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It is a crucial feature of quantum mechanics that not all measurements are compatible with each other.
However, ifmeasurements suffer fromnoise theymay lose their incompatibility. Here,we consider the effect of
white noise and determine the critical visibility such that all qubit measurements, i.e., all positive operator-
valued measures (POVMs), become compatible, i.e., jointly measurable. In addition, we apply our methods to
quantum steering andBell nonlocality.We obtain a tight local hidden statemodel for two-qubitWerner states of
visibility 1=2. This determines the exact steering bound for two-qubit Werner states and also provides a local
hidden variable model that improves on previously known models. Interestingly, this proves that POVMs are
not more powerful than projective measurements to demonstrate quantum steering for these states.
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Introduction.—Quantum mechanics provides a remark-
ably accurate framework for predicting the outcomes of
experiments and has led to the development of numerous
technological advancements. Despite its successes, it
presents us with puzzling and counterintuitive phenomena
that challenge our classical notions of reality. One of the
key aspects that set quantummechanics apart from classical
physics is the concept of measurement incompatibility. In
classical physics, measuring one property of a system need
not affect the measurement of another property. In quantum
mechanics, however, the situation is radically different.
The uncertainty principle, formulated by Heisenberg,
establishes a fundamental limit to the precision with which
certain pairs of properties can be simultaneously known [1].
A simple and well-known example is the fact that we

cannot simultaneously measure the spin of a particle in two
orthogonal directions. It is known that incompatible mea-
surements are at the core of many quantum information
tasks. For example, they are necessary to violate Bell
inequalities [2–4] and necessary to provide an advantage
in quantum communication [5–7] or state discrimination
tasks [8–10] (see also the reviews [11,12]).
However, measurement devices always suffer from impre-

cision. Therefore, an apparatus measures in practice only a
noisy version of the measurements. If the noise gets too
large, these noisy measurements can become compatible
even though they are incompatible in the noiseless limit [13].
In that case, the statistics of these noisy measurements can be
obtained from the statistics of just a single measurement, and
we say that these noisy measurements are jointly measur-
able. However, a detector that can perform only compatible
measurements has limited power. Most importantly, it cannot
be used for many quantum information processing tasks like

demonstrating Bell nonlocality since these require incom-
patible measurements. It is therefore important to ask, how
much noise can be tolerated before all measurements
become jointly measurable?
In this Letter, we study the effect of white noise and

show that all qubit measurements become jointly measur-
able at a critical visibility of 1=2. This result has direct
implications for related fields of quantum information,
in particular, Bell nonlocality [14,15] and quantum
steering [16–22]. More precisely, we use the close con-
nection between joint measurability and quantum steering
[23–25] to show that the two-qubit Werner state [26],

ρηW ¼ ηjΨ−ihΨ−j þ ð1 − ηÞ1=4; ð1Þ
cannot demonstrate quantum steering if η ≤ 1=2. Here,
jΨ−i ¼ ðj01i − j10iÞ= ffiffiffi

2
p

denotes the two-qubit singlet
state. This also implies that the same state does not violate
any Bell inequality for arbitrary positive operator-valued
measurements (POVM) applied on both sides whenever
η ≤ 1=2.
Notation and joint measurability.—Before we introduce

the problem, we introduce the necessary notation. Qubit
states are described by positive semidefinite 2 × 2 complex
operators ρ∈LðC2Þ, ρ ≥ 0 with unit trace tr½ρ� ¼ 1. They
can be represented as ρ ¼ ð1þ x⃗ · σ⃗Þ=2, where x⃗∈R3 is a
three-dimensional real vector such that jx⃗j ≤ 1, and σ⃗ ¼
ðσx; σy; σzÞ are the standard Pauli matrices. In this notation,
x⃗ is the corresponding Bloch vector of the qubit state.
General qubit measurements are described by a POVM,
which is a set of positive semidefinite operators Aija ≥ 0

that sum to the identity
P

i Aija ¼ 1. Here, we use the label
“a” to distinguish between different measurements, while

