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Quantum nonlocality, pioneered in Bell’s seminal work and subsequently verified through a series
of experiments, has drawn substantial attention due to its practical applications in various protocols.
Evaluating and comparing the extent of nonlocality within distinct quantum correlations holds significant
practical relevance. Within the resource theoretic framework this can be achieved by assessing the
interconversion rate among different nonlocal correlations under free local operations and shared
randomness. In this study we, however, present instances of quantum nonlocal correlations that are
incomparable in the strongest sense. Specifically, when starting with an arbitrary many copies of one
nonlocal correlation, it becomes impossible to obtain even a single copy of the other correlation, and this
incomparability holds in both directions. Such incomparable quantum correlations can be obtained even in
the simplest Bell scenario, which involves two parties, each having two dichotomic measurements setups.
Notably, there exist an uncountable number of such incomparable correlations. Our result challenges the
notion of a “unique gold coin,” often referred to as the “maximally resourceful state,”within the framework
of the resource theory of quantum nonlocality. To this end, we provide examples of isotropic quantum
correlations that cannot be distilled up to the Tsirelson point, and thus partially answer a long-standing
open question in nonlocality distillation.
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Introduction.—J. S. Bell’s ground-breaking work in
1964 represented one of the most significant departures
from classical worldviews within the realm of quantum
physics [1]. His work challenged the deeply ingrained
concept of “local causality” [2–4]. Bell devised an elegant
method to establish the nonlocal behavior of input-output
correlations obtained in experiments involving multipartite
quantum systems. Subsequently, several milestone experi-
ments with entangled photons provided empirical evidence
for quantum nonlocality [5–9], thereby settling a long-
standing debate on the foundations of quantum physics
[10–12]. With the advent of quantum information science,
quantum nonlocality has emerged as a valuable resource for
various device-independent protocols [13–24].
Quantifying the extent of nonlocality in correlations

obtained from entangled quantum systems, thus, holds
significant practical importance. The framework of quan-
tum resource theories (QRTs) provides an elegant approach
to investigate this question [25]. A QRT begins by
identifying a set of constrained operations called “free
operations” and a subset of states referred to as “free
states.” States falling outside this category are called
“resourceful states” or simply “resources.” A quintessential

example of a QRT is the theory of quantum entanglement,
where multipartite systems prepared in nonseparable states
are considered resources under local operation and classical
communication (LOCC) [26]. While exploring nonlocality,
the focus shifts from multipartite quantum states to multi-
partite input-output correlations among distant parties.
Of particular interest is the broad spectrum of correlations
known as no-signaling (NS) correlations, where communi-
cation between the parties is strictly prohibited. Notably,
within the realm of classical physics, correlations adhere to a
more restrictive framework known as Bell-local correlations,
which are encompassed within the NS set. Correlations that
transcend this local boundary are termed nonlocal correla-
tions. Remarkably, entangled quantum states are capable of
producing such nonlocal correlations, which serve as crucial
resources for various protocols [4]. Within the framework
of resource theory, nonlocality is regarded as a resource,
subject to the constraints of free operations comprising local
operations and shared randomness (LOSR) [27,28]. More
generally the set of free operations consists of wirings and
classical communication prior to the inputs (WCCPI) [29].
Once the free operations, free states, and resourceful

states are identified in a resource theory, the next crucial
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question is to compare the resources in different states.
One pertinent approach is to determine the optimal rates at
which these states can be successfully interconverted under
free operations. In this study, we investigate the concept
of resource interconvertibility among quantum nonlocal
correlations. First, we observe that even in the simplest
Bell scenario, involving two spatially separated parties,
each conducting two dichotomic measurements, there
are uncountably many quantum nonlocal correlations that
cannot be freely converted into each other at the single-
copy level, highlighting the incomparability of these
resources. We then investigate this question by considering
asymptotically many copies of these resources. In doing so,
we establish an even more striking result. We prove that
there exist quantum nonlocal correlations that are inequi-
valent in the strongest sense, as they are not interconvertible
even under asymptotic manipulation. More particularly,
there are quantum correlations Pq and P0

q such that, starting
with an arbitrary number of copies of Pq, it is not possible
to obtain even a single copy of P0

