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We propose local electromagnetic noise spectroscopy as a versatile and noninvasive tool to study Wigner
crystal phases of strongly interacting two-dimensional electronic systems. In-plane imaging of the local
noise is predicted to enable single-site resolution of the electron crystal when the sample-probe distance is
less than the interelectron separation. At larger sample-probe distances, noise spectroscopy encodes
information about the low-energy Wigner crystal phonons, including the dispersion of the transverse shear
mode, the pinning resonance due to disorder, and optical modes emerging, for instance, in bilayer crystals.
We discuss the potential utility of local noise probes in analyzing the rich set of phenomena expected to
occur in the vicinity of the melting transition.
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Wigner crystal (WC) phases of the electron gas have
been a subject of active research since their initial con-
ception by Wigner many years ago [1]. Recently, a new
generation of experiments providing compelling evidence
of WC phases across a number of two-dimensional electron
gas (2DEG) systems [2–6] have reinvigorated interest in the
field for a number of reasons: (i) the experiments are in the
degenerate regime T ≪ EF (EF is the Fermi energy) and at
zero perpendicular magnetic field; (ii) unexpected magnet-
ism has been observed in the vicinity of the WC melting
transition [4–6]; (iii) in transition metal dichalcogenide
(TMD) systems, optical spectroscopy enabled direct meas-
urement of the WC ordering wave vector [2]; and (iv) TMD
bilayer WCs appear stable up to anomalously high electron
densities and temperatures [3].
Despite both novel and improved experimental capabil-

ities for clarifying the onset of crystallization, there remain
few probes for characterizing salient properties of the WC
phase [7]. These include the nano and mesoscale structure
of the electron crystal, as well as properties of the low-
energy WC phonons [9]. The necessity of experimental
proposals is especially pressing in the TMD systems, for
which many conventional measurements, such as transport,
are not possible due to notorious challenges associated with
large contact resistances [10,11].
In this Letter we propose local electromagnetic noise

spectroscopy as a probe of WC states, and consider the
conditions under which such measurements are within
current experimental reach. We demonstrate that, owing to
the large emergent length scale associated with the WC
lattice constant, magnetic noise spectroscopy can be used to
both map local charge properties at the WC lattice scale, as

well as long-wavelength properties of the WC phonons. We
show that magnetic noise sensing is especially well-suited to
probe a defining feature of the WC solid—the transverse
shearmode. Other resonances unique to the crystal phase can
also be observed, such as the “pinning resonance” due to
disorder and optical modes in more complex crystals like
bilayer WCs. Our proposal is in part inspired by develop-
ments in the field of “qubit” sensors, in which quantum
impurities of various sorts are used to probe local electro-
magnetic fields and their associated fluctuations. Notable
probes include nitrogen-vacancy and silicon-vacancy centers
in diamond [12–27], hexagonal boron nitride defects [28–
33], and stands for scanning near-field optical microscopy
detectors [34,35], which can sense magnetic and/or electric
fields [36–41].
We consider an atomic scale qubit probe brought near a

2D sample of interest and used to sense local magnetic
fields. Fluctuating currents in the sample generate stray
magnetic fields, which then affect the relaxation properties
of the qubit [42]. These relaxation properties are directly
related to the magnetic noise tensor

N B
αβðrq;ωÞ ¼

1

2

Z
dt eiωthfBαðrq; tÞ; Bβðrq; 0ÞgiT; ð1Þ

where f:; :g is the anticommutator, h…iT denotes the
thermal expectation value, rq ¼ ðr; zqÞ is the position of
the noise probe, and Greek indices α, β, etc., denote
Cartesian components. The Biot-Savart law further
relates the magnetic field to currents via Bαðq; zÞ ¼
ð2π=qcÞe−qjzjϵαβγðiqβ − qδβzÞjγðqÞ≡ Kαγðq; zÞjγðqÞ, with
jαðqÞ the 2D current density in the sample. Here, q is the in-
plane wave vector, c is the speed of light, and ϵαβγ is the
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Levi-Civita tensor [43]. Experimentally, one usually
accesses N B

