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A powerful tool emerging from the study of many-body quantum dynamics is that of dual-unitary
circuits, which are unitary even when read “sideways,” i.e., along the spatial direction. Here, we show that
this provides the ideal framework to understand and expand on the notion of measurement-based quantum
computation (MBQC). In particular, applying a dual-unitary circuit to a many-body state followed by
appropriate measurements effectively implements quantum computation in the spatial direction. We show
how the dual-unitary dynamics generated by the dynamics of the paradigmatic one-dimensional kicked
Ising chain with certain parameter choices generate resource states for universal deterministic MBQC.
Specifically, after k time steps, equivalent to a depth-k quantum circuit, we obtain a resource state for
universal MBQC on ∼3k=4 encoded qubits. Our protocol allows generic quantum circuits to be “rotated” in
space-time and gives new ways to exchange between resources like qubit number and coherence time in
quantum computers. Beyond the practical advantages, we also interpret the dual-unitary evolution as
generating an infinite sequence of new symmetry-protected topological phases with spatially modulated
symmetries, which gives a vast generalization of the well-studied one-dimensional cluster state and shows
that our protocol is robust to symmetry-respecting deformations.
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Introduction.—Recent years have seen significant
advances at the frontier of many-body quantum dynamics.
A particularly fruitful approach has been to study time
evolution induced by quantum circuits, minimal models of
dynamics in which degrees of freedom are updated by local
unitary gates. Imposing structure on these gates lead to
different classes of dynamics—including Clifford [1],
matchgate [2–4], and Haar random circuits [5–12]—that
allow for the efficient computation of physical quantities
while still capturing different interesting regimes of behav-
ior. A recent promising class is that of dual-unitary circuits
[13–22], which are composed of gates that are not only
unitary in the time direction, as required by dynamics in
closed quantum systems, but also unitary in the space
direction, upon exchanging the role of space and time.
Despite this strong property, the class of dual unitaries is
broad and rich, capturing both integrable and chaotic
systems [13,20]. The versatility of this approach has seen
many applications, allowing one to exactly compute
spatiotemporal correlation functions [13,20], spectral sta-
tistics [23,24], and entanglement dynamics [17,25], thereby
providing deep insights into phenomena like quantum
chaos, information scrambling, and thermalization.

Intriguingly, the idea of regarding one spatial direction as
an effective time direction along which a circuit runs
appears already in an older topic, namely that of meas-
urement-based quantum computation (MBQC) [26,27].
Here, the idea is that by creating an entangled many-body
“resource” state using a finite-depth circuit and sub-
sequently measuring the qubits, it is possible to effectively
propagate quantum information through the spatial direc-
tion. The desired class of resource states is such that this
spatial propagation is, indeed, unitary. Remarkably, there
exist resource states in two spatial dimensions (2D) which
are universal, meaning that this unitary evolution in the
spatial direction can efficiently realize any quantum oper-
ation acting on any given number of encoded qubits [28].
Decades of research has uncovered a plethora of such
universal resources [29–33], including a fault-tolerant
protocol in 3D [34], but the full classification of universal
resource states is still ongoing [35–41]. Both computation
and fault tolerance in MBQC have been realized in proof-
of-principle experiments [42–44].
In this Letter, we show how insights from dual unitarity

can shed new light on MBQC, both at a conceptual and
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practical level. Namely, reading a dual-unitary circuit in the
time direction describes the preparation of the resource
state, while reading it in the spatial direction directly
reveals the logical circuit induced by appropriate measure-
ment of the resource state, as pictured in Fig. 1. This
provides an accessible alternative approach to MBQC
beyond the traditional stabilizer [26], teleportation [45],
or matrix product state-based [29] formalisms, and high-
lights how resource states can emerge naturally under
certain classes of quantum many-body dynamics. These
results also elevate dual unitarity from an abstract computa-
tional tool to a concept with direct practical application.
While Refs. [46–48] explored how measurements can