q under the free operation
of LOSR, and vice versa. This finding distinguishes the
theory of quantum nonlocality from the theory of quantum
entanglement. In the case of bipartite entanglement, asymp-
totic state interconversion gives rise to the concepts of
entanglement distillation and entanglement cost [30]
(see also [31]). Consequently, the notion of a maximally
entangled state, a “unique gold coin,” emerges. Our result,
however, establishes that quantum nonlocal correlations
lack the concept of such a unique gold coin, thereby
resulting significant implication in the study of nonlocality
distillation [32–38].
Preliminaries.—The nmk-Bell scenario consists of n

distant parties, each performing m different k-outcome
measurements on their respective subsystems. By repeating
the experiments many times they produce a joint input-
output correlation P ≔ fpða⃗jx⃗Þ≡ pða1;…; anjx1;…; xnÞj
xi ∈X i; ai ∈Aig, where jX ij ¼ m, jAij ¼ k, ∀ i∈
f1; � � � ng. The joint probabilities satisfy the no-signaling
(NS) conditions that prohibit instantaneous information
transfer among the distant parties. Set of all NS correlations
forms a convex polytope N embedded in some RN

(the value of N depends on n, m, and k). A correlation
is called “Bell local” if it can be factorized as pða⃗jx⃗Þ ¼R
Λ dλpðλÞΠn

i¼1pðaijxi; λÞ, where λ∈Λ is a classical vari-
able shared among the parties, and pðλÞ is a probability
density function over Λ [4]. The set of local correlations
forms a proper subpolytope L. A correlation is called
quantum if it allows a quantum realization, i.e., pða⃗jx⃗Þ ¼
Tr½ð⊗n

i¼1 π
ai
xi Þjψihψ j�, where jψi∈ ⊗n

i¼1 Hi and πaixi ∈
PðHiÞ with

P
ai π

ai
xi ¼ IHi

. Dimensions of the Hilbert
spaces are finite, i.e., dimðHiÞ < ∞, and Pð⋆Þ denotes
the sets of positive operators acting on the respective
Hilbert spaces (see [39] for other possible mathematical
models for physical correlations). Set of all quantum
correlations Q forms a convex set lying strictly in between

the local and NS polytopes, i.e., L ⊊ Q ⊊ N . For the
222-Bell scenario the polytopeN , embedded in R8, has 16
local deterministic vertices and 8 nonlocal vertices [40]:

Pαβγη
L ≡ fpðabjxyÞ ≔ δða;αx⊕βÞδðb;γy⊕ηÞg; ð1aÞ

Pαβγ
NL ≡ fpðabjxyÞ ≔ 1=2δða⊕b;xy⊕αx⊕βy⊕γÞg; ð1bÞ

with α; β; γ; η∈ f0; 1g, whereas the polytope L is the
convex hull of local deterministic vertices. The quantum
set Q forms a convex set with uncountably many
nonlocal extreme points, each having quantum realization
with two-qubit pure entangled state and local projective
measurements [41].
In a resource theory, two resources R1 and R2 will be

called equivalent, symbolized as R1 ∼ R2, if R2 can be
obtained from R1 under the free operations and the vice
versa. Collection of equivalent resources form a equivalent
class. On the other hand, R1≻R2 puts an ordering “R1 is
more resourceful than R2” in the sense that R2 can be
obtained from R1 freely but not the other-way around.
Finally, R1≁R2 denotes that neither R2 can be freely
obtained from R1 nor R1 from R2. In such a case resources
R1 and R2 are incomparable, and hence they are treated as
inequivalent resources. For instance, in resource theory
of nonlocality, correlations in L are free states, while those
lying in N nL are the resources [42]. For the 222 scenario,
the extremal nonlocal correlations of Eq. (1b) form an
equivalence class as they are interconvertible under local
reversible operations [40].
Results.—In this work, we consider a physically moti-

vated variant of nonlocality theory which we call the
resource theory of quantum nonlocality (RTQN). All the
correlations allowed in this theory are quantum realizable,
i.e., the resources belong to the set QnL. Interestingly,
there are extreme points of Q that are inequivalent under
one-copy manipulation—in fact, there are uncountably
many of them (see Proposition 28 in [43]). Equivalent
classes of these extreme correlations are discussed in the
Supplemental Material [44]. In a generic resource theory,
it is quite possible that a resource R2 cannot be obtained
from one copy of another resource R1, but can be obtained
from its n copies. The symbol R⊗n

