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The Hamiltonian, which determines the evolution of a quantum system, is fundamental in quantum
physics. Therefore, it is crucial to implement high-precision generation and measurement of the
Hamiltonian in a practical quantum system. Here, we experimentally demonstrate ultrahigh-precision
Hamiltonian parameter estimation with a significant quantum advantage in a superconducting circuit via
sequential control. We first observe the commutation relation for noncommuting operations determined by
the system Hamiltonian, both with and without adding quantum control, verifying the commuting property
of controlled noncommuting operations. Based on this control-induced commuting property, we further
demonstrate Hamiltonian parameter estimation for polar and azimuth angles in superconducting circuits,
achieving ultrahigh metrological gains in measurement precision exceeding the standard quantum limit by
up to 16.0 and 16.1 dB at N ¼ 100, respectively.
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Quantum systems possessmagical and fascinating proper-
ties [1–4], such as quantum superposition, quantum entan-
glement, and quantum non-clonability, which provide basic
principles for the field of quantum information. Significant
progress has been made to promote the development of
various quantum information technologies [5–7]. Quantum
metrology [8–12], which utilizes quantum resources such as
quantum entanglement and coherence, can achieve higher
precision of measurements beyond the standard quantum
limit (SQL) and reaching the Heisenberg limit (HL) [13–16],
which is constrained by the Heisenberg uncertainty princi-
ple [17].
The enhanced precision of measurements in quantum

metrology holds promising applications in various fields of
modern physics, such as atomic clocks [18], spectroscopy
[19,20], magnetometry [21,22], gravitational wave detection
[23], dark matter detection [24], etc. Thus, extensive efforts
have been dedicated to improving the measurement preci-
sion. A direct way of this improvement can be achieved by
preparing theprobe as entangled states [14,25–32].However,
as the number of particles in entangled states increases, the
difficulty of their preparation and manipulation will dra-
matically escalate, and thus posing significant obstacles for
their practical applications in quantum metrology.
Alternatively, a single quantum mode without entangle-

ment has been explored to realize quantum metrological
advantages using nonclassical bosonic states [33,34], such

as number states [35,36] and superposition of Fock states
with maximum variance [37,38]. Although quantum met-
rological advantages with nonclassical bosonic states have
been demonstrated, the metrological gains are still limited
by the experimentally achievable photon numbers. Instead
of exploring high photon number states in a single bosonic
mode or the number of particles in entangled states, direct
sequential (or multiround) protocol [9,15,39,40] can also
achieve the HL. This protocol utilizes the coherence from
sequential evolution of a single probe as the quantum
resource, and thus greatly decreases the complexity of
quantum manipulations.
Hamiltonian parameter estimation (HPE) is essential for

quantum information as it is the basis of precise quantum
control. With the direct sequential protocol, HPE under
sequential commuting quantum dynamics is directly realiz-
able experimentally [15,40]. Meanwhile, in the case of HPE
under noncommuting quantum dynamics [41], by adding
quantum control, it can be transformed into effective com-
muting ones [42,43], thereby experimentally achieving the
HL in optical systems [44,45]. However, optical systems can
only simulate the evolution process and cannot directly
generate the Hamiltonian itself. Additionally, due to the
limitation of experimental implementation in optical sys-
tems, HPE has only been demonstrated in a small sequential
round with less metrological gains [44,45], lacking for
demonstration of stronger quantum metrological advantage.
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In this Letter, we experimentally demonstrate ultrahigh-
precision HPE under noncommuting dynamics in a super-
conducting transmon qubit via sequential control.
Transmon qubits [46–50] have the merits of long coherence
time, simple microwave control and high-fidelity readout,
thus providing an excellent platform for high-precision
measurement. The commuting property of the evolution
operator at different parameters is essential for achieving
HL quantum metrology with sequential control. We exper-
imentally demonstrate that the commuting property can be
achieved through the addition of designed controls for
noncommuting operations. We then implement repeated
controlled noncommuting dynamics for sensing polar and
azimuth angles in the system Hamiltonian, demonstrating
remarkable metrological gains surpassing the SQL by up to
16.0 and 16.1 dB at N ¼ 100 times of repeated dynamics,
respectively. We also demonstrate with numerical calcu-
lations the superiority of our controlled parallel protocol
compared to the traditional parallel methods employing
multiparticle entanglement. Our work demonstrates
stronger quantum advantages for HPE, and thus opens a
new avenue for superconducting circuits in the field of
quantum metrology.
We first introduce the HPE schemes. We assume a

