qubit codes as
examples, we numerically validate the proximity of the
closed-form near-optimal expression and the optimal fidel-
ity obtained from convex optimizations. Furthermore,
we analytically compute the near-optimal fidelity for the
thermodynamic code in the thermodynamic limit, for which
only a scaling with system size was known in past works.
After examining a few representative oscillator codes, we
provide rigorous insights on why certain codes’ perfor-
mances under excitation loss improve monotonically with
increased energy, such as the Gottesman-Kitaev-Preskill
(GKP) code [5]. While past numerical simulations of the
GKP code were limited to a few average excitations, we
extend our result to hundreds of excitations. We also obtain
GKP’s performance analytically, parametrized by system
parameters and loss rates. With the analytical expression,
we find the GKP’s performance admits an asymptotic limit
at infinite energy.
Background.—The Knill-Laflamme (KL) conditions [1]

are the necessary and sufficient conditions for exact QEC
codes. For completeness, we briefly review the conditions
here. In QEC settings, the logical information is encoded
through a code with dL logical codewords fjμLig, which
subsequently passes through a noise channelN with Kraus
form fN̂ig. The QEC matrix is defined as

M½μl�;½νk� ¼ hμLjN̂†
l N̂kjνLi ð1Þ

in index notation. The KL conditions state that a code is a
exact error-correcting code if and only if the QEC matrix
can be written as M ¼ IL ⊗ A, with IL denoting a logical
dL-dimensional identity matrix.
The KL conditions assess codes with the assumption that

any physical recovery is allowed. Such an idea can be
extended to general codes: the performance of an encoding,
E, against certain noise, N , is determined by the perfor-
mance of the optimal recovery, Ropt. To define optimality,
in this Letter, we adopt the metric of channel fidelity.
For any quantum channel Q, the channel fidelity is
defined as [14,16]

FðQÞ ≔ hΦjQ ⊗ IRðjΦihΦjÞjΦi; ð2Þ

where jΦi is the purified maximally mixed state, and IR is
the identity channel acting on the reference ancillary
system. The optimal recovery,Ropt, is defined as a recovery
that achieves the optimal fidelity

Fopt ≔ max
R

FðR∘N ∘EÞ ¼ FðRopt∘N ∘EÞ; ð3Þ

where ∘ indicates channel compositions. For discussions
below, we refer to the channel fidelity as fidelity for
simplicity. Our choice of metric is well-motivated by two
important properties of the channel fidelity. First, the
channel fidelity is directly connected to other widely
adopted metrics such as the average input-output fidelity
[43,44]. Second, the metric is linear in the Choi matrix of
the recovery, which causes the optimization to fall in the
category of semidefinite programming (SDP) [45], a sub-
field of convex optimization.
Main result.—Here, we propose the near-optimal fidelity

as a quantitative metric that can be evaluated without
optimization.
Theorem 1 (the near-optimal fidelity). For a dL-

dimensional encoding, E, and a noise channel, N , the
near-optimal fidelity is

F̃opt ¼ 1

d2L

���TrL ffiffiffiffiffi
M

p ���2
F
; ð4Þ

where M is the QEC matrix, ðTrLBÞl;k ¼
P

μ B½μl�;½μk�
denotes the partial trace over the code space indices, and
k · kF is the Frobenius norm. The near-optimal fidelity
gives a two-sided bound on the optimal fidelity as

