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7LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Place Jussieu, 75252 Paris cedex 05, France

(Received 16 June 2023; revised 16 March 2024; accepted 30 April 2024; published 11 June 2024)

We consider the effect of perturbing a single bond on ground states of nearest-neighbor Ising spin
glasses, with a Gaussian distribution of the coupling constants, across various two- and three-dimensional
lattices and regular random graphs. Our results reveal that the ground states are strikingly fragile with
respect to such changes. Altering the strength of only a single bond beyond a critical threshold value leads
to a new ground state that differs from the original one by a droplet of flipped spins whose boundary and
volume diverge with the system size—an effect that is reminiscent of the more familiar phenomenon of
disorder chaos. These elementary fractal-boundary zero-energy droplets and their composites feature
robust characteristics and provide the lowest-energy macroscopic spin-glass excitations. Remarkably,
within numerical accuracy, the size of such droplets conforms to a universal power-law distribution with
exponents that depend on the spatial dimension of the system. Furthermore, the critical coupling strengths
adhere to a stretched exponential distribution that is predominantly determined by the local coordination
number.
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Introduction.—Complex systems harboring a plethora of
competing low-energy states lie at the forefront of intense
investigation across diverse fields in physics, computation,
biology, and network science (including long-standing
foundational quests associated with the basic character
of both real and artificial neural networks and protein
folding) [1–5]. Spin glasses are paradigmatic realizations of
the venerable challenges posed by these systems. Decades
after their discovery, fundamental aspects of spin glasses
[1,2,6,7] remain ill understood. Excluding the fully con-
nected Sherrington-Kirkpatrick mean-field model [8] and
other soluble theories, e.g., Refs. [9–11], debates concern-
ing the nature of real finite-dimensional spin glasses persist
to this day. These systems are commonly described by the
nearest-neighbor Edwards-Anderson (EA) model [12]. We
will take the physically pertinent (and subtle) continuous
real number limit [13] of the EA coupling constants prior to
the thermodynamic limit [14]. With unit probability [15],
up to a trivial sign flip of all spins (a degeneracy henceforth
implicit), the system provably has a unique ground state
[13]. While some consensus has emerged regarding the
existence and character of the spin-glass phase transition
[16–18], at least in Ising systems, with a lower critical
dimension between 2 and 3 [19], important questions

remain regarding the spin-glass phase itself: e.g., whether
there is an asymptotically nontrivial overlap distribution
and a hierarchical structure of metastable states. A central
engima is to what extent the alluring structure of the
replica-symmetry breaking (RSB) solution of the mean-
field model survives in systems of finite dimensions d. Four
descriptions received most attention: (i) the full RSB
framework extended to finite dimensions [20], (ii) the
droplet scaling theory [21–23], (iii) the trivial–nontrivial
(TNT) [24–26], and (iv) the chaotic-pairs (CP) pictures
[27,28]. The most distinctive features of these pictures
relate to the relevant low-energy excitations. In the RSB
phase, such excitations have, asymptotically, an energy of
order Oð1Þ, independent of system size, and space-filling
domain walls appear between pure-state regions. By con-
trast, conventional droplet scaling predicts energies ∼lθ for
excitations on scale l with a fractal boundary of dimension
df < d [21–23]. The TNT and CP scenarios feature Oð1Þ,
df < d (TNT) and high-energy (θ > 0), df ¼ d excitations
(CP) [28], respectively. In numerical studies, such excita-
tions are injected via boundary condition changes applied
to systems of linear size L [29]. The corresponding ground-
state energy scales as Lθ with θ negative in d ¼ 2 and
positive when d ≥ 3 [30–32]. However, since this setup
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requires a macroscopic change of couplings, the resulting
excitations might not be representative of low-temperature
behaviors. Several studies investigated more local excita-
tions [24,26,33–35] but their behaviors for short-range
continuous spin glasses remained somewhat inconclusive.
Zero-energy droplets.—We consider the Gaussian EA

Ising model [12] with N spins σi ¼ �1 and Hamiltonian

HJ ¼ −
X
hiji

Jijσiσj; ð1Þ

where hiji denotes nearest neighbors. Here, we assume
free boundary conditions. The couplings J ¼ fJijg are
drawn from a Gaussian PJðJijÞ¼ð1= ffiffiffiffiffiffi

2π
p Þ×expð−J2ij=2Þ.

