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Whether positive operator-valued measures (POVMs) provide advantages in demonstrating Bell
nonlocality has remained unknown, even in the simple scenario of Einstein-Podolsky-Rosen steering
with noisy singlet state, known as Werner states. Here we resolve this long-standing open problem
by constructing a local hidden state model for Werner states with any visibility r ≤ 1=2 under general
POVMs, thereby closing the so-called Werner gap. This construction is based on an exact measurement
compatibility model for the set of all noisy POVMs and also provides a local hidden variable model for a
larger range of Werner states than previously known.
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Quantum entanglement enables behavior that is incon-
sistent with classical mechanics or any other theory
satisfying the principle of locality [1,2]. One such behavior,
known as Bell nonlocality, has been extensively studied [3],
demonstrated experimentally [4,5], and utilized in different
quantum information applications [6–9]. While entangle-
ment is a necessary and sufficient ingredient for demon-
strating nonlocality in pure states [10–12], the relationship
between entanglement and nonlocality in general mixed
states is much less clear [13–16]. Most notable is the
existence of Bell local entangled states, which are those that
cannot generate Bell nonlocality by themselves. The nature
of nonlocality becomes even more interesting when con-
sidering a more general nonlocal effect known as quantum
steering, which can be realized even for some Bell local
states [17,18]. As originally envisioned by Schrödinger in
1935 [17,19], quantum steering involves a type of remote
state preparation, and it is arguably the closest realization of
Einstein’s “spooky action at a distance”.
Understanding the differences between entanglement,

steering, and Bell nonlocality has been a fundamental
challenge in quantum information science. The seminal
work of Werner showed that not all entangled states are
capable of generating Bell nonlocality by the explicit
construction of local hidden variable (LHV) models [14].
The latter refers to theoretical models that reproduce the
local measurement statistics of certain quantum states while
still satisfying the principle of locality. Werner’s original
model only considered local projection-valued measures
(PVMs), but Barrett later extended it to account for the
most general type of local measurements, which are those
described by positive operator-valued measures (POVMs)
[15]. Moreover, Werner’s and Barrett’s models are even
stronger in that they constitute what is now called a local
hidden state (LHS) model. Such models simulate not only

the local measurement statistics but also the postmeasure-
ment quantum states for one party conditioned on the local
measurement outcome of the other. States satisfying an
LHS model are called unsteerable.
Since the work of Werner and Barrett, significant

advances have been made in the construction of both LHV
and LHS models [20–27]. Some of these models hold only
for PVMs, while others encompass POVMs as well. The
distinction between PVMs versus POVMs is crucial from a
fundamental perspective. While a quantum measurement is
traditionally understood as projecting or “collapsing” the
given system onto one of many orthogonal subspaces [28],
a full accounting of what quantum mechanics allows under
local processing should include the use of local ancillas,
the enabling ingredient for more general POVMs. The
existence of nonprojective POVMs allows for statistical
predictions in quantum theory that cannot be simulated
using just PVMs and classical randomness [29], and it has
led to unique quantum advantages in various state dis-
trimination [30] and communication tasks [31]. Thus, the
study of quantum nonlocality and quantum steering is
incomplete if it is just limited to PVMs.
The question of whether PVMs are strong enough on

their own to separate the class of steerable (nonlocal) states
from unsteerable (local) states remained unsolved even
for the simplest scenario of with two-qubit Werner states.
The Werner states is the canonical family of states for
investigating nonlocality due to its analytical simplicity and
deep connections to other aspects of quantum information
theory such as the potential existence of NPT bound
entanglement [32] and channel nonadditivities [33]. So
important is the steerability question for two-qubit Werner
states that it currently sits on the Open quantum problems
list, maintained by the Institute for Quantum Optics and
Quantum Information (IQOQI) in Vienna (Problem 39 [34],
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rephrased as Problem 1 below). Strong numerical evidence
[35] and explicit constructions for some special cases [36]
suggest that POVMs provide no advantage over PVMs in
qubit steering of Werner states. However, a full solution to
the problem has remained elusive, as well as a systematic
way of constructing an LHS model for POVMs. This Letter
resolves these open questions and proves that POVMs and
PVMs are indeed equivalent for the steerability of two-qubit
Werner states.
Preliminaries.—In quantum steering [37] a bipartite

state ρAB is shared between two observers, Alice and
Bob. Alice implements a local measurement labeled by
index x chosen from some family fMajxga;x, withMajx ≥ 0,
and