PHYSICAL REVIEW LETTERS 132, 250202 (2024)
Editors' Suggestion

0031-9007=24=132(25)=250202(8) 250202-1 © 2024 American Physical Society

https://orcid.org/0000-0002-3408-6848
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.250202&domain=pdf&date_stamp=2024-06-17
https://doi.org/10.1103/PhysRevLett.132.250202
https://doi.org/10.1103/PhysRevLett.132.250202
https://doi.org/10.1103/PhysRevLett.132.250202
https://doi.org/10.1103/PhysRevLett.132.250202


“i” denotes the outcome of a given POVM (see also Fig. 1).
In quantum theory, the probability of outcome i when
performing the POVM with elements Aija on the state ρ is
given by Born’s rule:

pðija; ρÞ ¼ tr½Aija ρ�: ð2Þ

Because every qubit POVM can be written as a coarse
graining of rank-1 projectors [27], we may restrict our-
selves to POVMs proportional to rank-1 projectors. (We
could also restrict ourselves to POVMs with at most four
outcomes [28], but this is not necessary in what follows.)
Thus, we write Alice’s measurements as Aija ¼ pija⃗iiha⃗ij,
where pi ≥ 0 and ja⃗iiha⃗ij ¼ ð1þ a⃗i · σ⃗Þ=2 for some nor-
malized vector a⃗i ∈R3 (ja⃗ij ¼ 1). As a consequence ofP

i Aija ¼ 1 we obtain
P

i pi ¼ 2 and
P

i pia⃗i ¼ 0⃗.
These expressions are valid if all measurements are

perfectly implemented. However, noise is usually unavoid-
able in experiments. In this Letter, we study the effect of
white noise, where η denotes the visibility. More formally,
we define the noisy measurements as

Aη
ija ¼ ηAija þ ð1 − ηÞ tr½Aija�1=2: ð3Þ

With the notation introduced above the POVM elements
become Aη

ija ¼ pið1þ ηa⃗i · σ⃗Þ=2. The goal of this Letter is
to determine the critical value of η such that all qubit
POVMs become jointly measurable.
A set of measurements fAijagi;a is jointly measurable if

there exists a single measurement (so-called parent POVM)
fGλgλ such that the statistics of all measurements in the set
can be obtained by classical postprocessing of the data
of that single parent measurement. More precisely, if for
every POVM in the set there exist conditional probabilities
pðija; λÞ such that

Aija ¼
X
λ

pðija; λÞGλ: ð4Þ

If this is satisfied, all measurements in the set can be
simulated by the single parent POVM with operators Gλ.
First, the parent POVM is measured on the quantum state
ρ in which outcome λ occurs with probability pðλjρÞ ¼
tr½Gλ ρ�. Second, given the POVM labeled by a that we want
to simulate, the outcome i is produced with probability
pðija; λÞ. In total, the probability of outcome i becomesX
λ

pðija; λÞpðλjρÞ ¼
X
λ

pðija; λÞtr½Gλ ρ � ¼ tr½Aija ρ �:

ð5Þ
Here, we used the linearity of the trace. This perfectly
simulates a given POVM with elements fAijagi, since this is
the same expression as if the measurement was directly
performed on the quantum state ρ given in Eq. (2).
The most prominent example are the two noisy spin

measurements Aη
�jx ¼ ð1� σx=

ffiffiffi
2

p Þ=2 and Aη
�jz ¼ ð1�

σz=
ffiffiffi
2

p Þ=2, where η ¼ 1=
ffiffiffi
2

p
. We can consider the follow-

ing measurement with four outcomes λ ¼ ði; jÞ, where
i; j∈ fþ1;−1g:

Gði;jÞ ¼
1

4

�
1þ iffiffiffi

2
p σx þ

jffiffiffi
2

p σz

�
: ð6Þ

One can check that this is a valid POVM and that
Aη
ijx ¼

P
j Gði;jÞ as well as Aη

jjz ¼
P

i Gði;jÞ. Therefore,

the statistics of both measurements fAη
ijxgi and fAη

jjzgj
can be obtained from the statistics of just a single parent
measurement. Now we consider not only two but the set of
all noisy qubit POVMs fAη

ijagi;a and show that for η ≤ 1=2

this set becomes jointly measurable.
Protocol.—First, we define two functions. The first one

is the sign function, which is defined as sgnðxÞ ≔ þ1 if
x ≥ 0 and sgnðxÞ ≔ −1 if x < 0. Similarly, the function
ΘðxÞ is defined asΘðxÞ ≔ x if x ≥ 0 andΘðxÞ ≔ 0 if x < 0
[or ΘðxÞ ≔ ðjxj þ xÞ=2].
The parent POVM fGλ⃗gλ⃗ is the measurement with