Starting from the ground state of a given sample, we vary a
single coupling constant Ji0j0 of a bond ði0; j0Þ at the
system center from its initial strength J0 until it reaches a
critical value Jc at which a new ground state appears (see
Fig. 1). Some properties of such droplets involving single
bond changes in the hypercubic EA Ising model [33] were
studied analytically in Ref. [28], yet specific results for the
physically relevant cases in d ¼ 2 and d ¼ 3 were not
provided. On tuning Ji0j0 , ground states become degenerate
at a specific value Ji0j0 ¼ Jc, differing by a domain of
flipped spins whose boundary is a contour of zero energy.
Previous work referred to the so-formed zero-energy
droplet (ZED) as a critical droplet [36]. Generally, spins
flipped in any domainD (not necessarily a ZED) relative to

those in the ground state are associated with boundary (∂D)
energies [37],

ΔE¼−2
X

hiji∈∂D

Jijσiσj≥0; ∂D¼fhijiji∉D;j∈Dg: ð2Þ

The following properties can be proven [38,43] (i) If
ΔE ¼ 0 (a ZED), the set of flipped spins will contain
exactly one of the two endpoints of the central bond [28].
(ii) As Ji0j0 is continuously varied from −∞ (where the
central bond connects two oppositely oriented Ising spins)
to ∞ (when the two spins are parallel), there will only be a
single ground-state transition at the critical coupling
Ji0j0 ¼ Jc. Thus, if perturbing Ji0j0 to a new value generates
a new ground state C0, then this state must differ from
the original ground state C by the very same spins in the
ZED appearing when Ji0j0 ¼ Jc [28]. Furthermore, (iii) the
energy associated with a ground-state change (even if
the number of flipped spins diverges) incurred by altering
a local exchange constant is asymptotically independent of
system size if the distribution of the associated critical
couplings at which a transition occurs is well defined in the
thermodynamic limit. If the distribution of Jc values does
not scale with system size (as we indeed verify) then neither
will the energy changes.
Multidroplet excitations.—Wemay vary couplings Jij on

general (noncentral) bonds and examine their respective
ZEDs to study multidroplet excitations for arbitrary J .
From (2), for general couplings, ΔE vanishes at “critical-
ity” for nontrivial domains when degeneracy appears and is
linear in deviations of the coupling constants from their
critical values. In the thermodynamic limit, for a continu-
ous distribution PJ, one can find any finite number of
disjoint bonds that are arbitrarily close to their critical
values. Thus, in that limit, the critical boundary excitations
that we examine and composites of a few such excitations
may be of the lowest possible energy. A related result holds
for arbitrary energy excitations [38].
Numerical calculations.—We studied ZEDs by comput-

ing ground states of the EA Ising model on square,
triangular, and honeycomb lattices of linear size
16 ≤ L ≤ 1024, cubic lattices with 5 ≤ L ≤ 12, body-
centered cubic systems with L ¼ 5, 7, and z-regular
random graphs (RRGs) of coordination numbers z ¼ 3,
4, and 6 with N ¼ 128 nodes. For each specific lattice or
graph, we used between 103 and 105 bond configurations
(disorder samples) for averaging [38]. For planar spin
glasses, we used the polynomial-time minimum-weight
perfect matching method [44,45] with Blossom V [46] to
determine exact ground states. For nonplanar systems, an
exact branch-and-cut approach (implemented with Gurobi
[47]) executes brute force tree searches of all possible spin
configurations. The code used for this work is publicly
available [48].

