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2Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

3Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
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We introduce a spin-symmetry-broken extension of the connected determinant algorithm [RiccardoRossi,
Determinant diagrammaticMonte Carlo algorithm in the thermodynamic limit, Phys. Rev. Lett. 119, 045701
(2017).]. The resulting systematic perturbative expansions around an antiferromagnetic state allow for
numerically exact calculations directly inside a magnetically ordered phase.We show new precise results for
the magnetic phase diagram and thermodynamics of the three-dimensional cubic Hubbard model at half-
filling. With detailed computations of the order parameter in the low to intermediate-coupling regime, we
establish the Néel phase boundary. The critical behavior in its vicinity is shown to be compatible with the
O(3) Heisenberg universality class. By determining the evolution of the entropy with decreasing temperature
through the phase transition we identify the different physical regimes at U=t ¼ 4. We provide quantitative
results for several thermodynamic quantities deep inside the antiferromagnetic dome up to large interaction
strengths and investigate the crossover between the Slater and Heisenberg regimes.
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In strongly correlated materials, such as high temper-
ature superconducting copper oxides or iron-based pnic-
tides, the interactions between electrons yield intricate
phase diagrams, exhibiting, e.g., magnetically or charge-
ordered phases, superconductivity, or Mott insulating
behaviors. Understanding the properties of these different
phases, their interplay and driving mechanisms is one of the
outstanding challenges of modern condensed matter theory.
From the theoretical point of view, one of the simplest

models to investigate phase transitions is the three-
dimensional cubic Hubbard model [1–6] given by the
Hamiltonian

Ĥ ¼ −t
X

hi;ji

X

σ

ĉ†iσ ĉjσ þ U
X

i

n̂i↑n̂i↓ − μ
X

iσ

n̂iσ; ð1Þ

where t is the hopping amplitude between nearest-neighbor
sites hi; ji on a cubic lattice, U ≥ 0 the on-site Coulomb
interaction, μ the chemical potential, n̂iσ ¼ ĉ†iσ ĉiσ and ĉ†iσ
creates an electron on site i with spin σ. At half-filling
(μ ¼ U=2), the ground state has antiferromagnetic long-
range spin order. In three dimensions this SU(2) symmetry-
broken phase survives up to the Néel temperature TNðUÞ
above which the system becomes paramagnetic. While
there is qualitative understanding of the mechanisms that

produce the antiferromagnetic order both at weak and
strong coupling, obtaining unbiased quantitative results,
especially close to the phase transition and inside the
ordered phase, is still very challenging [7–19]. Therefore,
despite its apparent simplicity, the Hubbard model on the
cubic lattice is an ideal platform to explore the potential of
new algorithms before engaging in the study of more
realistic systems. The model was realized in cold-atomic
experiments on optical lattices where antiferromagnetism is
under active investigation [20–28].
The main challenge for theoretical approaches based on

finite size lattices is to properly account for the increasing
correlation length in the vicinity of a second order phase
transition, and, as such, to extrapolate to the thermody-
namic limit. In that respect, the diagrammatic Monte Carlo
approach [29–31] is very promising as it offers the
possibility to investigate a system directly in the thermo-
dynamic limit. The method stochastically computes the
coefficients ak appearing in the perturbative expansion inU
of a physical observable,AðUÞ ¼ P

k akU
k in the simplest

formulation. The computational cost rapidly increases with
increasing perturbation orders and only so many coeffi-
cients can be computed before the statistical variance
becomes overwhelming. Nevertheless, important improve-
ments [32,33] make it now possible to reach perturbation
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orders as large as 10–12. In the context of the repulsive
Hubbard model, the diagrammatic Monte Carlo method has
already been successfully applied to nonperturbative
regimes in the two-dimensional square lattice [31,34–43].
In the usual formulation, the perturbation series is con-

structed starting from the noninteracting (U ¼ 0) SU(2)-
symmetric solution of Eq. (1). This allows to obtain results for
the interacting system in its paramagnetic regime. As the
phase transition to the antiferromagnetic state is approached,
however, the resummation of the series becomes increasingly
difficult. The reason is that a second-order phase transition
happening at U ¼ Uc is accompanied by a singularity in the
complex-U plane for observables AðUÞ that show a non-
analyticity at Uc. Consequently, investigating the antiferro-
magnetic transition in the cubic Hubbard model can only be
done from temperatures above and not too close to the Néel
temperature TN . Very recently, the spin structure factor
perturbation series has been computed this way in the
paramagnetic phase of the cubic Hubbard model [42].
Assuming the critical behavior in the vicinity of the phase
transition, the authors were able to accurately compute TN in
the weak-to-intermediate coupling regime both at half-filling
and at finite doping. This approach is, however, not able to
address the properties of the model inside the ordered phase.
In this Letter, we take a complementary approach and