αβ via 1=T1 relaxometry and/or 1=T2 spin-
echo-like measurements related to the noise via Fermi’s
golden rule. The dependence of the magnetic noise tensor
on various physical parameters—such as temperature,
frequency, qubit’s position, electron density, etc.—allows
one to characterize intrinsic correlations of the 2D material
[18,45,46,60–64]. This has been demonstrated in a variety
of systems, including hydrodynamic transport in 2D metals
[45], 2D superconductors [63,64], and different magnetic
phases and phase transitions [46,60,62].
The key idea of our work is based on the observation that

the WC lattice constant, which is tuned by varying the
electron density, can be made much larger than the under-
lying microscopic lattice scale of the 2D material. For
instance, in TMDs the WC lattice constant varies in the
range a ≃ 10–30 nm [2,3]. This opens the possibility that a
qubit probe can be brought closer to the 2D sample than the
interelectron distance, allowing for spatial resolution of
magnetic noise produced by individual electrons in the WC
[65]. Magnetic noise in a WC is sourced primarily by
charges oscillating about their equilibrium lattice sites, i.e.,
by local phonon fluctuations. In the regime zq ≲ a, the
noise sensor effectively probes the local phonon density of
states gðωÞ, with the noise directly on top of an electron
being approximately given by [c.f., Eq. (4)],

N BðωÞ ∼ Tne2

c2m
gðωÞ

�X
G

e−zqG
�

2

; ð2Þ

where G are reciprocal lattice vectors of the WC and m is
the effective electron mass. In TMD systems specifically,
the noise will receive an enhancement owing to the
relatively large melting temperatures (on the order of
tens of K) and the relatively high electron densities
(n ∼ 1011–1012 cm−2). The magnitude of the density of
states contribution depends on the ratio of the probe
frequency to the plasma frequency, ω2

p ¼ 2πne2=ma,
which is the characteristic phonon frequency scale in a
WC. For WCs realized in TMD systems, ωp is on the order
of a few THz. Typical resonant frequencies of atomlike
solid-state defects, however, are in the GHz range, so we

expect ω ≪ ωp. The density of states then comes primarily
from low-frequency transverse phonons, gðωÞ ≈ ω=2πv2s ,
where vs is the sound speed (see also Ref. [66]). In this
regime, we estimate the noise will be within the sensitivity
of current sensors (N B ≳ 1 pT2 × Hz−1) for a sample-
probe distance on the order of a few nm. For probes with
operating frequencies in the THz, such as tin-vacancy
sensors [67] and SNOM detectors [68], gðωÞ would be
larger and the sample-probe distance could be tens of nm.
Additionally, nonlinear optics methods may be used to
push the qubit operating regime to higher frequency
[69,70]. Our estimates indicate that while single-site
resolution (SSR) of the WC using noise spectroscopy is
challenging, it nevertheless, can be within experimental
reach. In what follows, we develop the general microscopic
theory for electromagnetic noise from a WC. In addition to
the SSR regime, we will also show that the noise allows one
to study long-wavelength WC phonons when zq ≳ a.
Deep in the WC, current fluctuations are generated by

the time-varying polarization from fluctuating WC pho-
nons. The phonon spectrum is described by the elastic
potential energy Uel ¼ 1

2

P
q

P
λmω2

λðqÞjuλðqÞj2. Here, λ is
the phonon mode index, which includes the transverse
(shear) and longitudinal (compression) modes, as well as
optical modes in crystals with more than one electron per
unit cell (bilayer WCs); uλðqÞ are the associated phonon
displacements with in-plane wave vector q; and the mode
frequencies are ωλðqÞ. These mode frequencies take into
account both the Coulomb forces between electrons, as
well as the effects of weak disorder—a point we will
discuss below. The response properties of the WC are
encoded in the phonon Green’s function