elements

Gλ⃗ ¼
1

4π
ð1þ λ⃗ · σ⃗Þ: ð7Þ

Here, λ⃗∈R3 is a normalized vector uniformly distributed
on the unit radius sphere S2. Physically, this corresponds
to a (sharp) projective measurement with outcome λ⃗, where
the measurement direction is chosen Haar random on the
Bloch sphere [29].
For a given POVM with operators A1=2

ija ¼ pið1þ
a⃗i · σ⃗=2Þ=2, where

P
i pi¼2, ja⃗ij ¼ 1, and

P
i pia⃗i¼ 0⃗,

we define the following function that associates a real-
valued number to each point in x⃗∈R3:

fa∶ R3 → R∶ faðx⃗Þ ≔
X
i

piΘðx⃗ · a⃗iÞ: ð8Þ

FIG. 1. A measurement device can perform different measure-
ments (labeled with a) that produce an outcome i. If the
measurements are too noisy they can be simulated by a device
that just performs a single measurement. In this Letter, we address
the question of how much white noise can be tolerated before all
qubit measurements become jointly measurable.
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Now, we choose an orthonormal coordinate frame of
the Bloch sphere, defined by the three pairwise orthogonal
unit vectors x⃗0; y⃗0; z⃗0 ∈ S2. In addition, we define the
eight vectors v⃗sxsysz ≔ sxx⃗0 þ syy⃗0 þ szz⃗0, where sx; sy; sz ∈
fþ1;−1g. This frame shall be chosen such that
faðv⃗sxsyszÞ ≤ 1 for all of these eight vectors, and we show
below that one can always find such a coordinate frame.
Note that the vectors v⃗sxsysz are the vertices of a cube
with side length two that is centered at the origin of the
Bloch sphere.
After choosing a suitable frame, we can define the

conditional probabilities:

pðija; λ⃗Þ ¼ pi Θða⃗i · v⃗sxsyszÞ þ
ð1 − faðv⃗sxsyszÞÞαiP

iαi
: ð9Þ

Here, v⃗sxsysz is the vector with indices sk ¼ sgnðλ⃗ · k⃗0Þ for
k∈ fx; y; zg. Hence, the three signs sk denote the octant of
λ⃗ in the rotated frame defined by x⃗0; y⃗0; z⃗0. (Equivalently,
v⃗sxsysz is the vertex of the cube closest to λ⃗.) In addition,
αi is defined as

αi ≔
pi

2

�
1 −

1

4

X
sx;sy;sz¼�1

Θða⃗i · v⃗sxsyszÞ
�
: ð10Þ

Idea of the protocol.—Suppose for now that it is possible
to find a suitable frame in which faðv⃗sxsyszÞ ≤ 1 for all eight
vectors v⃗sxsysz . Since this part is more technical, we discuss
it at the end of this section. We can check first that the
conditional probabilities are indeed well defined. Namely,
they are positive and sum to one. Positivity follows from
the fact that pi ≥ 0 and ΘðxÞ ≥ 0 (for all x∈R). In
addition, faðv⃗sxsyszÞ ≤ 1, and the proof that αi ≥ 0 is given
in Supplemental Material Sec. I [see Lemma 1 (2)] [30].
A quick calculation also shows that the probabilities
sum to one:
X
i

pðija; λ⃗Þ ¼ faðv⃗sxsyszÞ þ ð1 − faðv⃗sxsyszÞÞ ¼ 1: ð11Þ

Now we are in a position to show that

A1=2
ija ¼

Z
S2

dλ⃗pðija; λ⃗ÞGλ⃗: ð12Þ

We give the detailed proof in Supplemental Material
Sec. III [30], but sketch the main idea here. It is important
to recognize that the function pðija; λ⃗Þ is the same for two
different λ⃗ that lie in the same octant of the rotated frame
x⃗0; y⃗0; z⃗0. Intuitively speaking, this leads to a coarse graining
of the measurement outcomes λ⃗ in each of these octants.
These coarse-grained operators Gsxsysz behave like a noisy
measurement in the direction of the corresponding vector

v⃗sxsysz . More precisely, we calculate in Supplemental
Material Sec. III A that

Gsxsysz ≔
Z
S2jsgnðλ⃗·k⃗0Þ¼sk

dλ⃗Gλ⃗ ¼
1
8
þ v⃗sxsysz · σ⃗

16
: ð13Þ

With this definition, Eq. (12) becomes

A1=2
ija ¼

X
sx;sy;sz¼�1

pðija; λ⃗ÞGsxsysz : ð14Þ

Using the definition of pðija; λ⃗Þ in Eq. (9) and some algebra
(details in Supplemental Material Sec. III), this reduces to