FIG. 1. Illustration of our numerical experiments. Gray and
white squares represent frustrated and unfrustrated plaquettes,
respectively. Red and black segments represent unsatisfied
(Jijσiσj < 0) and satisfied (Jijσiσj > 0) bonds. The critical value
Jc of the coupling of the central bond ði0; j0Þ (highlighted in
green) separates two different ground states that differ by a
domainD of flipped spins (shaded region). The boundary links in
∂D are the bisected orthogonal (blue) edges.
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Droplet energies and critical couplings.—When the
central coupling Ji0j0 varies from an initial strength of
J0 across Jc to a new value, the corresponding ground state
of (1) transitions from C to C0. From the perspective of the
original system with the initial coupling Ji0j0 ¼ J0, the
configuration C0 constitutes an excitation of energy [49]
ΔE ¼ 2jJ0 − Jcj [38,43] above that of the ground state C.
Using the latter relation for ΔE, we inferred Jc by
comparing the ground states found for Ji0j0 ≪ 0 and
Ji0j0 ≫ 0, respectively. In Fig. 2(a), we present excitation
energies ΔE for the d ¼ 2 and d ¼ 3 lattices as well as the
RRGs. The distributions are unimodal, peaking close to
ΔE ¼ 0, with the energy changes increasing with the lattice
(or graph) coordination number z. As the inset shows for
the example of the square lattice, the distributions are
almost perfectly independent of the system size. Hence
there is no scaling of the excitation energies with system
size. To better understand these distributions, we examined
the behavior of the critical couplings Jc. As their

probability density is even [38], in Fig. 2(b) we show
the distribution of the modulus jJcj. These distributions are
well described by a compressed exponential (or stretched
Gaussian) [38]

PðjJcjÞ ¼ kc expð−acjJcjβcÞ; ð3Þ

with 1 < βc < 2. The lines in Fig. 2(b) show fits of this
form with the parameters collected in Table I. The typical
values for Jc are mostly determined by the lattice or graph
coordination number z; the distributions almost collapse if
plotted as a function of jJcj=z, cf. the inset of Fig. 2(b). For
instance, data for the (z ¼ 6) cubic lattice nearly collapse
onto those of the (z ¼ 6) triangular lattice. Similarly, the
PðjJcjÞ distributions for RRGs of fixed coordination z ¼ 3,
4, 6 but otherwise random structure match with their
counterparts of the honeycomb, square, and triangular
lattices, respectively. Deviations are most pronounced for
small z. This is particularly apparent for a z ¼ 2 graph (i.e.,
a chain) for which PðjJcjÞ ¼ δðjJcjÞ (since any sign change
of Ji0j0 generates a new ground state in which all spins on
one side of this bond are flipped with degenerate ground
states at Ji0j0 ¼ 0). Asymptotically, PðjJcjÞ is independent
of boundary conditions, although finite-size corrections
might be strong [38]. We observed that the probability that
the ground state does not change when the initial central
coupling is flipped (Ji0j0 → −Ji0j0) increases with the
density of closed loops [38].
Droplet volumes and boundary areas.—We next study

the ZED geometries. In Fig. 3(a), we show the tail distri-
bution of the number jDj of sites (or volume) of these
droplets for square lattices of sizes 32 ≤ L ≤ 1024. All tails
follow a power-law successively extending to larger droplet
volumes,

PðjDj ≥ VÞ ¼ 1 − FðVÞ ¼ 1

V κv
0

Ω
�
V
V0

�
∼ kvV−κv ; ð4Þ

where F is the cumulative distribution and Ω a scaling
function. Once the ZEDs become too large, V ≳ V0ðLÞ, the
finite size of the system becomes manifest and the
probability plummets far more rapidly with the ZED size.

(a)

(b)

FIG. 2. (The legend is split between both panels, each of which
shows all datasets.) (a) Probability densities for the excitation
energies ΔE for different lattices and graphs. The inset shows the
distributions for square lattices of sizes L ¼ 16, 64, 256, and
1024 (darker shades for larger systems), illustrating that they are
almost perfectly independent of system size. (b) Probability
densities of the modulus of the critical coupling, jJcj, together
with fits of the compressed exponential form (3) to the data.
Curves for lattices or graphs of the same coordination number z
are nearly indistinguishable. The inset shows the distributions as
a function of jJcj=z.