1 ↛ R2 denotes that a
single copy of R2 cannot be obtained from n copy of R1

under the allowed free operations. This leads to a notion of
the strongest form of inequivalence, namely, the asymp-
totically inequivalence between two resources:

R1 ≁
asy

R2; wheneverR⊗n
1 ↛R2&R⊗n

2 ↛R1; ∀ n∈N: ð2Þ

For instance, in bipartite entanglement theory, single-copy
interconvertibility of pure entangled state is completely
determined through majorization criteria [48]. While there
are pure entangled states that are incomparable according to
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this criteria, in asymptotic setup all of them become
comparable [30]. Consequently, the notion of maximally
entangled state arises, which for ðCdÞ⊗2 system reads as
jϕþ

d i ≔ ðPd−1
i¼0 jiiiÞ=

ffiffiffi
d

p
, where fjiigd−1i¼0 is the computa-

tional basis of Cd. In nonlocality scenario, a large class of
nm2 NS correlations can be simulated with multiple copies
of the 222 nonlocal vertex, which otherwise are not
possible with a single copy [49–51].
Therefore, naturally the question arises whether an

ordering relation can be reestablished among the extremal
quantum correlations under asymptotic manipulation that
otherwise are incomparable at the single-copy level. In this
work we will, however, show that there are quantum
nonlocal correlations that are incomparable even in asymp-
totic setup. To this aim, we first consider two specific
nonlocal extreme points—the Tsirelson correlation PT that
saturates the maximum quantum value 2

ffiffiffi
2

p
of the Clauser-

Horne-Shimony-Holt (CHSH) expression CHSH ≔
hX0Y0i þ hX0Y1i þ hX1Y0i − hX1Y1i [52,53], and the
Hardy correlation PH that yields the maximum quantum
success ð5 ffiffiffi

5
p

−11Þ=2≈0.09 for the Hardy’s argument [54].
Quantum realizations for the correlations PT and PH are
given by

PT ¼Q
(
jϕþ

2 i ¼ ðj00i þ j11iÞ= ffiffiffi
2

p
;X0 ¼ σz;

X1 ¼ σx;Yj ¼ ðσz þ ð−1ÞjσxÞ=
ffiffiffi
2

p
)
; ð3aÞ

PH ¼Q
(
jψHi ¼ aðj01i þ j10iÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2a2

p
j11i;

K0 ¼ σz; K1 ¼ jαihαj − jα⊥ihα⊥j

)
; ð3bÞ

where jαi ≔ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2a2

p
j0i − aj1iÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, a ≔

ðð5 − ffiffiffi
3

p Þ=2Þ1=2, and K ∈ fX; Yg. To prove the asymptotic
inequivalence of PT and PH we start by recalling a simple
mathematical Lemma from [55] (for the sake of completeness
we discuss the proof in Supplemental Material [44]).
Lemma 1.—ðX ⊗ YÞjϕ̃þ

d i ¼ ðId ⊗ YXTÞjϕ̃þ
d i, where

X; Y ∈BðCdÞ and Id is the identity operator on Cd.
Here, jψ̃i denotes the unnormalized vector corresponds

to the state jψi, Bð⋆Þ denotes the set of bounded operators
acting on the corresponding Hilbert space, and “T” denotes
transposition in computational basis. We now proceed to
prove our first no-go result on multicopy manipulation of
quantum nonlocal correlations.
Proposition 1.—Even a single copy of the correlation

PH ∈Q cannot be obtained from arbitrary many copies
of the correlation PT ∈Q under LOSR, i.e., P⊗n

T ↛ PH,∀ n∈N.
Proof.—Note that n copies of the correlation PT can be

obtained from the state jϕþ
2 i⊗n ≡ jϕþ

2ni. On the other hand,
any 222 correlation obtained through LOSR protocols
applied on P⊗n

T can also be obtained by performing two
dichotomic measurements on the each local part of the state
jϕþ