A1=2
ija ¼

X
sx;sy;sz¼�1

piΘða⃗i · v⃗sxsyszÞGsxsysz þ αi1: ð15Þ

In the end, we prove this identity by using a closely related
geometric formula that decomposes a⃗i into the vectors
v⃗sxsysz (see Supplemental Material Sec. I):

X
sx;sy;sz¼�1

Θða⃗i · v⃗sxsyszÞv⃗sxsysz ¼ 4a⃗i: ð16Þ

The identity in Eq. (15) can be seen as the main idea
of the protocol. We want to find a set of coarse-grained
operators Gsxsysz that can be used to decompose all the

POVM elements A1=2
ija . The conditional probabilities

pðija; λ⃗Þ given in Eq. (9) are then constructed according
to this decomposition. The first term in pðija; λ⃗Þ, namely,
pi Θðv⃗sxsysz · a⃗iÞ, is the coefficient that comes from the

decomposition of A1=2
ija in terms of Gsxsysz . The second term

in pðija; λ⃗Þ is constructed to add the noise term αi1.
To give an example, consider the blue vector in Fig. 2

for which a⃗1 ¼ ð0; 0; 1ÞT and p1 ¼ 1=2; hence, A1=2
1ja ¼

p1ð1þ a⃗1 · σ⃗=2Þ=2 ¼ 1=4þ σz=8. It turns out that we can
use the standard coordinate frame in which the cube
vertices are simply v⃗��� ≔ ð�1;�1;�1ÞT. Direct calcu-
lation shows that p1Θða⃗1 · v⃗sxsyszÞ ¼ 1=2 if sz ¼ þ1 (and
zero if sz ¼ −1) as well as α1 ¼ 0. In addition, the coarse-
grained operators become Gsxsysz ¼ 1=8þ ðsxσX þ syσY þ
szσZÞ=16. It is then easy to check that 1=2ðGþþþþ
Gþ−þ þ G−þþ þG−−þÞ ¼ A1=2

1ja .
However, while the identity in Eq. (15) holds for any

orthonormal frame, it can be translated into a protocol with
well-defined probabilities only if

P
i pi Θðv⃗sxsysz · a⃗iÞ ¼

faðv⃗sxsyszÞ ≤ 1 for all eight vertices of the cube. We show
now that such a frame always exists. The proof has two
steps. First, we show that for any such cube, it holds that

X
sx;sy;sz¼�1

faðv⃗sxsyszÞ ≤ 8: ð17Þ
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The second part of the proof uses a theorem by Hausel
et al. [32] (see Theorem 1 in that reference) that applies to
continuous real-valued functions on S2 that have the
additional property that fðx⃗Þ ¼ fð−x⃗Þ. By using similar
techniques as in Ref. [33], we show in Supplemental
Material Sec. II that the function faðx⃗Þ fulfills these
conditions [30]. In their theorem, they show that there
always exists a rotation of the cube such that the functional
values coincide at all eight vertices of that cube. Hence,
choosing the orthonormal frame according to that rotation,
we obtain faðv⃗sxsyszÞ ¼ C for all sx; sy; sz ∈ fþ1;−1g.
Combining this with the above bound in Eq. (17), we
get 8C ≤ 8 and, therefore, faðv⃗sxsyszÞ ≤ 1 for that specific
cube (see Supplemental Material Sec. II for more details).
The theorem in Ref. [32] is a special case of a family of

so-called Knaster-type theorems. They state that for a given
continuous real-valued function on the sphere, a certain
configuration of points can always be rotated such that
the functional values coincide at each of these points.
Other interesting related results concerning S2 are due to
Dyson [34], Livesay [35], and Floyd [36]. Also, the well-
known Borsuk-Ulam theorem is of this type [37].
We want to remark that we do not necessarily have to

