
Spin Inertia and Auto-Oscillations in Ferromagnets

Rodolfo Rodriguez ,1 Mikhail Cherkasskii ,2 Rundong Jiang ,1 Ritwik Mondal ,3 Arezoo Etesamirad ,1

Allison Tossounian ,1 Boris A. Ivanov ,4,5 and Igor Barsukov 1,*

1Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
2Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany

3Department of Physics, Indian Institute of Technology (ISM) Dhanbad, IN - 826004, Dhanbad, India
4Institute of Magnetism, National Ukrainian Acad. Sci., 03142, Kiev, Ukraine

5William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

(Received 14 January 2024; accepted 10 May 2024; published 13 June 2024)

Recent experimental confirmation of spin inertia in ferromagnets positions this well-developed material
class as a prime candidate for THz frequency applications. Spin-torque driven critical spin dynamics, such
as auto-oscillations, play the central role in many spin-based technologies. Yet, the pressing question on
spin inertia’s effect on spin-torque driven dynamics in ferromagnets has remained unexplored. Here, we
develop the theoretical framework of precessional auto-oscillations for ferromagnets with spin inertia.
We discover and introduce the concept of nutational auto-oscillations and demonstrate that they can
become pivotal for future ultrahigh frequency technologies. We conclude by revealing parallels between
spin dynamics in ferrimagnets and inertial ferromagnets and derive an isomorphism that establishes a
foundation for synergistic knowledge transfer between these research fields.
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Introduction.—In ferromagnets, coupling of spins to other
degrees of freedom has been discussed [1–12] to apply
effective inertia to the spin motion. As such, magnetic
relaxation is generally accompanied by this indirect effect
[13,14], termed spin inertia. It would manifest itself through
nutational spin dynamics at (sub-)THz frequencies, emerg-
ing concurrently with the well-established precessional
dynamics at GHz frequencies [Fig. 1(a)]. Recently, nuta-
tional spin dynamics in ferromagnets have been experimen-
tally confirmed [15–17].
Besides its implications for the fundamental understand-

ing of magnetism, spin inertia bears tremendous potential
for ultrahigh frequency applications. The pursuit of higher-
frequency spin dynamics has recently intensified interest in
materials like ferrimagnets and antiferromagnets [18–22],
which exhibit (sub-)THz frequency precessional dynamics
even without spin inertia [18,19,23]. However, function-
alization of these materials is an ongoing effort. In contrast,
ferromagnets have a wide range of engineered materials
and established techniques for spin-torque manipulation of
magnetization [24–31]. Integrating these existing methods
with the ultrahigh frequency nutational dynamics in inertial
ferromagnets could be pivotal for advancing future spin-
based technologies.
Spin-torque driven auto-oscillations are a prime example

of critical spin dynamics with technological relevance
[32,33]: auto-oscillators are used as magnetic neurons in
artificial neural networks [34,35], as emitters in magnonic
circuits [36,37], and as transistors in high-frequency
electronics [38]. Yet, the influence of spin inertia on

precessional auto-oscillations and the concept of nutational
auto-oscillations have remained to be explored. This is
particularly compelling, given that several widely used
ferromagnetic materials are now recognized to posses
substantial spin inertia [15–17].

FIG. 1. (a) Magnetization trajectory in an inertial ferromagnet.
In addition to the right-hand precession at a GHz frequency, the
magnetization follows a left-hand nutation at a sub-THz fre-
quency. (b) Sample model and its configuration in space. (c) Time
trace of magnetization transverse component, mxðtÞ, calculated
for H ¼ 10 kOe, η ¼ η̄, and J ¼ 0.7 · Jn. (d) Its Fourier trans-
form shows Lorentzian peaks for the precessional oscillation and
(e) nutational oscillation.
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Here, we develop a theoretical framework for auto-
oscillations in ferromagnets considering spin inertia. We
examine its effects on precessional auto-oscillations and
introduce the concept of spin-torque driven nutational auto-
oscillations at ultrahigh frequencies. Moreover, we reveal
an isomorphism between the spin dynamics in ferrimagnets
and inertial ferromagnets, thus bridging these two bur-
geoning research fields.
Results.—Our reconciliation of the theoretical frame-

work begins [1] with extending the equation of magneti-
zation motion in ferromagnets by the inertial term