P
a Majx ¼ I. The possible postmeasurement states for

Bob’s system are given by the state assemblage E ¼
fσajxga;x, where σajx ¼ TrA½ðMajx ⊗ IÞρAB�. The state
assemblage is unsteerable if it admits an LHS model for
all unnormalized states σajx:

σajx ¼
Z

dλpðλÞpðajx; λÞρλ ∀ a; x; ð1Þ

where pðλÞ is a probability density function over variable λ
shared between Alice and Bob, pðajx; λÞ is a (stochastic)
response function for Alice, and fρλgλ is a set of states for
Bob satisfying

R
dλpðλÞρλ ¼ ρB. Essentially, if an assem-

blage satisfies Eq. (1), then there is arguably no quantum
nonlocal effect on Bob’s system when Alice measures her
part of ρAB since the entire process can be equivalently
simulated using just shared classical randomness λ. A given
state is unsteerable if its state assemblage E prepared by any
family of measurements M admits an LHS model above.
Similarly, a family of POVMs fMajxga;x is defined to

be jointly measurable (compatible) if there exists a com-
patible model [38]:

Majx ¼
Z

dλpðajx; λÞΠλ ∀ a; x; ð2Þ

with response functions pðajx; λÞ and “parent” POVM
fΠλgλ. The similar forms of Eqs. (1) and (2) is no
coincidence, and a one-to-one correspondence between
quantum steering and measurement incompatibility has
been previously established [39–42]. Here we restate it in
terms of the two-qubit Werner state ρWðrÞ and the POVM
fMr

ajxga;x, which is the noisy version of fMajxga;x having

with the same visibility r, where

ρWðrÞ ¼ rjΨ−ihΨ−j þ ð1 − rÞ I ⊗ I
4

; ð3Þ

Mr
ajx ¼ rMajx þ ð1 − rÞTrðMajxÞI

2
; ð4Þ

with jΨ−i ¼ ð1= ffiffiffi
2

p Þðj01i − j10iÞ, and index x running
over the set of all qubit POVMs.
Lemma 1 [39–42].—The state assemblage obtained by

measuring a Werner state ρWðrÞ with fMajxga;x admits an
LHS mode if and only if there exists a parent POVM that
can simulate their noisy form fMr

ajxga;x.
Now let Mr

POVM denote the entire collection of noisy
qubit POVMs having visibility r [i.e., having the form
of Eq. (4)] and let MPOVM ≔ M1

POVM. We give similar
definitions to the sets MPVM and Mr

PVM. The central
questions answered in this Letter can then be stated as
follows.
Problem 1: Werner’s problem [34].—Determine the

largest visibility r such that ρWðrÞ satisfies an LHS model
under all general measurement (POVMs) MPOVM.
Problem 2: Compatibility problem.—Determine the

largest visibility r such thatMr
POVM is a compatible family

of measurements.
By Lemma 1, these problems are two sides of the

same coin as their solutions identify the same threshold
visibility r. For Problem 1, extensive research has been
devoted to understanding the steering and Bell nonlocal
bounds for Werner states [14,15,21,43–47]. Compared to
the Bell nonlocal bound, the steering bound for two-qubit
Werner states is better understood (Fig. 1), where the exact
value of r ¼ 1=2 has been proven when restricting the
steering task to MPVM [17]. However, for POVMs,
the exact steering bound is still unknown [34], with only
the lower bound provided by [15].
Here we will provide a complete solution to Problem 1