choose a cube in which all of these eight values coincide. It
is only required that all of these eight values are smaller
than one. Note that we do not give an explicit way to
construct such a coordinate frame. However, in many cases,
for instance, for POVMs with two or three outcomes,
it turns out that an explicit construction can be found.
We discuss this further in the Appendix as well as in
Supplemental Material Sec. IV (see also there for further
examples and more illustrations) [30].
Local models for entangled quantum states.—Now we

apply the developed techniques to Bell nonlocality and
quantum steering. Suppose Alice and Bob share a two-
qubit Werner state [26],

ρηW ¼ ηjΨ−ihΨ−j þ ð1 − ηÞ1=4; ð18Þ

where jΨ−i ¼ ðj01i − j10iÞ= ffiffiffi
2

p
denotes the two-qubit

singlet. They can apply arbitrary local POVMs on their
qubit. As before, we denote Alice’s measurement operators
with Aija ¼ pija⃗iiha⃗ij ¼ pið1þ a⃗i · σ⃗Þ=2 (where pi ≥ 0,

ja⃗ij ¼ 1,
P

i pi ¼ 2, and
P

ipia⃗i ¼ 0⃗). Similarly, Bob can
perform an arbitrary POVM with elements Bjjb that are
defined analogously. Note that Alice’s and Bob’s measure-
ments are now completely arbitrary; i.e., they are not noisy.
Instead, the entangled state is not pure but has a certain
amount of white noise. The correlations when Alice and
Bob apply local POVMs to this state become

pði; jja; bÞ ¼ tr½ðAija ⊗ BjjbÞρηW �: ð19Þ

It is a fundamental question in Bell nonlocality, for which η
these correlations can violate a Bell inequality. It is known
that two-qubit Werner states violate the CHSH inequality
[38] for η > 1=

ffiffiffi
2

p
≈ 0.7071. Vertesi showed that they

violate another Bell inequality whenever η > 0.7056 [39].
On the other hand, Werner constructed in his seminal

paper from 1989 a local model for all bipartite projective
measurements if η ≤ 1=2 [26] albeit these states are
entangled if η > 1=3. Later, this bound was improved by
Acin et al., who showed that the state is local whenever
η ≤ 1=KGð3Þ [40]. Here, KGð3Þ is the so-called
Grothendieck constant of order three and the best current
bound is by Designolle et al., 1.4367 ≤ KGð3Þ ≤ 1.4546
[41]. This implies that ρηW is local if η ≤ 0.6875 and violates
a Bell inequality if η ≥ 0.6961. However, these local
models apply only to projective measurements (where
p1 ¼ p2 ¼ 1 and a⃗2 ¼ −a⃗1).
Considering general POVMs, Barrett found a local

model for all POVMs whenever η ≤ 5=12 [27]. Using a
technique developed in Refs. [42,43], the best bound is
again by Ref. [41] which shows that ρηW is local for all
POVMs if η ≤ 0.4583. Based on the connections made in
Refs. [23–25], we can now show that whenever η ≤ 1=2
we cannot violate any Bell inequality since all correlations
can be described by the following local model.

(a) (c)(b)

FIG. 2. An illustration for a SIC-POVM [31]. (a) The different outcomes i are represented with different colors and the colored vectors
represent a⃗i (note also pi ¼ 1=2 for i ¼ 1, 2, 3, 4). (b) The opacity of the colors represents the probability to output i given that λ⃗ lies in

that region of the sphere, hence pðija; λ⃗Þ. This function is constant in each octant of the chosen frame, which is simply the standard
coordinate frame in this case. For the λ⃗ shown in the left-hand sphere (sx ¼ −1, sy ¼ sz ¼ þ1), the outcome is most likely blue (50%) or

green (49%). (c) Collecting all results λ⃗ from one octant behaves like the operator Gsxsysz represented by the cyan arrows for the blue

outcome. The sum of these operators simulates the desired (blue) operator A1=2
1ja . (More details in Supplemental Material Sec. IV [30]).
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Suppose Alice performs her measurement fAijagi on the
Werner state with η ¼ 1=2 and obtains outcome i. After
doing so, Bob’s qubit is precisely in the (unnormalized)
postmeasurement state:

ρBðiÞ ¼ trA½ðAija ⊗ 1Þρ1=2W � ¼ pið1 − a⃗i · σ⃗=2Þ=4: ð20Þ
It is now important to recognize that this state can be
simulated with the same techniques as before, due to
the duality of states and measurements. More precisely,
consider the following protocol.
(1) Bob’s system is in a well-defined pure qubit state

ρλ⃗ ¼ ð1þ λ⃗ · σ⃗Þ=2, where λ⃗∈R3 is a normalized vector
distributed Haar random on the unit radius sphere S2.
(2) Alice chooses her POVM with operators Aija ¼

pið1þ a⃗i · σ⃗Þ=2. Now, she applies precisely the same steps
as in the previous protocol for the given values of pi,
vectors −a⃗i (“−” to account for the anticorrelations in the
singlet), and λ⃗. Namely, she chooses a suitable frame and
produces her outcome i according to the conditional
probabilities in Eq. (9).
(3) Bob chooses his POVM with elements Bjjb and

performs a quantum measurement on his state ρλ⃗.
The distribution of the state ρλ⃗, namely ð1=8πÞ

ð1þ λ⃗ · σ⃗Þ, is the same expression as the one for the parent
POVM in Eq. (7) (up to a factor of 2 since states and
measurements are normalized differently). Hence, if we
sum over all the states where Alice outputs i, she samples
precisely the state pið1 − a⃗i · σ⃗=2Þ=4 [analog to A1=2

ija ¼
pið1þ a⃗i · σ⃗=2Þ=2 before]. This matches exactly the
expression in Eq. (20). Intuitively speaking, there is no
difference for Bob’s qubit if Alice performs the protocol
above or performs the measurement on the actual Werner
state for η ¼ 1=2. Therefore, when Bob applies his POVM,
the resulting statistics are the same in both cases. Hence, the
protocol above simulates the statistics of arbitrary POVMs
applied to the state ρ1=2W in a local way:

tr½ðAija ⊗ BjjbÞρ1=2W � ¼ 1

4π

Z
S2

dλ⃗pðij − a; λ⃗Þtr½Bjjbρλ⃗�. ð21Þ

This model is even a so-called local hidden state model
which implies that the state ρ1=2W is not steerable [16,17,21].
In the most fundamental steering scenario, we consider
two parties, Alice and Bob, that share an entangled
quantum state. The question is whether Alice can steer
Bob’s state by applying a measurement on her side.
However, Bob wants to exclude the possibility that his
system is prepared in a well-defined state that is known to
Alice. Then, Alice could just use her knowledge of
the “hidden state” ρλ⃗ to pretend to Bob that she can steer
his state. However, in reality, they do not share any
entanglement at all. This is precisely the case in the above
protocol, proving that the state ρηW cannot demonstrate

quantum steering whenever η ≤ 1=2. This was known
before for the restricted case of projective measurements
A�ja ¼ ð1� a⃗ · σ⃗Þ=2 [17]. When general POVMs are
considered, the best model so far is the one from Barrett
[27], which was shown to be a local hidden state model by
Quintino et al. [44]. That model shows that ρηW cannot
demonstrate steering if η ≤ 5=12. Numerical evidence
suggested that the same holds for all η ≤ 1=2 [45–47].
Our model shows that this is indeed the case.
On the other hand, if such a local hidden state model

cannot exist, we say that the state is steerable. It is known
that the two-qubit Werner state can demonstrate steering
whenever η > 1=2 [17]. Therefore, the bound of η ¼ 1=2 is
tight. Because of the connection between steering and
joint measurability [23–25], η ¼ 1=2 is also tight for the
joint measurability problem, ensuring the optimality of our
construction.
Conclusion.—In this Letter, we provided tight bounds on

how much white noise a measurement device can tolerate
before all qubit measurements become jointly measurable.
We considered the most general set of measurements
(POVMs) and applied our techniques to quantum steering
and Bell nonlocality. Exploiting the connection between joint
measurability and steering [23–25], we found a tight local
hidden state model for two-qubit Werner states of visibility
η ¼ 1=2. This solves Problem 39 on the page of Open
quantum problems [48] (see also Ref. [49]) and Conjecture
1 of Ref. [46]. An important direction for further research is
the generalization to higher dimensional systems [50,51].