generic Hamiltonian HðpÞ of a quantum system with a
specific parameter p and the aim is to find an optimal
method to precisely measure p. For N individual measure-
ments, the optimal variance δp is limited by the standard
quantum limit, i.e., δp ¼ ηS=

ffiffiffiffi
N

p
, with ηS a constant.

However, benefits from the quantum advantages of quan-
tum resources, such as quantum entanglement or quantum
coherence, one can go beyond the SQL to the HL which is
described by δp ¼ ηH=N, with ηH a constant [7,12]. To
achieve HL for HPE, as shown in Fig. 1(a), one can utilize
parallel protocol which entangles multicopy of the systems
[25–29], and then each copy evolves with an evolution
operator UðpÞ ¼ e−iHðpÞT governed by the Hamiltonian
HðpÞ through a time interval of T. The precision of this
measurement can approach the HL based on the advantages
of the entangled state. Alternatively, If the evolution
operator satisfies commutator ½UðpÞ; Uðp0Þ� ¼ 0, the
sequential protocol shown in Fig. 1(b) can also achieve
the HL. Unlike the parallel protocol, the sequential protocol
[9] converts the way of parallel operations on the entangled
state into repeated operations on a probe state.
However, for noncommuting dynamics with commutator

½UðpÞ; Uðp0Þ� ≠ 0 at different values of the parameter p, it
cannot directly achieve the HL for sensing parameter p
[41]. Notably, as depicted in Fig. 1(c), we demonstrate that
reaching the HL is feasible if a quantum control operator C
can be identified to transform the noncommuting dynamics
into the paired commuting dynamics for different values of
p [42]. Specifically, this transformation is characterized by
the following condition:

½CUðpÞ; CUðp0Þ� ¼ 0: ð1Þ

In this scenario, the additional control is uniform for all
parameter values of p, eliminating the need for adaptive
updating. To illustrate, we consider a qubit system as an
example, where controlled noncommuting dynamics can be
expressed as OðpÞ≡ CUðpÞ ¼ expð−ipΛ · σÞ, where Λ ·
σ denotes as a p-independent rotation axis with Λ ¼
ðΛx;Λy;ΛzÞ and Pauli matrices σ ¼ ðσx; σy; σzÞ, then con-
trol-induced sequential paired commuting dynamics are
described by ONðpÞ ¼ ½CUðpÞ�N ¼ expð−iNpΛ · σÞ.
To obtain the HL for HPE of the controlled sequential

dynamics ONðpÞ, we introduce Gp ¼ i½∂pOðpÞ�O†ðpÞ as
the generator of parameter translationwith respect top. For a
pure initial state jψi, the quantum Fisher information (QFI)
[41,51] of the evolved state jζi ¼ ONðpÞjψi is given by

F ¼ 4hζjΔG2
pjζi: ð2Þ

Whenoptimal probe states andmeasurements are chosen, the
QFI can reach its maximal value as

Fmax ¼ ½λmaxðGpÞ − λminðGpÞ�2; ð3Þ
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FIG. 1. Schematic illustration of HPE for approaching the HL.
(a) Parallel protocol for HPE of a parameter p involving an
N-particles entangled state, N same parallel unitary operators
UðpÞ, and separable measurements. (b) Sequential protocol for
HPE involving an input state, N same sequential unitary
operators UðpÞ, and a measurement. Both parallel protocol
and sequential protocol are only suitable for HPE under commut-
ing dynamics at different values of p. (c) Controlled sequential
protocol for HPE involving an input state, N same sequential
operators UðpÞ and control operators C, and a measurement. The
controlled sequential protocol can transform the noncommuting
dynamics into commuting ones. (d) and (e) Energy level
diagrams of a superconducting transmon qubit driven by an
off-resonant and a resonant square microwave pulse on the
transition of jgi ↔ jei, respectively. These drives individually
generate the Hamiltonian HðθÞ (d) and HðϕÞ (e).
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where λmaxðGpÞ and λminðGpÞ are maximal and minimal
eigenvalues ofGp, respectively. Here, we set the generator as
Gp ¼ NΛ · σ with λmaxðGpÞ ¼ NjΛj and λminðGpÞ ¼
−NjΛj. Then, we can obtain the maximal QFI Fmax ¼
4ðNjΛjÞ2 and measurement precision δp ¼ 1=ð2NjΛjÞ,
reaching the HL.
We experimentally realize this protocol with a super-