stochastically induce a universal gate set in the spatial
direction of dual-unitary circuits, performing scalable
quantum computation requires deterministic control with-
out postselection of measurement outcomes. Here, we
show that, by using dual-unitary circuits that are addition-
ally chosen to be Clifford, it is possible to implement
deterministic MBQC without sacrificing universality.
Specifically, we show that a depth-k dual-unitary circuit
composed of repeated applications of uniform single-site
and nearest-neighbor Ising entangling gates on a chain
prepares a resource state for MBQC on k qubits. We then
identify an unbounded sequence of k for which the
resulting unitary evolution that can be efficiently imple-
mented via measurement is universal on at least ∼3k=4
qubits. Practically, our protocol allows one to trade between
space and time resources in quantum computers and to
access deeper circuits than are possible with existing
MBQC schemes using a given number of measurements,
all while requiring only spatially uniform nearest-neighbor
and single-qubit operations in a 1D architecture.
From another perspective, the dual-unitary circuits we

consider can be viewed as “infinite-order entanglers” for
symmetry-protected topological (SPT) orders [49–52].
That is, after k time steps, the resulting state possesses

1D SPTorder with a symmetry group and edge degeneracy
that grow unboundedly with k. On one hand, this shows
that certain dual-unitary circuits provide a new way to
generate infinite families of SPT order, which have proven
very useful to the study of SPT order in the past [53–61].
On the other hand, this insight connects our results to the
large literature on using SPT phases as resources for
MBQC [35–40,62–71]. In particular, it allows us to directly
apply previous results [37,39,65] to show that our MBQC
schemes work not only using the fixed-point states gen-
erated by the dual-unitary evolution, but also any generic
deformations thereof preserving certain symmetries.
Resource states from a dual-unitary circuit.—We con-

sider N qubits arranged on a line, denote Pauli operators
including the identity as I, X, Y, Z, and write the eigenbasis
of Z as j0i; j1i. Dynamics are generated by the kicked Ising
model, which is defined by the Floquet evolution

UF¼e−ih
P

N
i¼1

Yie−iHIsingτ, where HIsing ¼ J
P

N−1
i¼1 ZiZiþ1þ

g
P

N
i¼1 Zi [72]. We fix τ ¼ 1 and J; h ¼ �π=4 since the

evolution generated by UF is dual-unitary only for these
parameters. The parameter g is chosen such that the
evolution is also Clifford, meaning that any product of
Pauli operators is mapped to another product of Pauli
operators under conjugation by UF. This important prop-
erty will allow us compensate for random measurement
outcomes and achieve deterministic computation. This
property holds for g ¼ 0 and g ¼ �π=4, but we focus
on the latter and leave the former to the discussions at the
end. UF is then equivalent to the quantum circuit (up to
irrelevant phases and Pauli operators [75]),

TN ¼
YN
i¼1

HiSi
YN−1

i¼1

CZi;iþ1; ð1Þ

where we define the gates CZ ¼ I − 2j11ih11j, H ¼
½ðX þ ZÞ= ffiffiffi

2
p � and S ¼ ffiffiffiffi

Z
p ¼ diagð1; iÞ. We note that

the single-qubit gate HS cyclically permutes the three
Pauli operators under conjugation.
The resource states jψki are defined by acting on an

initial product state with the unitary circuit k times,
jψki ¼ Tk

Nð⊗N
i¼1 jþiÞ, where jþi ¼ ½ðj0i þ j1iÞ= ffiffiffi

2
p �.

These states are pictured in Fig. 1. Since TN is a
Clifford circuit, the states jψki are stabilizer states that

are uniquely defined by the equations SðkÞi jψki ¼ jψki,
where SðkÞi ¼ Tk

NXiT
k†
N . Equivalently, jψki is the unique

ground state of the gapped Hamiltonian Hk ¼ −
P

i S
ðkÞ
i .

For example, we have Sð1Þi ¼ Xi−1YiXiþ1 (with modifica-
tions near the ends of the chain), so jψ1i is the 1D cluster
state [26]. The 1D cluster state is a prototypical resource for
MBQC on a single encoded qubit, and also a simple
example of 1D SPT order [76].
Now we will describe a protocol for MBQC using the

states jψki as resource states. The equivalence of our

FIG. 1. Graphical depiction of Eq. (2) for k ¼ 4. The red (blue)
rounded box indicates one application of TN (Tk). In accordance
with the convention of quantum circuits, the order of matrix
multiplication in the right figure is from left to right. The left side
describes the preparation and measurement of the resource state
jψki, while the right side is the simulated universal quantum
circuit.
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measurement-based scheme to the traditional unitary gate-
based model will follow directly from the dual unitarity of
Tk
N . In our protocol, each qubit in the chain is measured

sequentially from left to right in a rotated basis fj0θi; j1θig
defined by an angle θ where jsθi ¼ e−iθXjsi. The output of
the quantum computation is determined by the probabilities
of obtaining different measurement outcomes, which,
according to the Born rule, are given by the inner products
jhsθ11 ;…; sθNN jψkij2, where each si ¼ 0, 1. To determine
these overlaps, we utilize the dual-unitary property of the
circuit Tk