Note added.—Recently, we became aware of the work by
Zhang and Chitambar [52] that proves the same results with
a different approach.

I acknowledge Marco Túlio Quintino for important
discussions and for introducing the problem to me.
Furthermore, I acknowledge Haggai Nuchi for correspon-
dence about the Knaster-type theorems, and an anonymous
referee for very useful suggestions. This research was funded
in whole, or in part, by the Austrian Science Fund (FWF)
through BeyondC [Grant DOI: 10.55776/F71].

Appendix.—Here, we provide some additional
information about the nonconstructive nature of our
protocol. We stress again that the theorem of Hausel
et al. [32] implies only that a suitable coordinate frame
exists but does not imply how to find one. However, in
some cases, we can explicitly find a frame.
Consider, for instance, the important special case of a

POVM with only two outcomes which corresponds to a
projective measurement. In that case, we have p1 ¼ p2 ¼ 1

and a⃗2 ¼ −a⃗1; hence, A
1=2
1ja ¼ ð1þ a⃗1 · σ⃗=2Þ=2 and A1=2

2ja ¼
ð1 − a⃗1 · σ⃗=2Þ=2. We can express the function faðx⃗Þ as
faðx⃗Þ ¼ Θðx⃗ · a⃗1Þ þ Θð−x⃗ · a⃗1Þ ¼ jx⃗ · a⃗1j. To find a suit-
able frame, we can choose the x0 axis to be aligned
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with a⃗1=2, while the y0 and z0 axes are orthogonal to a⃗1. In
this way, x⃗0 ¼ a⃗1, and direct calculation shows that
faðv⃗sxsyszÞ ¼ 1 for all eight vertices v⃗sxsysz ¼ sxx⃗0 þsyy⃗0 þ
szz⃗0 as required. In addition, note that Θðv⃗sxsysz · a⃗1Þ ¼ 1 if
sx ¼ þ1 and Θðv⃗sxsysz · a⃗1Þ¼0 if sx ¼ −1. Therefore,
α1 ¼ α2 ¼ 0, and the conditional probabilities translate
precisely to pð1ja; λ⃗Þ¼1 if λ⃗ · a⃗1 ≥ 0 and pð1ja; λ⃗Þ ¼ 0 if
λ⃗ · a⃗1 < 0 (and the analogexpression for i ¼ 2). SeeFig. 3 for
an illustration.
The choice of the frame is unique up to an arbitrary

rotation around the x0 axis (and a relabeling of the axes).
To see this, note that the angle α between a⃗1=2 and each

cube vertex v⃗sxsysz must be at least α ≥ cos−1 ð1= ffiffiffi
3

p Þ since
ja⃗1=2j ¼ 1, jv⃗sxsysz j ¼

ffiffiffi
3

p
, and faðv⃗sxsyszÞ ¼ jv⃗sxsysz · a⃗1j ¼

jv⃗sxsysz j · ja⃗1j · cosðαÞ. Geometrically, this defines the
cube uniquely up to a rotation around a⃗1. Note, however,
that such a rotation would not change the conditional
probabilities pðija; λ⃗Þ in the end.
It is worth pointing out that this construction becomes

equivalent to the one of Werner [26], which is known
to be a tight local hidden state model for projective

measurements [17] (and therefore also tight for the problem
of joint measurability due to the close connection of these
two fields [23–25]).
It turns out that for the case of three outcome POVMs,

we can also construct a suitable coordinate frame without
relying on the theorem of Hausel et al. [32] but only on the
intermediate value theorem for continuous functions (see
Supplemental Material Sec. IV [30]). For general POVMs,
we want to point out that a suitable frame is computation-
ally easy to find for many cases. For instance, we can
parametrize a rotation by its three Euler angles. When we
discretize the three angles into equally spaced values, we
can search through many possible rotations and calculate
the functional values for the corresponding cube. If we find
a cube, for which all of these eight values are smaller than
one, we have found a suitable frame. We provide a MATLAB

code for this simple algorithm via GITHUB [53]. It turns out
that even this brute-force method finds a suitable frame
for most POVMs almost immediately. (However, more
sophisticated algorithms, are likely to perform better).
We did some numerical simulations with random

POVMs. For that, we generate random points on the sphere
a⃗i ∈ S2 and find pi by solving

P
i pi a⃗i ¼ 0⃗ and

P
i pi ¼ 2.