TABLE I. Parameters of the compressed exponential (3), as
well as values of the scaling exponents κv of Eq. (4) for the
droplet volume and κs of (5) for the droplet boundary, for the
different lattices considered.

Lattice ac βc κv κs

Honeycomb 2.76(1) 1.58(1) 0.215(2) 0.342(3)
Square 1.187(8) 1.71(1) 0.224(2) 0.346(2)
Triangular 0.523(7) 1.80(1) 0.216(3) 0.336(3)
Simple cubic 0.69(4) 1.55(5) 0.131(6) 0.159(5)
bcc 0.21(1) 1.79(5) 0.116(5) 0.147(7)
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As is illustrated in Fig. 3(b), we find similar power laws for
all considered d ¼ 2 and d ¼ 3 lattices. The exponent κv
appears to only depend on the lattice dimension d. Thus, we
find the compatible κv ≈ 0.22 for the square, triangular, and
honeycomb lattices, and κv ≈ 0.125 for the simple cubic,
and bcc lattices, respectively. The individual fit values
appear in Table I. By comparison to their planar counter-
parts, the more notable differences between the simple
cubic and bcc lattices are likely a consequence of the
smaller linear sizes in d ¼ 3.
The ZED surface areas j∂Dj exhibit a similar power-law

distribution

Pðj∂Dj ≥ AÞ ¼ 1 − FðAÞ ¼ 1

Aκs
0

Σ
�
A
A0

�
∼ ksA−κs : ð5Þ

As seen in Fig. 3(c), deviations from the power-law behav-
ior occur for A≳A0ðLÞ with A0ðLÞ monotonically in-
creasing in L [50]. As Fig. 3(d) illustrates, the exponents κs
are again universal, depending only on the lattice dimen-
sion, cf. the fit parameters in Table I. For RRGs with sparse
closed loops, Pðj∂Dj ≤ AÞ becomes very sharp. For tree-
like graphs (no closed loops), an entire branch of spins

attached to the central bond flips when Ji0j0 changes sign.
Here, the boundary separating the ground states for positive
and negative Ji0j0 is comprised of only one (j∂Dj ¼ 1) bond
and Pðj∂Dj ≤ AÞ increases sharply (a step function).
Similarly, a higher exponent κs [sharper Pðj∂Dj ≤ AÞ]
appears for lattices of lower spatial dimension d having
fewer closed loops (see Table I).
Fractal dimension.—Analyzing, for the square lattice, the

scaling of theZEDvolume and surface areaswith their linear
extent l [38], we deduce a volume fractal dimension dv ¼
1.97ð3Þ and a surface fractal dimension ds ¼ 1.27ð1Þ [38].
An alternative analysis using scaling collapses according to
Eqs. (4) and (5) yields the compatible estimates dv ¼
1.991ð75Þ and ds ¼ 1.275ð30Þ [38]. Square lattice ZEDs
are hence compact (i.e., dv ≈ d ¼ 2) with fractal surfaces of
Hausdorff dimension compatible with that of domain walls
induced by changes of the boundary conditions, ds;DW ¼
1.2732ð5Þ [51]. This similarity of fractal dimensions is
intuitive as the flipping of boundary couplings involved in
transitioning from periodic to antiperiodic boundary con-
ditions is akin to a sequence of ZED flips [52]. Indeed, the
injection of a domain wall can be viewed as sequentially
flipping the bonds, one after the other, along a system