N to read it “sideways,” which gives [77]

hsθ11 ;…; sθNN jψki ¼ hRjUðθN; sNÞ…Uðθ1; s1ÞjLi; ð2Þ

where we have defined the vectors jLi ¼⊗k
i¼1 jþii and

jRi ¼⊗k
i¼1 j0ii and the unitary operator Uðθ; sÞ ¼

TkeiθZ1Zs
1, where Tk is as defined in Eq. (1). This equation,

which is depicted in Fig. 1, is the first step in proving
universality of our protocol. It shows that the statistics
arising from measuring the resource states jψki can be
reinterpreted as describing a process in which k “virtual”
qubits are initialized in a state jLi, evolved by unitaries
Uðθ; sÞ, and then projected onto a final state jRi. The
evolution during this process depends on the choice of
measurement bases defined by the angles θi. Thus, the dual
unitarity provides a natural perspective on how measure-
ment of physical qubits translates into controllable unitary
evolution of the virtual qubits [84].
The virtual computation described by the right-hand side

of Eq. (2) currently has two issues. First, the unitary
evolution depends on the measurement outcomes si, which
are random. Second, the computation ends with a projec-
tion onto a fixed state jRi rather than a full projective
measurement. It turns out that both issues are solved by
adjusting future measurement bases depending on past
measurement outcomes (as is common to all schemes of
MBQC). We describe this in detail in Supplemental
Material (SM) [77], and for the rest of the main text we
always assume the outcome j0θi is obtained. In short, the
effect of obtaining the “wrong” measurement outcome j1θi
is to insert the byproduct operator Z1 at that step in the
computation. To deal with this unwanted operator, we
imagine pushing it through to the end of the circuit.
Importantly, because Tk is Clifford, Z1 will remain a
product of Pauli operators as it is pushed through each
layer of the circuit, which therefore only has two controlled
effects. First, depending on where the wrong outcome
occurred, a subset of the rotation angles at later times will
be flipped, θi → −θi. This can be counteracted by flipping
θi in the corresponding bases of future measurements.
Second, once the byproduct operator is pushed to the end, it
acts on jRi in such a way that jRi gets mapped onto a
random product state in the j0=1i basis depending on the
complete history of all measurement outcomes. Therefore,
when accounting for the random measurement outcomes,

repeating the protocol many times while recording the
measurement statistics jhsθ11 ;…; sθNN jψkij2 allows us to
garner the measurement statistics jhi1;…; ikjϕoutij2 for
all jiji ¼ j0=1i, where jϕouti ¼ UðθNÞ…Uðθ1ÞjLi with
UðθiÞ ¼ TkeiθiZ1 is the output state of the virtual compu-
tation. This constitutes a complete scheme of quantum
computation, where we initialize a quantum register in a
known state jLi, perform deterministic unitary evolution on
it, and read out the final output state in a fixed basis.
Determining the set of gates.—What remains is to

determine which unitary circuits can be implemented using
products of the unitariesUðθÞ. To understand these circuits,
we make the important observation that, since Tk is unitary
and Clifford, it has a finite period, meaning there is a
smallest integer pk such that Tpk

k ∝ I. The periods pk for
k ≤ 7 are given in Fig. 2. Now, consider breaking the
computation into blocks of length pk. The net effect of
measuring all spins in one block is