compute the perturbation series for physical observables
within the antiferromagnetic phase of the cubic half-filled
Hubbard model. We show that our broken-symmetry
approach to perturbative expansions is a powerful tool
for studying magnetically ordered phases and phase tran-
sitions. Our results are obtained directly in the thermody-
namic limit and, thus, do not involve any finite size scaling.
We document the vanishing of the magnetic order param-
eter at TN and the corresponding critical exponent β and
report and discuss the behavior of the double occupancy,
grand potential, and entropy across the phase transition and
inside the ordered phase.
Method.—The possibility to construct symmetry-broken

perturbation series comes from a flexibility in the choice of
the starting point around which the perturbation is
expanded. This freedom has been extensively applied to
diagrammatic Monte Carlo computations in the nonmag-
netic phase to improve the convergence properties of the
series [39–41,44–52]. Very recently, it has been used to
construct a perturbation theory around a BCS state and
inside the superconducting phase of the attractive Hubbard
model [53]. Here, we follow similar steps and introduce the
modified Hamiltonian

Ĥξ ¼ −t
X

hi;ji

X

σ

ĉ†iσ ĉjσ − ξ
U
2

X

iσ

n̂iσ

þ ð1 − ξÞh
X

i

piŜ
z
i þ ξU

X

i

n̂i↑n̂i↓; ð2Þ

where Ŝzi ¼ ðn̂i↑ − n̂i↓Þ=2 and pi ¼ �1 depending on
whether i belongs to one or the other sublattice of the

bipartite cubic lattice. Observables are expressed as
perturbation series in ξ and physical results are recovered
for ξ ¼ 1, where both Hamiltonians become equivalent,
Ĥξ¼1 ¼ Ĥ. The perturbation series in ξ is built around a
state that breaks the SU(2) spin rotation symmetry of the
original Hamiltonian. Indeed, Ĥξ¼0 describes free electrons
in a staggered external magnetic field h. Because this state
breaks the symmetry from the start, the perturbation series
can describe a magnetically ordered phase without the need
of undergoing a phase transition. Accordingly, singularities
in the complex-ξ plane associated with the phase transition
are avoided.
We compute the coefficients of the perturbation series

with the CDet [32] algorithm using a rejection-free many-
configuration Monte Carlo [54] as well as a fast principal
minor algorithm [55,56] to improve the speed of the
determinant calculations. The series are evaluated with
different resummation techniques [57,58] that serve as a
basis to determine the error bars of our results, see
Supplemental Material [59]. While the diagrammatic
expansion can be formulated directly in the thermodynamic
limit, in practice, we use a system with L3 ¼ 203 sites for
our computations. We have carefully checked that this is
large enough to avoid finite-size effects, even in the vicinity
of the phase transition, as discussed in the Supplemental
Material [59]. In the following, we will denote this spin
symmetry-broken algorithm by CDet(AFM).
In the Hamiltonian of Eq. (2), the field h can be chosen

arbitrarily and different choices for h define different series.
In order to obtain the best convergence and to cross-check
different results, we have systematically computed several
values in the range 0 ≤ h ≤ hMF, where hMF is the effective
field found in the mean-field solution of Eq. (1). In the
following, we will parametrize h ¼ αhMF with 0 ≤ α ≤ 1.
Note that when α ¼ 0, the perturbation series is the usual
expansion limited to the paramagnetic regime. Details
about the important role of α on the convergence speed
of the series can be found in the Supplemental Material
[59]. We also include tables with the actual values of α that
were used in our calculations.
For our analysis we compute the double occupancy