by solving the formally equivalent Problem 2. The com-
patibility problem is fundamentally important in its own
right since it helps address the related question of whether
POVMs are more noise robust compared to standard
PVMs [48–50]. Moreover, as we will exploit below, the
compatibility problem is somewhat easier to tackle math-
ematically due to its relatively simple geometrical
representation.
Remark.—In both problems it is sufficient to just

consider extremal POVMs (in Problem 1) or their noisy

FIG. 1. Left: steering bounds for two-qubit Werner states ρWðrÞ
under projective measurements (PVMs) and POVMs. This Letter
closes the “Werner gap” by raising the POVM lower bound to
r ¼ 1=2. Right: schematic of quantum steering, Alice performs
measurements chosen from sets M, and Bob checks whether the
assemblage of states is steerable or not.
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versions (in Problem 2), while nonextremal POVMs can be
stochastically simulated from them [29]. For qubits, an
extremal POVM and its noisy version consist of at most
four effects fMag4a¼1 that are each rank one [29] and
represented in the Pauli basis as

Ma ¼ μaðI þ x̂a · σ⃗Þ⟶
noisy

Mr
a ¼ μaðI þ rx̂a · σ⃗Þ;

where σ⃗ ¼ ½σx; σy; σz� is the vector of Pauli matrices and x̂a
is the unit Bloch vector of effect Ma. From positivity
and normalization, one has

P
a μa ¼ 1,

P
a μax̂a ¼ 0⃗, and

μa ≥ 0, which together also imply that μa ≤ 1=2. Note that
PVMs are a special subset of extremal POVMs consisting
of two effects conveniently written in terms of a single
Bloch vector x̂ as M� ¼ 1=2ðI � x̂ · σ⃗Þ.
In what follows, we will use the Bloch vectors to

parametrize the choice of measurement in a given family
of measurements when the association is clear. For
example, for a fixed visibility r, the set of all noisy
PVMs can be parametrized by unit vectors on the Bloch
sphere as Mr

PVM ≔ fMr
�jx̂ ¼ 1=2ðI � rx̂ · σÞgx̂. Likewise,

any choice of a noisy extremal POVM fMr
aga can be

identified by a collection of four subnormalized Bloch
vectors fx⃗aga, where x⃗a ¼ μax̂a satisfy the positivity and
normalization conditions specified above.
Compatible model.—The compatibility problem for

the set of all noisy PVMs Mr
PVM has been studied in

previous works [50,51], including a companion paper to
this one [42]. It has been shown that there exists a
compatible model for Mr

PVM using a finite-sized parent
POVM whenever r < 1=2; while at r ¼ 1=2, the infinite-
outcome parent POVM fΠλ̂¼ð1=4πÞðIþ λ̂ · σ⃗Þgλ̂ provides
a simulation. Explicitly, a compatible model that simulates
a noisy PVM at r ¼ 1=2 in any spin direction x̂ is given by

Mr¼1=2
�jx̂ ¼

Z
S
dλ̂pð�jx̂; λ̂ÞΠλ̂ ¼

Z
S
dλ̂Θð�x̂ · λ̂ÞΠλ̂

¼ 1

2

�
I � 1

2
x̂ · σ⃗

�
; ð5Þ

where the response function pð�jx̂; λ̂Þ ¼ Θð�x̂ · λ̂Þ, withΘ
being the Heaviside step function. Our goal is to generalize
this model for the simulation of all noisy POVMs at the
same visibility r ¼ 1=2.
As a starting point, we use the same parent POVM fΠλ̂gλ̂

and try to extend the model in Eq. (5) to an arbitrary choice
of POVM fMr

a ¼ μaðI þ rx̂a · σ⃗Þga (identified by its Bloch
vectors fx⃗a ¼ μax̂aga) by taking the response function
to be pðajfx⃗ag; λ̂Þ ¼ 2μaΘðx̂a · λ̂Þ [52]. This does, in fact,
provide a decomposition of each effect Mr¼1=2