Ypk−1

l¼0

UðθlÞ ¼
Ypk−1

l¼0

TkeiθlZ1 ∝
Ypk−1

l¼0

eiθlOkðlÞ; ð3Þ

FIG. 2. Top: depiction of the operators OkðlÞ up to a phase for
k ¼ 7, 31 with respective periods pk ¼ 24, 96. Each column
indexed by l represents one product of Pauli operators acting on
the k virtual qubits, which are indexed by i ¼ 1;…; k. The
operator in one column is obtained from the previous via the local
rules in Eq. (4). The string of I and Z at the top indicates the
repeating pattern found in the symmetry of jψki for k ¼ 7, where
Z coincides with X and Y operators in the top row of the space-
time operator evolution. Bottom: numerically determined com-
putational power for small k. The lower row lists Lie algebras
with dimensions consistent with the numerical calculations,
where suðnÞ, soðnÞ, and spðnÞ denote the algebras of special
unitary, orthogonal, and symplectic matrices.
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where OkðlÞ ≔ Tl†
k Z1Tl

k . Therefore, the elementary gates
in our scheme are k-qubit rotations generated by the
operators OkðlÞ, which are determined by the space-time
evolution of Z1 under conjugation by T

†
k a number l times.

Again, as Tk is a Clifford circuit, these operators will all be
k-qubit Pauli operators. The evolution is determined (up to
a possible factor of −1) from the following local rules:

T†
kXiTk ¼Zi; T†

kZiTk ¼

8><
>:

Y1Z2 i¼ 1

Zi−1YiZiþ1 1< i<k

Zk−1Yk i¼ k

: ð4Þ

The space-time evolution of Pauli operators starting with
Z1 subject to these rules generates a fractal pattern that is
pictured in Fig. 2. Let Ok denote the set of all OkðlÞ
for l ¼ 0;…; pk − 1. For a small angles dθ, we
have eidθPeidθQ ≈ eidθðPþQÞ and eidθPeidθQe−idθPe−idθQ≈
e−ðdθÞ2½P;Q�, where ½P;Q� ¼ PQ −QP for P;Q∈Ok.
Therefore, by concatenating our elementary gates, we
can perform any rotation of the form R ¼ eiA where A
is an element of the Lie algebra Ak generated by Ok using
commutators. The set of such rotations is our set of
implementable unitaries.
Ideally, we desire Ak ¼ suð2kÞ, i.e., Ak contains all

22k − 1 Pauli operators acting on k qubits, which gives
universal computation on all k virtual qubits. At first
glance, this seems impossible, since the only operations
we use are Z rotations of the first qubit and the application
of a fixed Tk to all qubits, so it is not clear how to
selectively control a generic target qubit. However, we find
that the persistent application of Tk allows us to convert
temporal control into spatial control. A similar concept was
used in Ref. [86]. Indeed, looking at Fig. 2, we see that each
operator OkðlÞ acts differently on different qubits. By
judiciously combining these operators, we can selectively
control all virtual qubits.
As a first investigation into the form of Ak, we numeri-

cally generate the operators in Ok for small k and
repeatedly take commutators until no new operators are
found. This is shown in Fig. 2 for k ≤ 7. In each case, we
get an algebra with a dimension that scales exponentially
with the number of qubits, but we only get the full suð2kÞ in
certain cases. While the full algebra Ak appears to depend
on k in a complicated manner, we are able to prove the
following lower bound on computational power:
Theorem 1.—For every k ≥ 3, let m ¼ bðkþ 1Þ=4c.

Then, the set of gates implementable in MBQC using
the state jψki as a resource is universal on at least 3m
qubits. That is, suð23mÞ ⊂ Ak. If we further have k ¼
2r − 1 for some r ≥ 0, then the universal circuit model is
guaranteed to be implemented with at most a linear over-
head in k.
Therein, bxc denotes the largest integer less than or equal

to x. This is the main result of this Letter, as it means that

the resource states jψki can be used for universal MBQC on
∼3k=4 qubits. The proof of this universality, given in SM
[77], uses the self-similar fractal nature of the space-time
evolution of the operators OkðlÞ. Namely, we make use of
repeating structures in this evolution indicated in Fig. 2 to
extend results for small values of k to arbitrarily large
values of k. To prove efficiency, we show that the period
pk—which essentially sets a clock speed for our compu-
tation since each elementary gate eiθOkðlÞ can only be
applied once per period—is linear in k when k ¼ 2r − 1.
Furthermore, the elementary gates in our scheme, namely
the rotations eiθOkðlÞ, differ significantly from the standard
gate set consisting of single-qubit rotations and nearest-
neighbor two-qubit gates. Nevertheless, the proof of
Theorem 1 shows how to efficiently construct any rotation
of the form eiθP for an arbitrary Pauli string P—which
includes the standard gate set—using a number of elemen-
tary gates eiθOkðlÞ that is at most linear in k, such that our
protocol can simulate the universal circuit model with
polynomial overhead. While reducing to the standard gate
set is convenient to implement existing quantum algo-
rithms, we note that it does not take full advantage of our
gate set, which, for example, also contains rotations that
generate long-range entanglement in a single step (i.e.,
those for which OkðlÞ is supported on a large fraction of
the virtual qubits).
Computational phases of matter.—We have described a