∂tm ¼ −γm ×Heff þ αm × ∂tm

þ Jm × ðm × σÞ þ ηm × ∂ttm: ð1Þ

Here, γ is the gyromagnetic ratio magnitude and m is the
normalized magnetization. With the first two right-hand
terms, Eq. (1) would correspond to the Landau-Lifshitz-
Gilbert equation [32] with the effective magnetic field
Heff and Gilbert damping α. The third term describes the
Slonczewski spin torque, originating from inbound spin
current with amplitude J and polarization unit vector σ.
The last term, containing the second time derivative of
magnetization [1], describes spin inertia with the inertial
parameter η.
Without spin inertia (η ¼ 0), a spin current with the

polarization parallel to the effective field, σ↿↾Heff , is
known to drive auto-oscillations when the positive spin
current amplitude reaches a critical value. The magnetiza-
tion transitions into self-sustained oscillations at the fre-
quency of the lowest precessional mode [32].
In the presence of spin inertia (η > 0), we calculate the

critical current of precessional auto-oscillations by adapting
the formalism by Grollier et al. [39]: we look for unstable
solutions for the transverse components of magnetization
mx;mz ∝ expðωtÞ and linearize Eq. (1) to their first order.
This reduces Eq. (1) to a determinant equation for the
oscillation frequency ω. Negative real frequencies corre-
spond to decaying oscillations of magnetization, while
positive real frequencies describe exponentially growing
auto-oscillations. The real component of the oscillation
frequency vanishes at the critical current

RefωðJ�Þg ¼ 0: ð2Þ

We find that in inertial ferromagnets Eq. (2) yields two
roots. The positive critical current Jþ corresponds to preces-
sional auto-oscillations. The negative root J− demonstrates
that nutational auto-oscillations are possible. Figure 1(a)
helps to explain the negative sign of the nutational critical
current. While precessional oscillation is a right-hand
motion, nutational oscillation is left-handed and requires
the opposite polarity of the spin current to reach auto-
oscillations [19,20].

The roots of Eq. (2) possess no reasonably concise explicit
solutions. To validate our findings and derive expressions
for the critical currents, we numerically time-integrate the
equation of motion [Eq. (1)] without linearizations, and
compute the magnetization trajectory mðtÞ.
As the sample model, shown in Fig. 1(b), we use a thin

ferromagnetic film with no magnetic anisotropy except
for the shape anisotropy field Hd ¼ 10 kOe, like in the
widely used material Permalloy [40]. An external magnetic
field H is applied within the film plane and the inbound
spin current is polarized parallel to it, σ↿↾H. Such
configuration corresponds to a typical experiment on a
spin Hall driven auto-oscillator [41]. Note that in all
figures, for brevity, we may write the inertial parameter
in units of η̄ ¼ ð2π · 560 GHzÞ−1, which is the experimen-
tally determined value for Permalloy [15].
Upon a small perturbation from equilibrium, the time

evolution of the transverse magnetization componentmxðtÞ
in Fig. 1(c) shows two superimposed oscillations. Its
Fourier transform in Figs. 1(d),(e) has two Lorentzian
peaks: precession at GHz and nutation at sub-THz
frequencies.
In Fig. 2(a), the precessional frequency fp is shown as a

function of magnetic field. For η ¼ 0, it follows [42] the
Kittel equation 2πfη¼0

p ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðH þHdÞ

p
. With increasing

inertial parameter, the precessional frequency falls [43].
As shown in Fig. 2(b), this redshift is in excellent agree-
ment with the recently developed inertial Smit-Beljers
formalism [44]. It allows [45] for calculating the frequen-
cies of inertial ferromagnets

2π fp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

pq
ð3Þ

a ¼ 1

2η2
þ π

αη
Δfη¼0

p ; b ¼ 2π

η
fη¼0
p ; ð4Þ

using noninertial parameters of frequency fη¼0
p and (half-

width at half-maximum) linewidth Δfη¼0
p .

The precessional linewidth Δfp, defined in Fig. 1(d), can
also be used to assess the effective damping of the preces-
sional mode [42]. First, the linewidth is usually translated
into the field domain via ΔHp ¼ Δfpð∂fp=∂HÞ−1. This
procedure involves the first derivative of the frequency-
field relation, which itself—as we have seen in Fig. 2(a)—
depends on the inertial parameter η. Despite this explicit
dependence, we find the linewidth to follow a linear trend as
a function of frequency, independently of the inertial
parameter. For all η, the line fit ΔHpγ=2π ¼ αefffp returns
the same slope of the effective damping. At zero spin current,
it is equal to αeff ¼ α ¼ 0.005, the Gilbert damping used in
our simulations.
With increasing positive spin current, the linewidth

decreases linearly; the effective damping, shown in
Fig. 2(d), extrapolates to zero at the critical current Jp.
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The precession amplitude Ap grows with increasing spin
current and shows a sudden jump with the onset of
auto-oscillations at the critical current. In the subcritical
regime, J < Jp, the inverse amplitude A−1

p falls linearly
with increasing spin current (an experimentally observed
behavior [46]). The inverse amplitude extrapolates to zero
[Fig. 2(e)] at the same critical current Jp as in the case of the
linewidth.
Without considering spin inertia, it has been a common

practice to treat the critical current as an explicit function of

external and anisotropy fields [39,47]. We find that such
approach no longer holds in the presence of spin inertia.
All critical currents, obtained for various inertial parameters
and shown in Fig. 2(f), can be described by the same
function of the precession frequency—in spite of the
frequency redshifts caused by inertia. This counterintuitive
result suggests that the critical current should be treated as
an explicit function of the frequency.
As shown in Fig. 2(f), this function is nonmonotonic

with a low-frequency and a high-frequency region. We find
that the latter can be described by

