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Novel critical phenomena beyond the Landau-Ginzburg-Wilson paradigm have been long sought after.
Among many candidate scenarios, the deconfined quantum critical point (DQCP) constitutes the most
fascinating one, and its lattice model realization has been debated over the past two decades. Here we apply
the spherical Landau level regularization upon the exact ð2þ 1ÞD SO(5) nonlinear sigma model with a
topological term to study the potential DQCP therein. We perform a density matrix renormalization group
(DMRG) simulation with SUð2Þspin × Uð1Þcharge × Uð1Þangular−momentum symmetries explicitly imple-

mented. Using crossing point analysis for the critical properties of the DMRG data, accompanied by
quantum Monte Carlo simulations, we accurately obtain the comprehensive phase diagram of the model
and find various novel quantum phases, including Néel, ferromagnet (FM), valence bond solid (VBS),
valley polarized (VP) states and a gapless quantum disordered phase occupying an extended area of the
phase diagram. The VBS-disorder and Néel-disorder transitions are continuous with non-Wilson-Fisher
exponents. Our results show the VBS and Néel states are separated by either a weakly first-order transition
or the disordered region with a multicritical point in between, thus opening up more interesting questions
on the two-decade long debate on the nature of the DQCP.
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Introduction.—Over the past two decades, the enigma of
the deconfined quantum critical point (DQCP) has never
failed to attract attention across the communities of con-
densed matter to quantum field theory and high-energy
physics, as it is believed to offer a new paradigm in theory
[1–5], numerical simulation [6–15], and experiment [16–
21] that goes beyond the Landau-Ginzburg-Wilson (LGW)
framework of phase transitions.
However, the lattice realizations of DQCP have been

debated ever since. In SU(2) spin systems, the J −Qmodel
[6] was initially believed to realize a DQCP between Néel
and valence bond solid (VBS) states. Over the years, a
plethroa of results have been reported, including the
emergent continuous symmetry with fractionalized excita-
tions [12–15] yet drifting critical exponents incompatible
with conformal bootstrap bounds [with one Oð3Þ × Z4

singlet] [2,8,11,22,23], weakly first-order pseudocriticality
versus continuous transition or multicritical point [2,24–
31], and violation of entanglement positivity for a unitary
conformal field theory (CFT) [32–34]; and debate regard-
ing the nature of the phase transition persists to this day. A
more recent quantum Monte Carlo (QMC) study suggests
the nonunitary CFT of the DQCP scenario in SUðNÞ spin
systems for N < Nc ≃ 8 [35].
Similar changing perceptions also occur in DQCP

models with fermions, realizing transitions from a Dirac

semimetal (DSM) through quantum spin Hall insulator to
superconductor [9,36,37], or from DSM through VBS to a
Néel state [10,38,39]. The inclusion of fermions offers
advantages over the previous model, due to the absence of
symmetry-allowed quadruple monopoles and the associ-
ated second length scale that breaks the assumed U(1)
symmetry down toZ4 [2,11], but the noncompatible critical
exponents still persist and the accumulating numerical
results are also pointing towards a nonunitary CFT of these
DQCPs [9,10,34,36,39–41]. Despite extensive efforts over
the past two decades, the lattice realizations of the DQCP in
its original sense of beyond the LGW framework and yet
still critical, with emergent continuous symmetry and
fractionalized excitations, are still in “The Enigma of
Arrival” [42].
A key origin of the debate stems from the fundamental

requirement of emergent symmetries at DQCPs. For
instance, the J −Q model DQCP is speculated to have a
U(1) symmetry emerge out of the Z4 symmetry of VBS,
which is then speculated to be combined with the SU(2)
symmetry of the Néel order to give rise to the ultimate
SO(5) emergent symmetry. Because of the extremely slow
RG flow towards such emergent symmetries, numerical
studies face challenges in accessing these speculated
DQCPs due to finite size effects. To overcome this
challenge, lattice models with explicit SO(5) symmetry
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have been introduced, e.g., the ð2þ 1ÞD SO(5) nonlinear
sigma model (NLSM) with a Wess-Zumino-Witten (WZW)
topological term [43]. In such a model, different from the
aforementioned J −Q and fermion realizations, one can
directly ask the question whether there is a continuous
Néel-VBS transition in its phase diagram, without the
hierarchy of symmetries emergence.
However, previous attempts for such a SO(5) model with