Then we use our algorithm to find a suitable frame. These
numerical simulations strongly suggest that it is the hardest
to find a frame if all directions are almost collinear
(ja⃗i · a⃗jj ≈ ja⃗ij · ja⃗jj for all pairs i, j). Note that the two
outcome POVMs from above are precisely of that form.
However, even in these cases, a frame was always found
in which the largest of the eight values fðv⃗sxsyszÞ is only
slightly larger than 1 and this value can be further decreased
by further discretizing the Euler angles. There is an intuitive
explanation for this effect. For the simulation of a given
POVM, it is always advantageous if a given λ⃗ is mapped to
an outcome i that is close, meaning that the angle between λ⃗
and a⃗i is small. Consider, for instance, the case of a
projective measurement discussed before (or a POVM with
almost collinear vectors a⃗i). If λ⃗ is (almost) orthogonal to
a⃗1=2, the outcome of the parent measurement λ⃗ is (almost)
uncorrelated to the a⃗1=2 measurement, but it still has to be
mapped to either a⃗1 or a⃗2.
Contrary to that, for a POVM with more outcomes a⃗i

spread over the Bloch sphere (like the symmetric, informa-
tionally complete (SIC) POVM in Fig. 2), there are more
options a given λ⃗ can be mapped to. Roughly speaking it is
then more likely to find a measurement outcome a⃗i that is
highly correlated with the actual measurement outcome of
the parent POVM λ⃗. Based on this intuition, it is reasonable
to expect that these POVMs are easier to simulate. In our
construction, this expresses itself in the fact that for these
POVMs many different coordinate frames are suitable, and
therefore several different simulations for such a POVM
and η ¼ 1=2 exist. We can even prove that for the case of

(b)(a)

(c)

FIG. 3. Construction for the two-outcome POVM with oper-
ators A1=2

ija ¼ ð1þ a⃗i · σ⃗=2Þ=2 (a⃗2 ¼ −a⃗1). (a) Here, a⃗1 can be an
arbitrary direction in the Bloch sphere. (b) We can choose the
rotated frame such that the x0 axis is aligned with a⃗1. We also
show the corresponding cube here. (c) The conditional proba-

bilities pðija; λ⃗Þ reduce precisely to pð1ja; λ⃗Þ ¼ 1 if λ⃗ · a⃗1 ≥ 0

and pð1ja; λ⃗Þ ¼ 0 if λ⃗ · a⃗1 < 0, as indicated with the two colors.
Hence, if the outcome λ⃗ of the parent POVM lies in the
hemisphere centered around a⃗1 (blue region), the outcome is
always i ¼ 1, and if it lies in the hemisphere centered around a⃗2
(red region), the outcome will be i ¼ 2.
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the four-outcome SIC POVM [31], any rotation can be
chosen (see Supplemental Material Sec. IV [30]). On the
contrary, η ¼ 1=2 is known to be tight for the special case
of two-outcome POVMs [17], and therefore only very
particular coordinate frames are possible (similar for
collinear POVMs).
Note also that we do not exclude the possibility that for

certain POVMs better constructions with η > 1=2 exist. For
instance, SIC POVMs are by definition very symmetric and
one would expect that a symmetric model gives an even
better bound η > 1=2 (e.g., one can map λ⃗ to the closest
outcome a⃗i of the SIC POVM). However, in this Letter, we
are merely concerned with finding one construction that
works for all POVMs and η ¼ 1=2. Hence, it is more
important for our approach to recover the hemisphere
construction of Fig. 3 (which is known to be tight for
projective measurements) than to maintain the symmetry of
a given POVM.
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[19] J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, One-
way Einstein-Podolsky-Rosen steering, Phys. Rev. Lett.
112, 200402 (2014).

[20] D. Cavalcanti and P. Skrzypczyk, Quantum steering: A
review with focus on semidefinite programming, Rep. Prog.
Phys. 80, 024001 (2017).

[21] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne,
Quantum steering, Rev. Mod. Phys. 92, 015001 (2020).

[22] P. Sekatski, F. Giraud, R. Uola, and N. Brunner, Unlimited
one-way steering, Phys. Rev. Lett. 131, 110201 (2023).
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