conducting transmon qubit [49], defined by the lowest two
levels fjgi; jeigwith frequency ω ¼ 4.686 GHz and coher-
ence time T1 ¼ 76 μs. More details of the device param-
eters can be found in Ref. [52]. To generate the system
Hamiltonian, we apply a detuned square microwave pulse
Ω cosωdt on the qubit, as shown in Fig. 1(d), where Ω and
ωd are the amplitude and frequency of the pulse, respec-
tively. In the interaction picture, the Hamiltonian is
described by a spin-half particle subject to an effective
magnetic field, i.e.,

H1ðθÞ=ℏ ¼ Jðcos θσz þ sin θσxÞ; ð4Þ

where J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 þ Δ2Þ

p
=2 is an effective coupling strength,

with Δ ¼ ω − ωd, and θ ¼ arctanðΩ=ΔÞ denotes as polar
angle on the parameter space determined by the effective
magnetic field. To achieve the HL in estimating θ, a control
operationC≡ Z ¼ σz is added at the time JT ¼ π=2. Then,
the total controlled evolution operator is ZU1ðθÞ¼
σzexp½−iðπ=2ÞðcosθσzþsinθσxÞ�¼−iexpðiθσyÞ, represent-
ing a rotation around the axis σy, which satisfies the
commutation relation in Eq. (1) for all polar angles θ. As
shown in Ref. [52], the QFI can reach 4N2, leading to a HL
δθ ¼ 1=2N for estimating the polar angle. In our experiment,
the time T ¼ 400 ns is set to decrease the influence of
microwave pulse induced stark shift due to the limited
anharmonicity of the qubit. The amplitude Ω is accurately
calibrated by the direct sequential protocol at the time T ¼
400 ns and θ ¼ π=2 to mitigate its influence on HPE [52].
TheZ operation is realized by a virtual-Z gate, consuming no
time resources.
In addition, as shown in Fig. 1(e), when a square micro-

wave pulse with an amplitude Ω and a phase ϕ is resonantly
applied on the qubit, the Hamiltonian in the interaction
picture can be written, in the basis of fjgi; jeig, as

H2ðϕÞ=ℏ ¼ Ω
2
ðcosϕσx þ sinϕσyÞ; ð5Þ

whereϕ denotes as azimuth angle on the parameter space. To
achieve theHL in estimatingϕ, a control operationC≡ X ¼
σx is added at the time ΩT ¼ π with T ¼ 400 ns. Then, the
total controlled evolution operator is XU2ðϕÞ ¼ σx exp½−
iðπ=2Þðcosϕσx þ sinϕσyÞ� ¼ −i expðiϕσzÞ, representing a
rotation around the σz axis, which also meets the commu-
tation relation inEq. (1) for all azimuth anglesϕ. As shown in
Ref. [52], the QFI can reach 4N2, achieving a HL δϕ ¼
1=ð2NÞ for estimating the azimuth angle. In our experiment,

theX operation is generated by a π pulse, which has a cosine-
shaped envelope with a duration of 50 ns. Additionally, the
technique of “derivative removal by adiabatic gate” [57,58] is
applied to suppress the leakage to higher energy levels.
In our experiment, we first verify the commutation

relation for noncommuting operations with and without
adding quantum control using quantum process tomog-
raphy (QPT) [59], with the experimental sequence shown
in Fig. 2(a). The quantification of the commutation
relation of ½P;Q� is transformed into the value of
jTrðχ1χ†2Þj, where Tr represents the trace, χ1 and χ2 are
the quantum process matrix of operations PQ and QP,
respectively. Figures 2(b) and 2(c) show the values
of the commutation relation of ½ZU1ðπ=4Þ; ZU1ðθÞ�,