D ¼ hn̂i↑n̂i↓i ¼ Epot=U, the staggered magnetization
m ¼ hn̂i↑ − n̂i↓i (which is the order parameter for the
Néel phase transition) and the grand potential per lattice
site −Ω=L3 ¼ P, where L is the linear system size of the
cubic lattice, and P the thermodynamic pressure. The grand
potential computations enable us to determine the entropy
density and magnetization through

s ¼ −
∂Ω
L3

∂T
m ¼ −

∂Ω
L3

∂Hext

����
Hext¼0

; ð3Þ

where Hext is an external Zeeman staggered field whose
sign alternates on neighboring sites in the form of an

PHYSICAL REVIEW LETTERS 132, 246505 (2024)

246505-2



additional term to the Hubbard Hamiltonian Eq. (1):
Hext

P
i piŜ

z
i . All energies are expressed in units of the

hopping amplitude t ¼ 1.
Phase diagram and universality class.—We start our

study by determining the Néel temperature for different
values of the interaction in order to establish the magnetic
phase diagram of the system.
In Fig. 1 we compare our values for the critical temper-

ature TNðUÞ from CDet(AFM) against numerous other
numerical methods [7,9–12,18,42,63]. The Néel temper-
ature is expected to increase with increasing interaction at
small U since the transition is driven by the Slater
mechanism [64] and reaches a maximum in the intermedi-
ate coupling aroundU ≃ 6–10, before decreasing like TN ≃
0.946J [65] in the high-U Heisenberg limit, where J ¼
4t2=U is the superexchange coupling. We have been able to
determine the critical temperature up to an intermediate
coupling strength of U ¼ 6. For U > 6, regarding the
magnetization, we experience increased difficulty in resum-
ming our perturbation series and loss of Monte Carlo
accuracy in the critical region close to the phase transition.
The values of the Néel temperature displayed in Fig. 1 are

obtained from the computation of the magnetization as a
function of temperaturemðTÞ, which we show in Fig. 2. The
order parameter m indicates the phase transition by assum-
ing a nonzero value when decreasing the temperature:
TNðU ¼ 2Þ ¼ 0.0425ð25Þ, TNðU ¼ 4Þ ¼ 0.1925ð25Þ, and
TNðU ¼ 6Þ ¼ 0.32ð1Þ. Thanks to our high precision data,
we manage to compute directly the β critical exponent from
the critical behavior mðTÞ ≃ aðTN − TÞβ. The obtained
values for the critical exponent Fig. 2 (top right) compare
remarkably well to the literature values for the O(3)
Heisenberg universality class [8,11,66,67]. They establish
the first direct computations of the β critical exponent on a

fermionic lattice and in the thermodynamic limit. As shown
in Fig. 1, the values that we obtain for the Néel temperature
compare well with paramagnetic DiagMC [42] and
DCA extrapolated to infinite cluster size [9], as well as to
the recently improved dynamical vertex approximation
DΓA [63], but are out of the error bounds obtained by
finite-size scaling of L ≤ 10 DDMC data [7]. The critical
region, defined as the temperature range T ∈ ½TN − δT; TN �,
wheremðTÞ ¼ aðTN − TÞβ is a good fit to our data, is of the
order of δT ≃ 0.025 for U ≥ 4. At such values of the
interaction, the magnetization and the other thermodynamic
quantities (see Figs. 3 and 4) only have a variation in a
temperature interval δT ≃ 0.1 below TN before they essen-
tially saturate to their low temperature value.
Double occupancy.—The signatures of the phase tran-

sition can also be read from the double occupancy, shown
in Fig. 3. At U ¼ 4, we observe a sharp change of behavior
of the double occupancy at a temperature in good agree-
ment with the value of the Néel temperature determined in
Fig. 2. Given the critical exponent α ¼ −0.1336ð15Þ for the
O(3) Heisenberg universality class [66], we only expect a
divergence in the second derivative of the double occu-
pancy with respect to the temperature. At this value of the
interaction, the double occupancy increases with decreas-
ing temperature in the paramagnetic phase because of the
Pomeranchuk effect [68–72]. It decreases in the antiferro-
magnetic phase which is consistent with the Slater

FIG. 1. Comparison of the Néel temperature TNðUÞ (lime green
stars), obtained with the symmetry broken CDet(AFM), with
other numerical methods. References for the numerical methods
data are indicated in the legend.