a in terms of
the parent POVM fΠλ̂gλ̂ since

Mr¼1=2
a ¼ μa

�
I þ 1

2
x̂a · σ⃗

�
¼

Z
S
dλ̂2μaΘðx̂a · λ̂ÞΠλ̂: ð6Þ

Unfortunately, this response function is not normalized;
i.e.,

P
a pðajfx⃗aga; λ̂Þ ≠ 1 for all λ̂. To remedy this, we use

the fact that the collection of response functions satisfying
Eq. (6) is not unique, since the set of effects in fΠλ̂gλ̂ is
underconstrained (linearly dependent), and we can judi-
ciously search it to find a normalized response function. We
show below how this can be done, focusing first on three-
outcome POVMs and then moving to four outcomes. By
the remark above, this covers all extremal qubit POVMs
and therefore solves the full problem.
Theorem 1.—The set of all noisy three-outcome POVMs

Mr¼1=2
3-POVM is compatible at r ¼ 1=2.
A detailed proof is presented in the Supplemental

Material [53]; two key ideas are backing our method.
(1.i) For each given fMr¼1=2

a ga, coarse grain the parent
POVM fΠλ̂gλ̂ into a different finite-outcome POVM
fΠAgA that is capable of simulating each effect of
fMr¼1=2

a ga individually (the hidden variable λ̂ is now
replaced with a coarse-grained varibleA). A natural choice
of coarse-grained POVM fΠAgA is given by which
combinations of the Bloch vectors x̂a are “on” for a given
λ̂ [i.e., Θðx̂a · λ̂Þ equaling one]. More precisely, we define

ΠA ¼
Z
S
dλ̂

Y
a∈A

Θðx̂a · λ̂Þ
Y
a0∉A

½1 − Θðx̂a0 · λ̂Þ�Πλ̂; ð7Þ

with A ⊆ f1; 2; 3g and Π0 ¼ Πf1;2;3g ¼ 0. For the parent
measurement fΠAgA, the starting (unnormalized) response
function pðajAÞ for the Mr¼1=2

a defined in Eq. (6) is given
by the values in Table I.
(1.ii) Smooth the response function using the (linear

dependent) constraints on fΠAgA. Because of the two
completion relations,

P
a M

r¼1=2
a ¼ I and

P
A ΠA ¼ I, the

six effects ΠA are linear dependent and satisfy

X3
a¼1

qaðΠfag − ΠfagcÞ ¼ 0; ð8Þ

where qa ≔ 1 − 2μa and Ac ¼ f1; 2; 3gnA is the set
complement of A. Moreover, the spherical symmetry in
the coarse graining implies that for every a; a0 ∈ f1; 2; 3g,

1

αa
ðΠfag þ ΠfagcÞ −

1

αa0
ðΠfa0g þ Πfa0gcÞ ¼ 0; ð9Þ

TABLE I. Unnormalized response function pðajAÞ for simu-
lating fMr¼1=2

a g3a¼1 with fΠAgA.

Πf2;3g Πf1;3g Πf1;2g Πf3g Πf2g Πf1g

Mr¼1=2
1

0 2μ1 2μ1 0 0 2μ1

Mr¼1=2
2

2μ2 0 2μ2 0 2μ2 0

Mr¼1=2
3

2μ3 2μ3 0 2μ3 0 0
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where αa ≔ TrðΠfagÞ=2 ¼ TrðΠfagcÞ=2 > 0. We can then
smooth the response function pðajAÞ in Table I by adding
or subtracting Eqs. (8) and (9), thereby changing the
weights of the different effects ΠA while maintaining a
simulation of the Mr¼1=2

a . In particular, a new normalized
function p0ðajAÞ is specified in Table II, where

X ¼ α1q1 − α2q2 þ α3q3
2α1

; Y ¼ α1q1 þ α2q2 − α3q3
2α1

:

For p0ðajAÞ to be a well-defined response function, all the
values in Table II must be non-negative and each column
must be normalized. Normalization can be verified by
inspection since X þ Y ¼ q1 ¼ ð1 − 2μ1Þ and

P
a μa ¼ 1;

non-negativity is proven in the Supplemental Material [53].
Therefore, we conclude that