Jp ≈ αγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πfp=γÞ2 þ ðHd=2Þ2

q
: ð5Þ

The dependence of the critical current on the shape
anisotropy field Hd is confirmed in Fig. 2(g). We further
find that by substituting Eq. (3) into Eq. (2), we can
eliminate the explicit dependence on η. The linearized
approximation of Jþ is then in excellent agreement with
our heuristically defined critical current Jp.
We now turn to the nutational oscillations [Fig. 1(e)].

The nutational frequency, shown in Fig. 3(a), falls with
increasing inertial parameter and grows with magnetic
field. This behavior is described well by the aforemen-
tioned inertial Smit-Beljers formalism

2πfn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

pq
: ð6Þ

As shown in Fig. 3(b), the amplitude of the nutational
oscillation is susceptible to spin current. It grows with
increasing magnitude of the negative current. In the
subcritical regime, the inverse amplitude A−1

n approaches
a linear trend and extrapolates to zero at the nutational
critical current Jn.
The critical current magnitude increases with increasing

Gilbert damping and falls with increasing inertial parameter
[compare different scenarios in Fig. 3(b)]. It furthermore
shows a weak dependence on magnetic field. With increas-
ing magnetic field, the nutational frequency experiences a
blueshift and the critical current magnitude grows with the
frequency, as shown in Fig. 3(c).
Figure 3(d) summarizes the behavior of the nutational

critical current. In general, we find it to depend linearly on
the inverse inertial parameter with the negative slope equal
to the Gilbert damping. Moreover, application of magnetic
field leads to a minor increase of the critical current
magnitude. These findings can be approximated by

Jn ¼ −αη−1 −OðHÞ ≈ −α2πfn: ð7Þ

We compare this heuristically defined critical current with
the linearization of Eq. (1), J−, and find them to agree
within 1% for the parameter space discussed here.
It should be noted that the term “nutation” is rather

ambiguous in that it suggests that nutation could exist only

FIG. 2. (a) Precessional frequency as a function of magnetic field
follows the Kittel equation for η ¼ 0. With increasing inertial
parameter, the frequencies experience a redshift. (b) The redshift
and the inertial Smit-Beljers formalism of Eq. (3) are in excellent
agreement. (c) Field-domain precessional linewidth grows linearly
with frequency, with a slope that does not depend on the inertial
parameter. The slope corresponds to the effective damping and can
be tuned by the spin current J. (d) Effective damping extrapolates
to zero at a critical current Jp. (e) Inverse precessional amplitude
extrapolates linearly to zero at the same critical current as for the
precessional linewidth. (f) The critical current for precessional
auto-oscillation does not depend on the inertial parameter, despite
the frequency redshift. The high-frequency region and Eq. (5) are
in a very good agreement. (g) The critical current as a function of
the shape anisotropy field follows Eq. (5) at 20 GHz (high-
frequency region).
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on top of a precessional motion. Our study shows that
both precession and nutation undergo auto-oscillations;
these are largely independent oscillation modes. We shall
stick to the historically established nomenclature of
nutation, but we will reconsider the interpretation of
the magnetization trajectory visualized in Fig. 1(a). In
fact, two largely independent oscillation modes with
opposite chiralities are strongly reminiscent of spin
dynamics in ferrimagnets [20,48].
Ferrimagnets consist of typically two magnetic sublat-

tices with the magnetizations M1 and M2, which are
coupled antiferromagnetically through exchange field
Hex ¼ Eex=ðM1 þM2Þ. We define the order parameters
of the system—magnetization and Néel vectors—via

m ¼ M1 þM2

M1 þM2

; l ¼ M1 −M2

M1 þM2

; ð8Þ

which are subject to the constraints

m · l ¼ ν; m2 þ l2 ¼ 1þ ν2; ð9Þ

where parameter ν ¼ ðM1 −M2Þ=ðM1 þM2Þ describes
the imbalance between the sublattices.
Omitting the dissipative terms of damping and spin

current at first, we rewrite two equations of motion—one
for each sublattice—into coupled equations for the order
parameters [48]