Dαβðq;ωÞ ¼ −i
Z

∞

0

dt eiωth½uαðq; tÞ; uβð−q; 0Þ�iT; ð3Þ

which can be directly related to the nonlocal optical
conductivity of the WC [44,71].
The fluctuation-dissipation theorem and Bio-Savart law

relate the magnetic noise tensor to the phonon Green’s
function [44]:

N B
αβðr;ωÞ ≈ 2Tne2ωIm

�X
G1;G2

eir·ðG1−G2Þ
Z
1BZ

d2q
ð2πÞ2KαγðqþG1; zqÞKβδð−q −G2; zqÞDγδðq;ωÞ

�
: ð4Þ

Here, the q integration is over the first Brillouin zone of the
WC lattice, e is the electron charge, and we have assumed
T ≫ ℏω. The exponential z dependence ofKαβ implies that
the qubit probe effectively averages over a spatial region
with a size determined by zq and, thus, one should
distinguish two regimes: zq ≲ a and zq ≳ a.

In the limit zq ≲ a (SSR regime), the contribution of
nonzeroG’s, which determine the intraunit cell structure, is
important. In this case, the largest contribution to the noise
comes from positions r near the WC lattice sites, where the
oscillating phase factors in Eq. (4) go to one. Figure 1
illustrates the important characteristics of the noise in the
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SSR regime: (i) strong spatial inhomogeneity, (ii) anisotropy
of the noise tensor, and (iii) broad distribution of qubit
relaxation rates from different points in the plane. These
characteristic features become weaker upon increasing the
qubit-sample distance zq [Figs. 1(c) and 1(e)]. The anisotropy
of the noise near an electron site can be understood from the
fact that an oscillating dipole in the plane would emit
primarily in the direction perpendicular to the plane.
In the opposite limit zq ≳ a, the noise (4) is well

approximated by keeping only the G ¼ 0 terms,

N B
zzðωÞ ≈

πTne2ω
c2z2q

Z
∞

0

dx xe−xIm

�
DT

�
x
2zq

;ω

��
; ð5Þ

i.e., the noise becomes independent of the in-plane position
r. For qa ≪ 1 and ðωzq=cÞ2 ≪ 1, one can approximate
N B

αβðωÞ ≈ diag½N B
zzðωÞ=2;N B

zzðωÞ=2;N B
zzðωÞ�, implying

there is only one independent component of the noise
tensor [44]. In the same limit, the phonon Green’s function
may be decomposed into transverse (T) and longitudinal (L)
parts [47]. We observe that N B

zzðωÞ is determined by the
transverse phonon Green’s function,DT, which encodes the
transverse sound mode. The existence of this mode captures
the hallmark feature of the crystal phase—its rigidity to
shear. For a cleanWC, the dispersion of the transverse mode
is ωTðqÞ ≈ vsq for qa ≪ 1.
Any realistic 2DEG system is affected by inhomogene-

ities of the sample. Here, we have implicitly assumed such
disorder effects are not strong enough to completely
destroy the local crystalline order [72]. While leaving

the crystal intact, weak disorder nevertheless has important
effects on the phonon spectrum at larger length scales,
relevant when zq ≫ a. The most significant effect is the
“pinning” of the crystal, which opens a (pseudo) gap in the
phonon spectrum: ωλðqÞ → ω0 as q → 0 [73], leading to
the emergence of a finite frequency “pinning” resonance,
ωpin, in the absorption spectrum [48–50,74,75]. In the
absence of an applied magnetic field, ωpin ¼ ω0; in a large
out-of-plane magnetic field, ωpin ¼ ω2