2ni [56,57]. Therefore, to prove the present proposition,

it is sufficient to show that the state jϕþ
2 i⊗n does not exhibit

Hardy’s nonlocality. Furthermore, we can restrict ourselves
to projective measurements, since a dichotomic POVM
can always be represent as probabilistic mixture of pro-
jective measurements [41]. Recall that the Hardy non-
locality argument reads as [54]

pð00jX0Y0Þ ¼ q > 0;

pð00jX0Y1Þ ¼ pð00jX1Y0Þ ¼ pð11jX1Y1Þ ¼ 0:

Applying Lemma 1 on ϕþ
2n ≡ jϕþ

2nihϕþ
2n j, we have

pðabjXiYjÞ ¼ Tr½fI2n ⊗ Yb
j ðXa

i ÞTgϕþ
2n � ≈ TrðYb

j X̄
a
i Þ;

where, Xa
i ðYb

j Þ be the projector corresponding to the
outcome aðbÞ of measurement XiðYjÞ, X̄a

i ≔ ðXa
i ÞT,

i; j∈ f0; 1g, and “≈” denotes the unnormalized probability
value. Plugging these expressions in Hardy’s argument
we get

TrðY0
0X̄

0
0Þ > 0 ⇒ SuppðY0

0Þ ∩ SuppðX̄0
0Þ ≠ 0; ð4aÞ

TrðY0
1X̄

0
0Þ ¼ 0 ⇒ SuppðX̄0

0Þ ⊆ SuppðY1
1Þ; ð4bÞ

TrðY0
0X̄

0
1Þ ¼ 0 ⇒ SuppðX̄0

1Þ ⊆ SuppðY1
0Þ; ð4cÞ

TrðY1
1X̄

1
1Þ ¼ 0 ⇒ SuppðY1

1Þ ⊆ SuppðX̄0
1Þ; ð4dÞ

where, SuppðZÞ⊆C2n denotes the support of the projector Z.
Equations (4b), (4c), and (4d) imply SuppðX̄0

0Þ ⊆ SuppðY1
0Þ.

On the other hand, Y0 being a projective measurement
implies SuppðY1

0Þ ∩ SuppðY0
0Þ ¼ 0, which thus forbids the

condition (4a) to be held true. This completes the proof. ▪
It is important to note that Proposition 1 holds true even

if the correlation PH ∈Q is replaced by other Hardy’s
correlations Ph ∈Q arising from other two-qubit non-
maximally entangled states [58–60], where the success
probability is less than the quantum optimal value, i.e.,
0 < phð00jX0Y0Þ < pHð00jX0Y0Þ ¼ ð5 ffiffiffi

5
p

− 11Þ=2. We
now proceed to address the reverse way interconversion
of the resources appeared in Proposition 1. Furthermore, it
is also important to note that this Proposition as well as the
other results obtained in this work also holds true if we
consider the set of more general free operations WCCPI,
instead of LOSR (argument provided in [44]).
Proposition 2.—Even a single copy of the correlation

PT ∈Q cannot be obtained from arbitrary many copies
of the correlation PH ∈Q under LOSR, i.e., P⊗n

H ↛ PT ,∀ n∈N.
Proof.—The correlation PH has the quantum realization

of Eq. (3b). Therefore n copy of the correlation P⊗n
H can be

obtained from the quantum state jψHi⊗n
AB ∈ ðC2

A ⊗ C2
BÞ⊗n.

Since any 222 correlation obtained through LOSR protocol
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on P⊗n
H can be obtained by performing two dichotomic

measurements on each part of the state jψHi⊗n
AB , and since

the correlation PT self-test the quantum state jϕþ
2 i [61],

therefore contrary to the claim of the Proposition if we
assume P⊗n

H → PT , then we must have

ΦA ⊗ ΦBðjψHi⊗n
ABÞ ¼ jϕþ

2 iA1B1
jζiA2B2

; ð5Þ

where ΦD∶ ðC2Þ⊗n
D ↦ C2

D1
⊗ HD2

be the isometric maps
for D∈ fA;Bg, which can be thought as unitary by
incorporating ancillary systems, i.e.,

UA ⊗ UBðjψHi⊗n
AB jηiA0 jηiB0 Þ ¼ jϕþ

2 iA1B1
jζiA2B2

; ð6Þ

where, the local ancillary states jηiA0 & jηiB0 are taken to
make the input and output Hilbert spaces to be of same
dimension. An immediate consequence is that the eigen-
values (EV) of the reduced part of the states on the left and
right sides of Eq. (6) must be same, i.e.,