FIG. 2. Magnetization and critical behavior. Left panel: Mag-
netization m as a function of temperature T for three different
values of the interaction U. The dashed curves represent the
critical behavior as determined from our data close to the critical
temperature fitted with the formula: mðTÞ ≃ aðTN − TÞβ. Top
right panel: Critical exponent obtained from the three magneti-
zation curves. The gold horizontal band corresponds to the
theoretically predicted value of β for the O(3) Heisenberg
universality class in [66]. Lower right panel: magnetization as
a function of TN − T at U ¼ 4 on a log-log scale. TN is
determined with the critical behavior fit from the left panel.
The dashed line corresponds to the fitting curve on the left panel.
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mechanism expected at small interaction: The ordered
phase is stabilized because of a gain in potential energy
Epot ¼ UD and, hence, a lowering of double occupancy at
fixed interaction, as also observed, e.g., in DCA calcu-
lations [73]. At higher values of U the double occupancy
curve flattens, and within our accuracy, we are not able to
document the nonanalyticity of the double occupancy at the
Néel temperature. We do not observe significant changes
of the double occupancy around the Néel temperature at
U ¼ 8 within the 10−2 relative accuracy of our computa-
tion. Further work with better sensitivity or studying the
kinetic energy would be needed to clearly document the
change from a Slater to a Heisenberg regime with a kinetic-
energy driven phase transition, as was done in DMFT and
extensions thereof in [74–76].
Grand potential.—The grand potential at U ¼ 4 is

displayed in Fig. 4. In order to evaluate the entropy
density from Eq. (3) we suppose a polynomial behavior
of the grand potential with temperature. Since ΩðTÞ −
ΩðT ¼ 0Þ ∝ T4 for T → 0, we fit the T < TN data with
the expression −ΩðTÞ ¼ −ΩðT ¼ 0Þ þ aT4 þ bT5 þ cT6

(cyan curve). At T > TN we expect a quadratic behavior in
the degenerate Fermi liquid regime. The data are well fitted
by the expression −Ω=L3ðTÞ ¼ dþ eT2 (yellow curve).
We impose continuity up to first order derivative at
T ¼ TN . At higher temperatures T ≥ 0.4 the grand
potential becomes almost linear in temperature −ΩðTÞ≃
logð4ÞT. The entropy density is then extracted with a finite
difference scheme. These different behaviors of the grand
potential lead to different physical regimes for the evolution
of the entropy density with temperature. In the AFM phase
the entropy density varies as s ∝ T3 at small temperatures.
For temperatures just above the transition T ∈ ½TN; 0.35� the
entropy density increases linearly with the temperature
which is a signature of a metallic behavior of the system in

this part of the phase diagram. At higher temperatures of
the order of the interaction T ∼U ¼ 4 the entropy density
saturates to sðT → þ∞Þ ¼ logð4Þ.
Magnetically saturated regime at low T.—We are now

interested in the low temperature properties of the system
where the magnetization has reached saturation. We have
observed earlier that the magnetization only changes
significantly in a shell of size δT ∼ 0.1 below the Néel
temperature, so that the region with saturated magnetization
represents an important part of the antiferromagnetic dome.
Direct computations of the magnetization become prob-

lematic for U > 6 because the associated series are difficult
to resum. At strong interaction and low temperatures the
expansion series for the grand potential turn out to be easier
to resum towards a controlled accurate numerical result.
Hence in this temperature regime it is more practical to
compute the grand potential density and extract the
magnetization as its variation with the external field as
stated in Eq. (3). More details, and the associated compu-
tations are shown in the Supplemental Material [59].
The directly computed magnetization compares well

with differentiating the grand potential as shown in
Fig. 5. For U ≥ 6 we observe no difference between the
T ¼ 0.1 and T ¼ 0.2 curves which shows that the mag-
netization is already saturated at its zero temperature value.
The magnetization will eventually have a maximum with
respect to U, and our results show that it is situated at larger
values of the interaction for U > 18.
The variations of the double occupancy with the inter-

action at low temperatures are shown in Fig. 5. In the
paramagnetic phase the double occupancy is decreasing

FIG. 3. Double occupancy D as a function of temperature for
three different values of the interaction U. The vertical bands at
U ¼ 4 and U ¼ 6 correspond to the estimate of the Néel
temperature from our study, while the hashed area at U ¼ 8 is
an estimate of the Néel transition from other numerical methods
displayed in Fig. 1.