0=ωc, where ωc ¼
eB=mc is the cyclotron frequency [76].
The pinning frequency defines an important character-

istic length scale according to ω0 ∼ vs=Rc, where Rc is
known as the “Larkin length” [77,78]. The Larkin length,
assumed to satisfy Rc ≫ a, is the length scale at which
electrons “feel” the stochastic aspects of the disorder
potential and metastability can manifest. Specifically, it
is the length scale at which relative phonon displacements
become of the order of a relevant microscopic length, ξ0,
which may correspond to the width of the electronic wave
function localized to the WC lattice sites, the correlation
length of the disorder potential, or the magnetic length in
cases with a large perpendicular magnetic field. The various
important length scales are summarized in Fig. 2.
Weak disorder also gives rise to broadening of the

otherwise long-lived phonon modes. The foregoing dis-
cussion motivates the following simple parametrization of
the phonon Green’s function in the regime qa ≪ 1:

DTðq;ωÞ ¼ −
1

m
1

ω2 þ 2iγω − ðv2sq2 þ ω2
0Þ
; ð6Þ

(a)

(b)

(c)

(d)

(e)

FIG. 1. Single-site resolution (SSR) of the WC with local magnetic noise spectroscopy. (a) Spatial dependence of the 1=T1 relaxation
rate of the qubit probe showing that the magnetic noise is strongly enhanced when the qubit is placed on top of an electron site. Here, we
fixed zq ¼ 0.25a, the qubit quantization axis is aligned with ẑ, and we used the phonon Green’s function of the clean WC [44]. Panels
(b) and (c) represent cuts of N B

xx and N B
zz along one of the edges in the triangular WC, showing that (i) the local magnetic noise is

strongly anisotropic and (ii) when the probe is further away from the sample, the noise is more homogeneous. This is further illustrated
in panels (d) and (e), where the broad distribution of 1=T1 at zq ¼ 0.25a (d) becomes notably narrower at zq ¼ 0.5a (e). Various
quantities are normalized by their spatial averages, h…i, to highlight the magnitude of spatial fluctuations in the SSR regime.
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where γ ∼ ω0 is the damping rate. Here, we have assumed
that the length scales being probed are sufficiently long that
the relevant observables are self-averaging, and translation
invariance is effectively restored, implying in-plane
momentum q is a good quantum number [79]. This
phenomenological form of the Green’s function is in
agreement with the results of more detailed calcula-
tions [44].
Utilizing the form of the Green’s function (6), Eq. (5) for

the noise becomes

N B
zzðωÞ ¼ ½N B

zz�Liq
1

τω0

Z
∞

0

dx xe−x

×
2γ̂ω̂2

fω̂2 − ½ω̂2
Tðx=2zqÞ þ 1�g2 þ 4γ̂2ω̂2

; ð7Þ

where ω̂ ¼ ω=ω0 and γ̂ ¼ γ=ω0. For the reference noise,
we used the Johnson-Nyquist noise in the metallic phase
½N B

zz�Liq ¼ πTσ0=ðc2z2qÞ, where σ0 ¼ ne2τ=m is the Drude
conductivity and τ is the scattering time. While the liquid
state noise ½N B

zz�Liq is essentially featureless as a function of
ω and zq, the noise in the WC phase exhibits a much richer
structure. An immediate conclusion from Eq. (7) is that the
low-frequency magnetic noise in the WC phase is signifi-
cantly suppressed relative to that of the liquid: N B

zz ∼
½N B

zz�Liq × ðω=ω0Þ2 as ω → 0, yielding a crude signature of
the transition from the metallic to insulating phase [80]. For
an estimate of the liquid-state noise near the WC transition,
we consider a TMD system at T ∼ 10 K, zq ∼ 10 nm, and
n ∼ 1011 cm−2, and use the mobilities reported in Ref. [51].
This yields ½N B

zz�Liq ∼ 5 pT2 × Hz−1, which is within the
sensitivity of current qubit sensors [15,20]. For bilayer
WCs, the noise will be further enhanced; for TMD bilayers
specifically, we find ½N B