EVfðρψHÞ⊗n
A ⊗ jηiA0 hηjg≡ EV

n
ðI2ÞA1

=2 ⊗ ρζA2

o
; ð7Þ

where ρχA denotes A subsystem’s marginal state of the
composite state jχiAB. Let Schmidt coefficients of the state
jψHi be f ffiffiffi

s
p

;
ffiffiffiffiffiffiffiffiffiffi
1 − s

p g. The EVs on the left-hand part of
Eq. (7) are

EVfLg≡ fsn; sðn−1Þð1 − sÞ;…; ð1 − sÞn; 0;…; 0g:

On the other hand, for the right-hand part of Eq. (7) the
nonzero eigenvalues are evenly degenerate. Therefore, a
necessary condition to hold Eq. (7) is that sn¼ sðn−jÞð1−sÞj
for some j∈ f1;…; ng. However, this implies s ¼ 1=2,
a contradiction, and hence completes the proof. ▪
Importantly, Proposition 2 holds true for any pairs

of quantum correlations Pϕþ
2
, Pψ , where the correlation

Pϕþ
2
self-tests the state jϕþ

2 i and the correlations Pψ allow
quantum realization with two-qubit nonmaximally
entangled states jψi, not necessarily self-tests the state
jψi and neither being an extremal quantum correlation; and
thus we have P⊗n

ψ ↛ Pϕþ
2
, ∀ n∈N. While examples of Pψ

can be constructed immediately, Pϕþ
2
are the Tsirel’son-

Landau-Masanes (TLM) boundary points of 222 correla-
tions [62–64]. Proceeding further, Proposition 1 and
Proposition 2 lead us to the following theorem.
Theorem 1.—The quantum correlations PT and PH are

incomparable in the strongest sense, i.e., PT ≁
asy

PH.

A comparative discussion with entanglement theory is
worthwhile at this point. For the bipartite case, all the pure
entangled states can be compared under LOCC. In fact, the
von Neumann entropy of the reduced part of such states
uniquely quantifies their entanglement. Theorem 1, in this

sense, distinguishes RTQN from the theory of quantum
entanglement. Importantly, the existence of bound
entangled states with negative partial transpose (NPT) will
lead to bipartite mixed entangled states that are incompa-
rable in the strongest sense [65]. However, the existence of
such strongly incomparable pairs of mixed entangled states
does not necessitate the existence of bound NPT states.
Two entangled states with positive partial transposition
might also serve as an example. Albeit we do not know
example of any such pair of states. One may wonder
whether the inequivalence established in Theorem 1 is
specific to the pair of correlations PT and PH, and then
having a gold coin (other than PT and PH) cannot be ruled
out immediately. Nevertheless, our next result shows that
there are uncountably many such inequivalent pairs of
extreme nonlocal correlations and, consequently, lead us to
conclude about the nonexistence of any gold-coin resource.
Theorem 2.—All the pairs of quantum correlations Pϕþ

2
,

Pst
ψ are incomparable in the strongest sense, i.e., Pϕþ

2
≁
asy

Pst
ψ .

Here Pϕþ’s self-test the state jϕþ
2 i and Pst

ψ ’s self-test the
two-qubit nonmaximally entangled states jψi. The proof
of this theorem is similar to Proposition 2. For the sake
of completeness we discuss the proof in Supplemental
Material [44].
Distilling nonlocality.—In nonlocality distillation, the

goal is to obtain highly nonlocal correlations by starting
with multiple copies of weakly nonlocal systems [32–38].
As a consequence of the above theorems, we will now
derive a nontrivial restriction on the asymptotic distillation
of nonlocal quantum correlations.
Corollary 1.—Consider the correlations PðλÞ

x ; PðλÞ
y ∈Q,

such that PðλÞ
x ≔ λPxþð1−λÞL and PðλÞ

y ≔ λPy þ ð1 − λÞL
with x∈X ≡ fH;ψg, y∈Y ≡ fTg, and λ∈ ð0; 1�. Starting
with arbitrary many copies of the correlation, neither PðλÞ

x

can be distilled to Py nor PðλÞ
y can be distilled to Px.