(a)

(d)

(c)(b)

FIG. 2. Observation of the commutation relation. (a) Experi-
mental sequence to perform the QPT for the operations in the
commutation relation for noncommuting operations with and
without control. (b) and (c) Measured values jTrðχ1χ†2Þj for the
quantification of commutation relation of ½ZU1ðπ=4Þ; ZU1ðθÞ�,
½U1ðπ=4Þ; U1ðθÞ�, ½XU2ðπ=8Þ; XU2ðϕÞ�, and ½U2ðπ=8Þ; U2ðϕÞ�
with χ1 and χ2 as the quantum process matrix of operations PQ
and QP in the commutation relation of ½P;Q�, respectively.
Error bars, obtained from 5 repeated experiments, are
smaller than the marker sizes. Solid lines are from numerical
simulations. The insets in (b) and (c) are enlarged plots
for each case. (d) The real and imaginary parts of the
measured quantum process matrices χ of the four quantum
operations ZU1ðπ=4ÞZU1ðπ=2Þ, ZU1ðπ=2ÞZU1ðπ=4Þ,
XU2ðπ=8ÞXU2ðπ=2Þ, and XU2ðπ=2ÞXU2ðπ=8Þ. The color bar
represents the magnitude of the real and imaginary parts of the
quantum process matrices with dimensionless unit.
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½U1ðπ=4Þ; U1ðθÞ�, ½XU2ðπ=8Þ; XU2ðϕÞ�, and ½U2ðπ=8Þ;
U2ðϕÞ�, respectively. For the case of the noncommuting
operations with adding quantum control, all values of the
commutation relation are close to 1, implying that the
noncommuting operations with quantum control have
been transformed into commuting one. Furthermore, the
measured process matrices for ZU1ðπ=4ÞZU1ðπ=2Þ,
ZU1ðπ=2ÞZU1ðπ=4Þ, XU2ðπ=8ÞXU2ðπ=2Þ, and
XU2ðπ=2ÞXU2ðπ=8Þ are presented, respectively, in
Fig. 2(d). Verification of the commuting property for
controlled noncommuting dynamics enables the implemen-
tation of HPE for noncommuting dynamics. Furthermore,
the performance of noncommuting dynamics with and
without quantum control is characterized by both QPT
and the cross-entropy benchmarking method [60,61], with
experimental results showing high fidelity [52], which
allows for multiround controlled noncommuting dynamics.
To demonstrate ultrahigh-precision HPE for the polar

angle θ, we perform experiments under sequential non-
commuting dynamics with N quantum controls and show-
case the advantages beyond the SQL. The experimental
sequence is depicted in Fig. 3(a), where the optimal probe
state is prepared as jψi ¼ jgi, the control operation
Z ¼ σz is added after the evolution operator U1ðθÞ ¼
exp½−iHðθÞT�, and the optimal measurement is the pro-
jective measurement on the eigenvector of σx. The ideal
probabilities of the measurement outcomes are PN

id ¼
ð1þ sin 2NθÞ=2. The experimental measurement results
of the probability distributions PN

exp with N ¼ 1, 5, 10, 20
as examples at different polar angles θ∈ ½0; π� are shown in
Fig. 3(b). Because of the decoherence of the qubit,
the oscillation contrast of the measured interference
fringes gradually decreases as the number N of quantum
controls increasing, which can be fitted by the function
PN ¼ ð1þ A sin 2NθÞ=2, where A represents the oscilla-
tion contrast. Then, the measurement precision can be
inferred as δθ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNð1−PNÞ

p
=ðdPN=dθÞ¼1=ð2NAÞ [13].