zz�Liq ∼ 200 pT2 × Hz−1 [44]. We
thus expect detection of the WC transition with noise
sensing, via both 1=T1 and 1=T2 measurements, is within
experimental reach.
More refined information may be extracted by consid-

ering how the noise varies with the probe frequency ω and
height zq. As shown in Fig. 3, there is a resonant enhance-

ment for ω ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2sq2� þ ω2

0

p
, where the wave vector is

determined by the probe height, q� ¼ 1=2zq. The peak
position moves closer to the phonon dispersion as the

phonons become sharper, i.e., as the disorder effects
become weaker. Thus, for a sufficiently clean WC corre-
sponding to ω0 ≪ ωp, mapping of the magnetic noise in
the ðzq;ωÞ space allows for direct extraction of the trans-
verse phonon dispersion curve. Even if stronger disorder
precludes such mapping, at large enough probe heights the
noise still exhibits a resonant enhancement at ω0. Similarly,
we anticipate that other q ¼ 0 resonances unique to WC
phases can be studied with the noise measurements. One
notable example is the optical phonon in bilayer WCs,
corresponding to out-of-phase charge oscillations between
the layers. Without disorder, the qubit probe separated
farther than the interlayer spacing averages over the layers
and is insensitive to the optical mode. With disorder,
however, differences in pinning between the layers will
couple the optical mode into the layer-averaged response
[44] [Fig. 4]. We note that other interesting optical modes
have also been recently predicted for WCs in multivalley
2DEGs [81].
Experimental feasibility of mapping the phonon spec-

trum requires an estimate of the pinning frequency ω0. This
frequency is determined by the disorder of the sample,
making a direct evaluation from microscopic considera-
tions challenging. However, if we assume the disorder
effects are relatively weak, as evidenced by the appreciable
WC correlation length inferred from experiments [2], then
it is reasonable to assume ω0 ≲ ωp. To be within the
operating regime of nitrogen-vacancy or silicon-vacancy
centers [69,70], one requires ω0 ≲ 50 GHz (Fig. 3). Finite
temperature effects should help push ω0 into the exper-
imentally accessible range, as phonon frequencies are
expected to soften upon approaching the thermal melting
transition. Fabrication of cleaner TMD samples will
also both increase the overall noise and decrease ω0.

FIG. 3. Collective behavior in the WC. Magnetic noise as a
function of ω for various probe heights zq shows an enhancement
upon crossing the transverse phonon frequency ω ¼ ωTðq�Þ at
q� ¼ 1=2zq. Inset: tracking the maxima of N B

zzðωÞ for various zq
enables reconstructing the dispersion curve ωTðqÞ.

FIG. 2. Hierarchy of the relevant length scales for a weakly
disordered WC. For Rd ≫ Rc, topological defects become
important.
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Application of a large perpendicular magnetic field [82]
shifts the pinning resonance to a lower frequency and
makes it narrower [48,49,75]. All these effects increase the
feasibility of our proposal.
In the short distance SSR regime, in addition to the direct

imaging of the WC lattice one could potentially extract a
number of important properties relating to the nano and
mesoscale properties of the system. This would be par-
ticularly useful to study the physics near quantum melting
of theWC, where there have been proposals of intermediate
phases involving mesoscale inhomogeneity and other
forms of symmetry breaking such as nematicity [83,84].
In the regime of a far-separated sensor, monitoring the
evolution of the phonon spectrum upon increasing electron
density would shed light on quantum effects in the WC.
Some interesting questions in this regard include the extent
to which magnetic tendencies of the WC are encoded in the
elastic coefficients of the crystal and the role of phonon
softening for melting. Although we have not explored it in
detail here, the spin properties of the WC, which are
expected to be particularly rich near melting [85,86], can
also be probed via magnetic noise sensing. Beyond WCs,
we also expect the techniques described here to be useful in
studying moiré systems, which have a similarly large
emergent length scale associated with the moiré unit cell.
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