Proof.—N copies of the correlation ½PðλÞ
x �⊗N reads as

½PðλÞ
x �⊗N ¼ P

N
k¼0 λ

kð1 − λÞðN−kÞ × ΠkfP⊗k
x ⊗ L⊗ðN−kÞg,

where ΠkfP⊗k
x ⊗ L⊗ðN−kÞg denotes all possible permuta-

tions of k copies of Px and (N − k) copies of L. Note that,
sharing any local box is allowed as free operation within
the resource theory of nonlocal. On the other hand,
Theorems 1 and 2 imply Px ≁

asy
Py, ∀ x∈X and y∈Y.

Finally, noting that the similar decomposition also holds for

½PðλÞ
y �⊗N we thus establish the claim. ▪
Consider the class of 222 isotropic correlations

defined as

PRηðabjxyÞ ≔
� ð1þ ηÞ=4; if a ⊕ b ¼ xy

ð1 − ηÞ=4; otherwise:

For 0 ≤ η ≤ 1 the correlations belong to the set N , for
0 ≤ η ≤ 1=

ffiffiffi
2

p
they belong to Q, and for 0 ≤ η ≤ 1=2 they
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belong to L. Furthermore, PR1=
ffiffi
2

p corresponds to the
Tsirelson’s PT . A well-known conjecture, regarding dis-
tillability of isotropic correlations is that from arbitrary
many copies of PRη1 it is not possible to distill PRη2 , where
1=2 < η1 < η2 < 1 [57]. While some partial results are
known with finite copy manipulation [66,67], recently the
authors in [35] have proved the conjecture for correlations
with 1=

ffiffiffi
2

p
< η1 < η2 < 1. Our next theorem establishes a

nontrivial result to this direction with isotropic quantum
nonlocal correlations.
Theorem 3.—There exist isotropic quantum correlations

PRη, with η∈ ð1=2; 1= ffiffiffi
2

p Þ, that cannot be distilled up to
PT , even asymptotically.
Proof of the Theorem just follows from Corollary 1 and

the geometry of correlation space (see Fig. 1).
At this point, one may pose a different question. While

nonlocality distillation is typically motivated by the desired
resource one wishes to achieve, there might be protocols
that simultaneously distill fractions of different inequiva-
lent resources. In other words, the absence of a unique
“gold coin resource” does not immediately rule out the
existence of such a “gold protocol” (see the Supplemental
Material [44] for pictorial explanation). At present we do
not know any analytic method to tackle this question, and
hence leave this question for future research.
Discussions.—Establishing asymptotic inequivalence

among different types of quantum nonlocal correlations
carries significant practical implications. These correlations

are pivotal for various information-theoretic tasks. Our
Theorem 1 elucidates that if a specific quantum correlation
is indispensable for the flawless execution of a task, then the
same task may not be executed flawlessly even with numer-
ous copies of inequivalent quantum correlations. Instances
of such scenarios have been documented in zero-error and
reverse-zero-error communication scenarios [68–70], as well
as in Bayesian game scenarios [24]. Consequently, when
deriving nonlocal correlations from entangled quantum
states for these tasks, it is imperative to perform the
appropriate local measurements on the given state.
It is crucial to highlight that in our investigation, we have

presumed that both the quantum state and measurement
devices are predetermined, thereby resulting in nonlocal
correlations that can be subsequently altered through the
free operation of Local Operations and Shared Resources
(LOSR). However, an alternative scenario can be envisaged,
wherein the local components of multiple copies of these
states are collectively manipulated by conducting measure-
ments in an entangled basis. This scenario gives rise to a
distinct resource theory, namely, the resource theory of
entanglement under LOSR. As we note that, in this broader
framework, it is possible, albeit probabilistically, to obtain a
correlationPT startingwithmany copies ofPH. However, we
are unaware of any protocol that yields the correlation PH
starting with many copies of PT . Asymptotic analysis of
probabilistic transformation among different nonlocal corre-
lations, in this broader framework, promises to shed light on
the intricate structures of quantum nonlocal correlations and
quantum entanglement. Finally, while our results establish
intricacies in multicopy manipulation of quantum nonlocal
correlations, the present study mainly deals with the 222
correlations. A similar analysis for multipartite correlations
with higher number of inputs and outputs is worth exploring.
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FIG. 1. According to Corollary 1, any quantum point obtained
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