1

2

�
1 − F̃opt

�
≤ 1 − Fopt ≤ 1 − F̃opt: ð5Þ

Worth noticing, the gap between the two-sided bound is
proportional to the optimal infidelity. Therefore, when the
code performs well against the noise channel, the near-
optimal fidelity is a close approximation to the optimal
fidelity. Equally importantly, it is remarkable that Eq. (4) is
only dependent on the QEC matrix. Therefore, our metric
requires exactly the same resources as the KL conditions,
but it provides a quantitative performance metric beyond
a binary Yes-or-No output. Moreover, our result can be
further extended to general channel reversals [60,61],
subsystem codes [62], and mixed-state codes [63]. Our
result implies that the QEC matrix contains richer infor-
mation about the code and noise structure beyond the
KL conditions. For example, one can greatly reduce the
complexity of optimization-based methods via adopting
the error subspaces as an efficient basis to describe the
action of the noise channel [45,64,65].
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The near-optimal fidelity is achievable by the transpose
channel [30,31] by construction, which is exactly where
our expression inherits the two-sided bound. While there
are other channels possessing similar near-optimal proper-
ties [25,34], the transpose channel has the most concise
fidelity expression. The derivation of Eq. (4) is based on the
observation that the QEC matrix is the Gram matrix of
the error subspaces. When the QEC matrix is invertible, the
error subspaces can be orthonormalized by the Gram
matrix. In such an orthonormal basis, the transpose channel
is equivalent to a measure-and-recover operation, which
leads to the expression of Eq. (4). The derivation can be
generalized to scenarios of degenerate QEC matrix [45].
Computationally, our approach has a drastically reduced

cost compared to optimization-based methods. In many
cases, the QEC matrix can be analytically computed.
Otherwise, it is possible to efficiently compute the matrix
depending on the code and noise of interest. In such cases,
suppose we are considering NK number of noise Kraus
operators, the cost of evaluating F̃opt is OððdLNKÞ3Þ.
As a reference, the SDP for optimal recovery costs
ÕððdLNÞ5.246Þ [66,67], where N is the physical Hilbert
space dimension. For example, if we consider qubit codes,
N scales exponentially with the number of qubits, n.
However, it is sufficient numerically to truncate the number
of noise Kraus operators to a polynomial scaling, NK ∝ nr.
In many cases, r only depends on the target precision and
physical error rates.
While the exact form of the near-optimal fidelity, Eq. (4),

is an elegant expression, its advantage lies in its numerical
complexity. The component of matrix square root makes it
cumbersome to obtain an analytical expression for the near-
optimal fidelity. Therefore, we develop the following
corollary based on a perturbative decomposition of the
QEC matrix.
Corollary 1. The noise channel’s Kraus representation

can be chosen such that ð1=dLÞTrLM ¼ D, with M being
the QEC matrix and D being a diagonal matrix. With the
residual matrix ΔM ≔ M − IL ⊗ D, the near-optimal infi-
delity has a perturbative expansion through

1− F̃opt ¼ 1

dL

��fðDÞ⊙ ΔM
��2
F þO

�
1

dL

��fðDÞ⊙ ΔM
��3
F

�
;

ð6Þ

where fðDÞ½μl�;½νk� ¼ ½1=ð ffiffiffiffiffiffiffi
Dll

p þ ffiffiffiffiffiffiffiffi
Dkk

p Þ� and the Hadamard
product ðA ⊙ BÞij ¼ AijBij.
This corollary is proved with the Daleckii-Krein theorem

of matrix square root expansions [45,68,69]. Equation (6)
conveniently expresses the infidelity as a function of ΔM
and D instead of the square root of M, thus making it
tangible to obtain analytical expressions. Physically,
ð1=dLÞIL ⊗ TrLM and ΔM correspond to the correctable
and uncorrectable QEC matrix, respectively. In Corollary 1,

we applied a unitary to diagonalize the correctable matrix.
However, it is generally nontrivial to analytically express
the unitary. As a compromise, D can be instead defined
as the diagonal entries of the correctable matrix,
diag½ð1=dLÞTrLM� ¼ diagðDÞ. Such a truncation overesti-
mates the error, but its effect is negligible as long as the off-
diagonal yet correctable elements are sufficiently small [45].
It is important to note that the infidelity includes con-