universal scheme of MBQC using the states jψki as
resource states. It turns out that these states can also be
interpreted as fixed-point states of certain 1D symmetry-
protected topological (SPT) phases of matter [49–51]. To
describe the SPT order, we first need to identify the
symmetries. For this, we notice that Eq. (2) defines a
matrix product state representation of the wave function
[87] from which the symmetries can be straightforwardly
determined (see SM [77]). We find that the symmetry group
is generated by operators that form a string of Z and I that
repeats along the chain with period pk, similar to so-called
spatially modulated symmetries [88,89]. For k ¼ 1, the
symmetry has the form ZZIZZI… that repeats with a unit
cell of size p1 ¼ 3. In general, the repeating pattern mirrors
the top row of the space-time evolution of the operators
OkðlÞ, such that the symmetry is also deeply linked to the
dual-unitary structure; see Fig. 2. These symmetry oper-
ators and their translations generate the total symmetry
group Z2k

2 .
The same matrix product state analysis also reveals the

nature of the SPT order of the state jψki under the Z2k
2

symmetry. We find that the protected zero-energy edge
mode that is characteristic of the SPT order has dimension
2k, which is the maximal possible value for this sym-
metry group. Because of this, the general results of
Refs. [37,39,65] can be directly applied to our context to
show that the MBQC protocol we have developed for the
fixed-point states jψki works, with some modification, for
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any resource state coming from the same SPT phase.
Therefore, the ability to perform universal MBQC using
single-site measurements is a property not only of the fine-
tuned states jψki, but also of the entire SPT phases of
matter in which they reside.
Discussion.—We have defined a protocol, enabled by

dual unitarity, to generate a new class of universal resource
states for MBQC in a one-dimensional architecture using
spatially uniform controls. Practically, our protocol repre-
sents a new way to embed quantum circuits in space-time.
Namely, while the process implemented “in the lab”
involves a circuit of depth k on N physical qubits, the
simulated circuit has depth N and k qubits (up to constant
factors) as in Fig. 1. This allows one to trade between qubit
number and coherence time in quantum computers, thereby
making optimal use of available resources. Furthermore,
simulating a depth-N circuit on k qubits using typical
MBQC protocols would require measuring Nk physical
qubits [26], so our resource states can access deeper circuits
using the same number of measurements.
From a fundamental standpoint, our results show that the

dual-unitary circuit Tk
N can also be interpreted as an

“infinite-order SPT entangler.” Namely, consecutive appli-
cations of TN to an initial product state generates an infinite
sequence of 1D SPT orders with exponentially growing
edge modes (when N → ∞). While all previously defined
circuits that generate SPT phases (i) have finite order such
that Up ¼ I for some p independent of N and (ii) generate
phases with a fixed symmetry group G [52], our circuit TN
(i) has infinite order and (ii) generates SPT phases with a
growing symmetry groupZ2k

2 . Our results therefore suggest
the existence of a deep relationship between dual-unitary
circuits, infinite-order SPT entanglers, and resource states
for MBQC. We give a second example of this relationship
in SM [77] by replacing HS → H in TN , corresponding to
g ¼ 0 in the kicked Ising model. This circuit is also dual-
unitary and generates an infinite family of 1D SPT ordered
states that can be used for MBQC on k virtual qubits.
However, in this case, the states are not universal resources
since the set of gates implementable in MBQC generates an
efficiently classically simulable matchgate circuit. This
behavior is likely fine-tuned, and we give a more general
study in SM [77]—where either H or HS is applied
depending on the spatial location and time step—which
suggests the conjecture that generic dual-unitary Clifford
circuits will generate resources for universal MBQC. We
leave a deeper exploration into the relationships between
these three concepts, as well as the induced classification of
MBQC resource states, for future work.
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