FIG. 4. Left panel: Grand potential density −Ω=L3 as a
function of temperature T at interaction U ¼ 4. When not visible
the error bar is smaller than the markers. Right panel: Entropy
density s as a function of temperature T obtained as derivative of
the grand potential fitting curves (see text). The cyan error bars
give the error on the entropy curve. We do not have enough data
close to the Néel temperature to resolve the critical behavior of
the entropy, and the entropy curve is dashed in this region. The
insets are the same plots on a log scale for the x axis, and on a
larger temperature range. The lime green horizontal line indicates
the high temperature limit s ¼ logð4Þ. On both panels the vertical
lines correspond to the value of the Néel temperature obtained
in Fig. 2.
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quasi-linearly with the interaction. In the vicinity of the
phase transition we observe good agreement between
results for the paramagnetic and symmetry-broken compu-
tations. As expected, at the transitionUc we observe a sharp
change of behaviour of the double occupancy, and these
results can be used to estimate the value of the critical
interaction at fixed temperature. The double occupancy
decreases faster with increasing interaction when entering
the AFM phase which is consistent with the Slater
mechanism at the transition for values of the critical
interaction Uc < 6. In the antiferromagnetic phase the
double occupancy is a convex function of the interaction
which decays slowly to zero at infinite interaction. At
U > 7 we cannot distinguish between the different temper-
atures within our accuracy as expected from Fig. 3. This is
consistent with the fact that we do not observe clear
signatures of the phase transition towards the paramagnetic
phase in the double occupancy at large interactions.
Conclusions.—To conclude, we have applied the new

algorithmic developments of the symmetry-broken CDet
approach to produce the first high order diagrammatic
computations inside an antiferromagnetic phase and
directly in the thermodynamic limit. We have provided a
quantitative description of the antiferromagnetic phase of
the cubic half-filled Hubbard model. After determining the
critical behavior of the system and its phase diagram we
have reported resummed results at small temperatures
deep inside the antiferromagnetic dome up to high inter-
actions U ¼ 18. We have shown that the diagrammatic
Monte Carlo approach is a powerful tool to study the

physics of ordered systems with no need for an embedding
scheme or system size extrapolation. A more advanced,
nonlinear chemical-potential shift combined with other
CDet extensions [41] may lead to further improvements
for describing the critical behavior in the strong-coupling
Heisenberg part of the antiferromagnetic dome. This
symmetry-broken expansion could be applied to incom-
mensurate orders in the doped regime, similarly to what
was done in the paramagnetic phase [42] or with embed-
ding methods [67]. Another interesting possibility would
be to extend our study by including an anisotropic hopping
term tperp < t in the z direction (similarly to what was done
in [77]) in order to investigate how the magnetic properties
are modified as the two-dimensional limit is approached.
This application would be especially relevant for the
physics of cuprate superconductors.
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Henderson, Carlos A. Jiménez-Hoyos, E. Kozik, Xuan-
Wen Liu, Andrew J. Millis, N. V. Prokof’ev, Mingpu Qin,
Gustavo E. Scuseria, Hao Shi, B. V. Svistunov, Luca F.
Tocchio, I. S. Tupitsyn, Steven R. White, Shiwei Zhang,
Bo-Xiao Zheng, Zhenyue Zhu, and Emanuel Gull, Solutions
of the two-dimensional Hubbard model: Benchmarks and
results from a wide range of numerical Algorithms, Phys.
Rev. X 5, 041041 (2015).

[39] Wei Wu, Michel Ferrero, Antoine Georges, and Evgeny
Kozik, Controlling Feynman diagrammatic expansions:
Physical nature of the pseudogap in the two-dimensional
Hubbard model, Phys. Rev. B 96, 041105(R) (2017).

[40] Riccardo Rossi, Fedor Šimkovic, and Michel Ferrero,
Renormalized perturbation theory at large expansion orders,
Europhys. Lett. 132, 11001 (2020).

[41] Fedor Šimkovic, Riccardo Rossi, and Michel Ferrero, The
weak, the Strong and the long correlation regimes of the
two-dimensional Hubbard model at finite temperature,
Phys. Rev. Res. 4, 043201 (2022).

[42] Connor Lenihan, Aaram J. Kim, IV. Šimkovic, Fedor, and
Evgeny Kozik, Evaluating second-order phase transitions
with diagrammatic Monte Carlo: Néel transition in the
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