tributions from the uncorrectable matrix modulated by a
function of the correctable matrix, fðDÞ. Intuitively, while
the overlaps between error subspaces lead to uncorrectable
errors, their effects are weighted by the probabilities of their
respective quantum trajectories, which are contained in D.
Past works [12,21,70–73] have proposed code performance
estimators based on the QEC matrix to perform efficient
code optimizations. Nonetheless, they mostly only took into
account the uncorrectable matrix, ΔM, or attempted to
consider the effects ofD in heuristic ways. As a comparison,
Eq. (6) suggests a combination of effects from ΔM and D
with guaranteed performance.
A few observations can be drawn from Eq. (6). For

example, for the near-optimal and optimal fidelity, the error
caused by the uncorrectable matrix is suppressed quadrati-
cally. While the quadratic scaling was also observed in
Ref. [35], our result is not limited to one-parameter family
of channels and instead presents the full expression.
Moreover, Eq. (6) has a noteworthy property: if ΔM is
traceless, the code is an exact QEC code when the
perturbative form vanishes [45]. This is useful for appli-
cations that require vanishing error probability, such as
computing the achievable rates [74].
Examples.—In Fig. 1, we numerically validate the two-

sided bound presented in Eq. (5) for qubit codes under
amplitude damping noise [45], which is a practical but non-
Pauli noise channel. We adopt the convention that ⟦n; k; d⟧
represents encoding k logical qubits in n physical qubits
with distance d, while for ððn; k; dÞÞ, k represents the
logical dimension instead. Even for well-studied codes like

FIG. 1. Optimal infidelity for qubit codes ⟦4; 1; 2⟧, ((5,6,2)),
and ⟦9; 1; 3⟧ and the GKP code with n̄ ¼ 7. The noise channel is
amplitude damping noise, i.e., loss for oscillators. The shaded
regions represent the optimal infidelity intervals bounded by the
two-sided bound given by the near-optimal infidelity in Eq. (5).
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stabilizer codes, their optimal decoders under non-Pauli
noise are in general unknown. The shown qubit codes
include the classic ⟦9; 1; 3⟧ stabilizer code [75] and
approximate ⟦4; 1; 2⟧ [4] code. Another example is the
((5, 6, 2)) code [76], which is a qudit nonstabilizer code.
The contributions of our expression lie not only in

numerics but also in analytical aspects. We take the thermo-
dynamic code [39,45] as an example. The code has sparked
interest because of its close connections with the eigenstate
thermalization hypothesis [77], as well as being an instance
of a covariant code [40]. The precise definition of the code
words are given in Ref. [45], and they are characterized
by the distance d. When considering a constant number
of erasure errors and thermodynamic limit, the optimal

infidelity was proven to scale as 1 − Fopt ¼ Θð1=N2Þ [40],
where N is the number of qubits. Beyond a scaling
argument, our expression makes it possible to derive the
near-optimal infidelity analytically [45],

1 − F̃opt ¼ l
16

d2

N2
þO

�
1

N3

�
; ð7Þ

for l erasure errors. The derivation of Eq. (7) with our
formalism is straightforward and can be easily extended to
consider more erasure errors [45]. The comparison of the
perturbative and the exact forms of the near-optimal
infidelity is shown in Fig. 2, where it is clear they closely
follow each other. For the exact form, the QEC matrix is
numerically computed, and the simulation stops at 14
qubits because of the increased computational cost. To
compare, if we attempt to optimize for the optimal fidelity,
it is only possible for less than 5 qubits under the same time
constraint.
Bosonic codes, or oscillator codes, are codes that encode

a dL-dimensional logical space in the infinite-dimensional
Hilbert space of oscillator(s). For a bosonic code, the aver-
age excitation number, n̄ ≔ Trðn̂P̂LÞ, affects code proper-
ties and is also a parameter of experimental interest. In the
inset plot of Fig. 3, we show the optimal performance of a
few popular bosonic codes under excitation loss [45],
including the binomial code [8], the cat code [7], and
the GKP code [5]. An emerging feature is that for the
binomial and cat codes, their performance does not
improve monotonically with energy with fixed S. Here,
S represents the Fock basis spacing, which can be

FIG. 2. The near-optimal infidelity of the thermodynamic code
with distance d (see Ref. [45] for the definition of the code words)
and l ¼ 1, i.e., single erasure error. The stars represent the exact
approach where the QEC matrix is numerically computed, and
the circles represent the perturbative expression given in Eq. (7).