Figure 3(c) shows the results of δθ as a function of N in a
logarithmic-logarithmic scale. The results demonstrate that
the polar angle sensing beats the SQL, surpassing the SQL
with a maximum metrological gain of 20 logðδθSQL=δθÞ ¼
16.0 dB at N ¼ 100. Additionally, the obtained precision
scales as N−0.93 for N ≤ 100, approaching the Heisenberg
scaling of N−1. The difference is mainly caused by the
decoherence effect of the qubit [52], limiting greater met-
rological gain, which can be further enhanced by shortening
the evolution time T and/or improving the coherence of
the qubit.
For HPE of the azimuth angle ϕ, we perform experi-

ments with sequence depicted in Fig. 4(a). The optimal
probe state is first prepared as jψi ¼ ðjgi − ijeiÞ= ffiffiffi

2
p

, then
the quantum control operation X ¼ σx is added after the
evolution operator U2ðϕÞ ¼ exp½−iHðϕÞT�, and the opti-
mal measurement is the projective measurement on the

eigenvector of σx. Consequently, this azimuth angle sensing
yields a similar oscillation curve as a function of the
azimuth angle ϕ, as shown in Fig. 4(b). The resulting
azimuth angle sensing beats the SQL as well, as depicted in
Fig. 4(c), with a maximum metrological gain of 16.1 dB at
N ¼ 100 and a precision scaling of N−0.93 for N ≤ 100,
approaching the Heisenberg scaling.
Furthermore, we showcase the quantum metrological

superiority of the demonstrated controlled sequential pro-
tocol by comparing it with the controlled parallel protocol
[52]. The parallel protocol requires the optimal probe
state to be prepared on a multiparticle entangled
state, e.g., the Greenberger-Horne-Zeilinger (GHZ) state.

(a)

(b)

(c)

FIG. 3. Experimental HPE for the polar angle θ. (a) Quantum
circuit for sensing θ in the system Hamiltonian. (b) Measured
qubit ground state populations (dots) and corresponding fittings
(solid lines) as a function of θ under N controlled dynamics, with
N ¼ 1, 5, 10, 20 as examples. Error bars, obtained from 5
repeated experiments, are smaller than the marker sizes. (c) Meas-
urement precision δθ as a function of the number of N controls.
The blue dots are experimental results with error bars obtained by
the standard deviations of A in fitting the data in (b), which are
smaller than the marker sizes. A metrological gain of 16.0 dB
surpassing the SQL (purple dashed line) is achieved at N ¼ 100.
The solid blue line is a linear fit, giving a precision scaling of
N−0.93, approaching the Heisenberg scaling N−1 (yellow dashed
line). The red crosses are the results obtained from numerical
simulations that include the decoherence and anharmonicity of
the qubit, showing good agreement with the experimental results.
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However, scalable generation of GHZ states on super-
conducting circuits is challenging [62], which demands
precise quantum gates and reliable verification techniques.
Thus, the current largest experimentally realized GHZ state
in superconducting circuits is 18 qubits [28,29], which is
significantly smaller than the capacity of the demonstrated
controlled sequential method. Besides, the coherence of
GHZ states degrades rapidly, following an N2 scaling law
[26], which limits the efficiency of the parallel protocol in
metrological applications. Therefore, the enhanced effi-
ciency of the controlled sequential protocol to quantum
metrology has clear advantage over that of the controlled
parallel protocol [52].
To summarize, we have experimentally demonstrated

ultrahigh-precision HPE approaching the HL using a
superconducting transmon qubit, employing a simple
and hardware-efficient sequential control protocol. The
commuting property for noncommuting operations with
adding quantum control is verified, which is essential for
HPE under noncommuting dynamics. Notably, our results
have demonstrated remarkable metrological gains of 16.0
and 16.1 dB for the polar and azimuth angle sensing at
N ¼ 100, respectively. Furthermore, higher metrological

gain is possible with N rounds exceeding one thousand
using a superconducting qubit, by prolonging its coherence
time and enhancing the fidelity of operations [50]. Besides,
numerical results show enhanced efficiency of the pre-
sented approach to quantum metrology over parallel
methods employing multiparticle entanglement [52].
Additionally, quantum multiparameter estimation far sur-
passing the SQL at the same time [43,45] can be imple-
mented by using two entangled superconducting qubits
[49]. Our results indicate that superconducting circuits are
appealing for HPE, further validating the controlled
sequential protocol in the practical application of quantum
metrology.
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