Mr¼1=2
a ¼

X
A

p0ðajAÞΠA; ð10Þ

and so any arbitrary three-outcome noisy measurement
fMr¼1=2

a ga ∈Mr¼1=2
3-POVM can be simulated by a common

POVM fΠλ̂gλ̂ with a response function p0ðajAÞ defined
above. Note that Eq. (7) can be analytically computed as
shown in the Supplemental Material [53]. Along with the
response function in Table II, the compatible model is
explicitly constructed. We also emphasize a key property in
the proof of Theorem 1.
Observation 1.—To renormalize the response function

for the fΠAgA of a three-outcome POVM fMr¼1=2
a g3a¼1, it

is sufficient to change the response function for two of the
effects and leave the third one untouched.
Observation 1 is simply based on the construction

given in Table II, where the first row is left unchanged,
and it will be critical in extending Theorem 1 to the four-
outcome case.
Theorem 2.—The set of all noisy four-outcome POVMs

Mr¼1=2
4−POVM is compatible at r ¼ 1=2.

Since this covers all extreme qubits POVMs, Mr¼1=2
POVM is

a compatible family of measurements. The full proof is
given in the Supplemental Material [53], including codes
for the explicit construction of compatible models for any
extreme POVMs [54,55], but conceptually it can also be
broken into the following two steps, as depicted in Fig. 2.

(2.i) Introduce two additional “pseudo effects” Mr¼1=2
5�

for the purpose of construction only:

Mr¼1=2
5� ≔ μ5

�
I þ 1

2
x̂5� · σ⃗

�
; ð11Þ

with −x̂5þ ¼ x̂5− ¼ ½ðμ1x̂1 þ μ2x̂2Þ=jμ1x̂1 þ μ2x̂2j�, μ5 ¼
jμ1x̂1 þ μ2x̂2j. The given POVM fMr¼1=2

a g4a¼1 can then
be split into two POVMs, each of three effects,

POVMþ ¼ 1

κþ
fMr¼1=2

5þ ;Mr¼1=2
1 ;Mr¼1=2

2 g;

POVM− ¼ 1

κ−
fMr¼1=2

5− ;Mr¼1=2
3 ;Mr¼1=2

4 g; ð12Þ

where κþ ¼ μ1 þ μ2 þ μ5 and κ− ¼ μ3 þ μ4 þ μ5 to ensure
normalization of POVM�.
Define outcome setsOþ¼f3;4;5þg andO−¼f1;2;5−g.

By Theorem 1, POVM� can be simulated by a coarse-
grained POVM fΠ�

A�
gA� whose effects are

Π�
A�

¼
Z
S
dλ̂

Y
a∈A�

Θðx̂a · λ̂Þ
Y

a0∉A�

½1 − Θðx̂a0 · λ̂Þ�Πλ̂; ð13Þ

with A� ⊂ O� and compatible models as

1

κ�
Mr¼1=2

a ¼
X

A�⊂O�

p�ðajA�ÞΠ�
A�

for a∈O�: ð14Þ

Crucially, by Observation 1 and Table II, the response
function for Mr¼1=2

5� =κ� can be taken as p�ð5�jA�Þ ¼
2μ5=κ� if 5� ∈A� and p�ð5�jA�Þ ¼ 0 otherwise.

TABLE II. Normalized response function p0ðajAÞ for simulat-
ing fMr¼1=2

a g3a¼1 with fΠAgA.

Πf2;3g Πf1;3g Πf1;2g Πf3g Πf2g Πf1g

Mr¼1=2
1

0 2μ1 2μ1 0 0 2μ1

Mr¼1=2
2

2μ2 − X 0 1 − 2μ1 0 1 Y

Mr¼1=2
3

2μ3 − Y 1 − 2μ1 0 1 0 X

FIG. 2. A schematic for constructing a compatible model for a
four-outcome measurement fMr¼1=2

a g4a¼1. Step 1: construct
compatible models for POVMþ and POVM− without changing
the response function of “pseudo effects” Mr¼1=2