FIG. 3. The channel infidelity of square lattice GKP qubit code with γ ¼ 10% loss. All shaded regions represent the two-sided bound
on the optimal fidelity. The red circles represent the exact form of the near-optimal infidelity, where the QEC matrix is computed
analytically. The blue dashed line is the perturbative form, evaluated through a closed-form analytical expression [78]. The inset figure
shows the performance of GKP codes (square lattice), cat codes (S ¼ 4), and binomial codes (S ¼ 1) [45]. The squares (dashed lines)
represent the optimal (near-optimal) fidelity.
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understood as the distance against loss. On the contrary, the
GKP code’s performance improves monotonically for the
range of n̄ shown. Similar numerical observations were
made in previous works [8,12], where heuristic explan-
ations were given based on the QECmatrix. Our expression
Eq. (6) supports their arguments with rigor: like exact qubit
codes, the cat code and binomial code exactly correct no
more than S excitation loss. However, they are completely
unprotected against more than S loss, which is more likely
to occur at larger n̄. Therefore, the infidelity is not sup-
pressed with energy.
The critical difference of GKP codes is that while they

generally cannot even correct a single loss, the uncorrect-
able elements for all orders of loss are suppressed by a
factor of e−fγ=½γþð1=n̄Þ�g [12]. One open question was
whether the suppression of the infidelity holds asymptoti-
cally: optimizing for the optimal fidelity was only possible
for n̄ ≤ 10 [12] because the Hilbert space size quickly
becomes unmanageable. The near-optimal fidelity solves
the problem. First, with the QEC matrix being analytically
computable, the only complexity cost for the exact form in
Eq. (4) is to compute the matrix square root. Thus, it is much
cheaper than SDP optimizations, and the numerical results
can reach n̄ ∼ 102. Second, we can express the near-optimal
performance analytically with the perturbative form [78],
which reveals the near-optimal fidelity for arbitrarily large n̄.
In Fig. 3, we demonstrate the results for a GKP square code
under loss rate γ ¼ 0.1. At asymptotically large n̄, the
perturbative expression converges as

lim
n̄→∞

1 − F̃opt ¼ e−
π
2
1−γ
γ ; ð8Þ

which is approximately 7.2 × 10−7 for γ ¼ 0.1. As a
comparison, the best decoder with known performance at
infinite energy is the amplification decoder (AD) [12,20].
For the same loss, AD gives a logical error rate of
1 − FAD ≈ e−ðπ=8Þ½ð1−γÞ=γ� ¼ 2.9 × 10−2. Therefore, while
the exceptionally low near-optimal fidelity highlights the
promises of the GKP code construction, its gap with the
performance of the known decoders emphasizes the potential
gain in improving GKP decoders. Similar analysis can be
performed for general multimode GKP encodings [78].
Discussion.—We have derived the near-optimal channel

fidelity as a quantitative metric for arbitrary codes and noise
channels. Our metric is closely related to optimal code
performances through narrow two-sided bounds. Since the
near-optimal fidelity only requires the QEC matrix as input,
it generalizes the KL conditions beyond distinguishing exact
QEC codes with the same resource cost. To conclude, the
proposed metric and its perturbative form reduce computa-
tional costs for numerical simulations and enable us to obtain
analytical descriptions of code performances.
Our new approach opens doors to numerical bench-

marking of large-sized codes and oscillators encoding

high-energy states. The benchmarking result can, in turn,
be used to optimize or guide the discovery of novel
encoding and efficient decoding for realistic noises.
Moreover, it is critical to understand the near-optimal
performance of codes in asymptotic limits for many
concepts and settings in quantum information theory, such
as the achievable rate of a code family.
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