∂m
∂t

¼ −γ
h
m ×HðmÞ

eff

i
− γ

h
l ×HðlÞ

eff

i
; ð10Þ

∂l
∂t

¼ −γ
h
l ×HðmÞ

eff

i
− γ

h
m ×HðlÞ

eff

i
; ð11Þ

where Hðm;lÞ
eff ¼ −½1=ðM1 þM2Þ�fδW=δðm; lÞg are effec-

tive fields, calculated from the magnetic energy W½l;m�
expressed through m and l.
We should note that while ferrimagnets and antiferro-

magnets may, in principle, possess spin inertia [9,49–51],
we have intentionally disregarded it here and thus omitted
the explicit second time-derivative term in the equations
of motion. Even without spin inertia, spin dynamics in
these materials show inertial features, as observed exper-
imentally [23,52]. The underlying mechanism, however,
resides distinctly in the exchange coupling of the magnetic
sublattices, as opposed to the coupling of spins to extrinsic
degrees of freedom [13,14] in inertial ferromagnets.
For a small imbalance ν ≪ 1, we use the approximation

of small m. Consequently, we keep this vector only in the
uniform exchange energy term with m2 and write all other
terms through the vector l, which can further be treated as a
unit vector, l2 ¼ 1. The energy density becomes [48]

wðm; lÞ ¼ Eex

2
m2 þ wðlÞ: ð12Þ

In Eq. (11), all terms are bilinear overm and l, and we thus
keep only the dominant exchange term,

m ¼ νlþ 1

γHex

�
∂l
∂t

× l

�
: ð13Þ

Substituting this expression for m into Eq. (10) and
restoring the dissipative terms, we arrive at the equation
of motion for the normalized Néel vector l,

ν∂tl ¼ −γl ×HðlÞ
eff þ αl × ∂tl

þ ðγHexÞ−1l × ∂ttlþ Jl × ðl × σÞ: ð14Þ

Equation (14) describes ferrimagnets near spin compen-
sation point ν ≪ 1 but, more generally, it is also valid
qualitatively for ν ≤ 1. In particular, it reveals the presence
of two precession modes: a right-hand mode at low
frequencies and a left-hand mode with the characteristic
frequency [18,19,48] of the order of ωex ¼ γHex. These

FIG. 3. (a) Nutation frequency falls with increasing inertial
parameter, exhibits a blueshift with increasing magnetic field,
and agrees well with Eq. (6) (solid lines). (b) Inverse amplitude of
nutation extrapolates, nearly linearly, to the negative critical
current Jn. Starting from the red curve, the arrows demonstrate
various scenarios where only one of the parameters is increased:
Gilbert damping leads to an increase of the critical current
magnitude, the inertial parameter—to a decrease. (c) Magnetic
field leads to frequency blueshift, which in turn leads to a minor
increase of the critical current magnitude in agreement with
Eq. (7) (solid line). (d) The nutational critical current is propor-
tional to the inverse inertial parameter, with a slope approx-
imately equal to the Gilbert damping.
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modes are similar to the two modes of opposite chirality,
precessional and nutational, in inertial ferromagnets.
This phenomenological similarity is further substantiated

by comparing Eq. (14) with Eq. (1). Defining a map
between the constituents of these equations,

ðm;Heff ;γ;α;J;ηÞ↔
�
l;HðlÞ

eff ;γ=ν;α=ν;J=ν;
1

ωexν

�
; ð15Þ

allows us to establish an isomorphism between spin dynam-
ics in ferrimagnets and inertial ferromagnets. Advances in
knowledge made in one area of research [8,18,19] can now
be synergistically transferred to the other one.
Conclusions.—We have investigated the effect of spin

inertia on critical spin dynamics in ferromagnets using
macrospin models and arrived at three major conclusions:
(i) spin inertia causes a redshift of precessional frequencies
and, as a consequence, a tangible reduction of effective
damping and critical current for a given magnetic field.
However, the relation of these two experimentally pertinent
parameters to the frequency remains universally valid,
regardless of the inertial parameter. (ii) Nutational auto-
oscillations are of left-hand chirality and can be achieved
with spin current polarity opposite to that of precessional
auto-oscillations. The critical current magnitude α2πfn
is a few ten times higher than that of precessional auto-
oscillations. Reaching nutational auto-oscillations thus
appears to be a challenging but reasonably achievable task,
in particular given the existing advancedmethods ofmaterials
and spin-torque engineering in ferromagnets and the prospect
of using them in future ultrahigh frequency applications.
(iii) Spin dynamics in inertial ferromagnets is isomorphic to
that in ferrimagnets near compensation point. Knowledge
advances for these materials can be directly transferred, thus
mutually benefiting these burgeoning research fields.
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