5� . Step 2: build a
compatible model for the four-outcome measurement by com-
bining the response function from step 1 and the coarse-grained
POVM defined by all six vectors fx̂4a¼1g ∩ fx̂5�g.
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(2.ii) Use the combined set of Bloch vectors fx̂ag4a¼1 ∪
fx̂5�g to define an 18-effect POVM fΠAgA:

ΠA ¼
Z
S
dλ̂

Y
a∈A

Θðx̂a · λ̂Þ
Y
a0∉A

½1 − Θðx̂a0 · λ̂Þ�Πλ̂; ð15Þ

where A ⊂ f1; 2; 3; 4; 5þ; 5−g. The construction of non-
negative and normalized response functions pðajAÞ based
on Eq. (14) is carried out in the Supplemental Material [53].
Theorem 2 implies that all noisy extreme qubit POVMs

in Mr¼1=2
POVM can be simulated by a common parent POVM

fΠλ̂gλ̂. Together with the fact that all nonextremal POVMs
can be stochastically obtained from those extremal
POVMs, one can immediately conclude that the Mr

POVM
is compatible at r ¼ 1=2, which coincides with the com-
patibility threshold for Mr

PVM. Not only does this solve
both Problems 1 and 2, but it implies that POVMs offer no
advantage over PVMs in terms of incompatibility noise
robustness.
Implications for Bell nonlocality.—Bell nonlocality is no

weaker than steerability in the sense that every LHS model
for one-sided measurements on a bipartite state ρAB can
be converted into an LHV model for two-sided measure-
ments [17,18]. Such a connection has been implicitly used
by Werner [14] and Barrett [15] in deriving their original
LHV models for the Werner state with visibility r ¼ 1=2
and r ¼ 5=12 under PVMs and POVMs, respectively.
Since these initial results, a breakthrough was made in
the construction of LHV models under PVMs by relating
the problem to finding upper bounds on Grothendieck’s
constant [44,47,56]. This ensures that ρWðrÞ is Bell local
under PVMs whenever r ≤ ≈0.6875. However, for general
POVMs this method does not directly apply, and the best
known locality bound under POVMs is r ≤ ≈0.4583 [47],
which is derived by simulating noisy POVMs with
PVMs [57]. This leaves a gap in the known locality range
of ρWðrÞ for PVMs versus POVMs. Our Theorem 2 makes
substantial progress toward closing that gap.
Proposition 1.—There exists an LHV model for general

measurements on the Werner state ρWðrÞ when r ≤ 1=2.
Conclusions.—In this Letter we have derived an exact

bound for steering two-qubit Werner states under positive
operator-valued measures and closed an open question
in the literature [34]. Understanding the role of general
POVMs in Bell nonlocality has been a puzzle for over three
decades and no satisfactory answer has been given. The
absence of examples demonstrating the need for non-
projective POVMs in Bell nonlocality implies that using
projective measurements may be adequate to uncover this
most bizarre prediction of quantum theory. Our result
makes an important step in this direction by giving the
first concrete example indicating that POVMs and PVMs
are equivalent in the simplest and most well-studied Bell
scenario of Einstein-Podolsky-Rosen steering with Werner
states. However, there is undoubtedly a lot more to

understand about general measurements and their signifi-
cance in the context of nonlocality, and many of these
unsolved problems are related to the subject of our Letter.
First, it is natural to ask whether our results in deriving LHS
(compatibility) models under general measurements can be
extended from qubits to systems with arbitrary dimensions.
The second interesting problem involves exploring the
distinction between PVMs and POVMs in other restricted
quantum steering or Bell nonlocality scenarios. For in-
stance, one could consider quantum steering and Bell
nonlocality when using finite amounts of shared random-
ness or when ρAB is a state with no symmetry. Finally, even
among the Werner family of states, our methods are not
strong enough to construct LHV models r > 1=2.
Consequently, when r > 1=2 it remains an open question
whether PVMs and POVMs are equally powerful for
realizing nonlocality.

Note added.—Recently, we learned of the independent
work of Renner [58] that solves Werner’s problem using a
different approach.
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