FIG. 3. ZED volume V and surface area A distributions. (a) Distribution of ZED volumes for square lattices of sizes L ¼ 32–1024
(darker shades correspond to larger systems). The inset shows the scaling functionΩ of Eq. (4) assuming V0 ∼ Ldv with dv ¼ 1.991ð75Þ
(see below). (b) Volume distributions for the different lattice types with fits of the power-law form (4). (c) The ZED surface areas for
simple cubic lattices of sizes L ¼ 5–12. The inset shows Σ of Eq. (5) assumingA0 ∼ Lds with ds ¼ 2.76ð2Þ (see below). (d) Surface area
distribution for different lattices with fits (5). For the surface area distribution for the square lattices and the volume distribution for the
simple cubic lattices, see Fig. S1 in the Supplemental Material [38].
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boundary [28,38]. For the cubic lattice, a similar analysis
yields dv ¼ 3.08ð5Þ½20� and ds ¼ 2.76ð2Þ½15�, where the
numbers in square brackets indicate the estimated system-
atic corrections from finite size [38]. Since dv ≤ d ¼ 3, this
suggests that dv ≈ d ¼ 3. Again, ds is comparable to
previous estimates ds ≈ 2.6 [25].
Given the cumulative power-law tail distributions of (4)

and (5), it is clear that the probability densities of volumes
and surface areas decay algebraically (with exponents
κv þ 1 and κs þ 1, respectively) implying that the average
volume hVi and surface area hAi diverge with L.
Specifically, the power-law (∝ V−ðκvþ1Þ) regime of the

ZED volume distribution implies that hVi > R V0

0 dVV−κv=R V0

0 dVV−ðκvþ1Þ ∝ V0. There are additional V > V0 contri-
butions not following the power law (4). The scaling
collapse in the inset of Fig. 3(a) illustrates that V0 ∼ Ldv

such that the average volume diverges with L. Likewise,
hAi ∼ Lds . Hence critical ZEDs are excitations of divergent
volumes (nearly extensive in the system size) with fractal
boundaries.
Discussion.—The ground states of the Gaussian EA

Ising model are exceedingly fragile and respond with
(ZED) excitations of unbounded size to perturbations of
single couplings. We find universal exponents governing
the geometrical size of these excitations, the distribution of
(“critical”) single couplings, and energies. In the thermo-
dynamic limit, many couplings are inevitably arbitrarily
close to being critical such that an infinitesimal amount of
energy may create macroscopic system-spanning excita-
tions. All excitations (domain-wall or other) may be
associated with ZEDs that appear as exchange constants
are sequentially tuned to values that they assume when
these excitations arise [38]. The energies of system-
spanning d ¼ 2 domain-wall excitations of length l vanish
as lθ with θ ¼ −0.2793ð3Þ < 0 [51]. Thus, large l
domain-walls in d ¼ 2 asymptotically become ZEDs.
When keeping the couplings fixed, spin configurations
associated with (generally system spanning) single bond
ZEDs constitute excitations of energies that do not scale
with L. In d ¼ 3 or whenever θ > 0, domain-wall excita-
tion energies diverge with increasing L and are thus less
relevant for low-temperature physics. In d ¼ 2 and d ¼ 3

lattices, ZED volume and surface area distributions follow
universal power laws with finite lattice cutoffs. ZEDs have
compact volumes with Hausdorff dimensions dv ≈ d and
fractal boundaries d − 1 < ds < d consistent with domain
walls in d ¼ 2. The ZED size monotonically increases with
external field [38].
Our setup for investigating ZEDs is complementary to

that for “disorder chaos” wherein randomness is introduced
globally by perturbing all couplings in the system [43,53–
60]. This leads to an energy contribution proportional to
lds=2. According to droplet theory, the relevant energy scale

is ΔE ∝ lθ, suggesting disorder chaos whenever ds=2 > θ.
By their nature, ZED perturbations (whose existence is
guaranteed in the thermodynamic limit) are always relevant
low-energy excitations.
Since vanishing energy and more general excitations are

composites of ZEDs [38], our findings carry important
consequences. The defining ZED characteristics impose
constraints on the properties of excitations in various
pictures. Although finite-size corrections can be strong
for spin glasses, the power-law exponents in Table I clearly
indicate divergent droplet sizes in d ¼ 2 and d ¼ 3. The
ZEDs are compact with fractal, but not space-filling,
boundaries and O(1) energy, thus differing from conven-
tionally considered spin-glass excitations [38], and provid-
ing a test for comprehensive spin glass theories.
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