the half-filled Landau level of Dirac fermions as a regu-
larization on torus geometry, were unfortunately limited by
severe computational complexity both for density matrix
renormalization group (DMRG) and QMC simulations
[41,44]. Moreover, these works have not addressed the
entire phase diagram with control parameters moving away
from the SO(5) symmetric path, such that the transitions
towards the SO(3) symmetry-breaking Néel phase and the
SO(2) symmetry-breaking VBS phase have not been
addressed. Therefore, the results are still inconclusive
and different scenarios—such as the first order transition
between Néel and VBS phases, the multicritical point and
the DQCP scenarios—are all suggested.
Here, we push forward the solution of the problem by

applying the spherical Landau level regularization which
was studied in the context of fractional quantum Hall effect
in the early literature [45–48] and has recently been shown
to suffer a less finite-size effect than the torus geometry for
the ð2þ 1ÞD Ising model [49]. To facilitate the large
system sizes and quantitative data analysis, we perform
a DMRG simulation with explicit SUð2Þspin × Uð1Þcharge ×
Uð1Þangular−momentum symmetries, accompanied with exact
diagonalization (ED) and QMC simulations. We accurately
simulate the entire phase diagram of the model with various
novel quantum states identified, including the Néel, VBS,
ferromagnet (FM), and valley polarized (VP) states. Most
importantly, we find a gapless disordered region separates
the VBS and Néel states. We employ the crossing point
analysis [3,11,15,50,51] for the critical properties of the
DMRG data and find the VBS-disorder and Néel-disorder
transitions are continuous with non-Wilson-Fisher expo-
nents. These critical boundaries meet at a multicritical point
along the SO(5) line behind which the SO(5) symmetry is
explicitly broken with a weakly first order transition
between the Néel and VBS phases. Our results are
supported by a recent conformal bootstrap analysis on
the quantum tricriticality on the DQCP [52], as well as the
QMC entanglement entropy results of the J −Qmodel that
at the Néel-VBS transition is weakly first order [53,54].
Our discovery of the extended gapless disordered phase

and the multicritical point, and our novel methodology of
the crossing point analysis of the DMRG data, open a few
new research directions, such as the nature of the disor-
dered phase, its relation with pseudocriticality and sym-
metry-enforced gaplessness [4], and its transition between
VBS and Néel phases. These results substantially advance
the two-decade long quest of the DQCP in the phase

diagram of the ð2þ 1ÞD SO(5) NLSM with a WZW
topological term.
Model and methods.—We consider the ð2þ 1ÞD

Hamiltonian HΓ ¼ 1
2

R
dΩfU0½ψ†ðΩÞψðΩÞ − 2�2−

P
5
i¼1 ui½ψ†ðΩÞΓiψðΩÞ�2g, where ψτσðΩÞ is the four-

component Dirac fermion annihilation operator with valley
τ and spin σ indices, and Γi ¼ fτx ⊗ I; τy ⊗ I; τz ⊗
σx; τz ⊗ σy; τz ⊗ σzg are the five mutually anticommuting
matrices, whose commutators Lij¼− i

2
½Γi;Γj� are gene-

rators of the SO(5) group. Subsequently, we project the
Hamiltonian onto the zero energy Landau level on the
sphere, which is the same as the lowest massive fermion
Landau levels (LLLs) of a sphere with a 4πs magnetic
monopole [55–57], where the (2sþ 1)-fold degenerate LLL
wave functions are ΦmðΩÞ ∝ eimϕcossþmðθ=2Þsins−mðθ=2Þ
withm∈ f−s;−sþ 1;…; sg and 2s∈Z. Via the expansion
ψðΩÞ ¼ P

mΦmðΩÞcm, we have

ĤΓ¼U0Ĥ0−
X

i

uiĤi; with

Ĥi¼
X

m1;m2;m

Vm1;m2;m2−m;m1þm

×ðc†m1
Γicm1þm−2δi0δm0Þðc†m2

Γicm2−m−2δi0δm0Þ ð1Þ

with Γ0 ¼ I ⊗ I. The precise form of Vm1;m2;m3;m4
can be

found in the Supplemental Material (SM) [58]. Throughout,
we set U0 ¼ 1 as the energy unit and let u1 ¼ u2 ¼ uK ,
u3 ¼ u4 ¼ u5 ¼ uN . When uK ¼ uN > 0, this model is
known to be described by a SO(5) NLSM with a WZW
term [41,43,44]. When uK ≠ uN , the symmetry reduces to
SOð3Þ × SOð2Þ. For positive uK;N , it was proposed that
uN > uK stabilizes the Néel order, which spontaneously
breaks the SO(3) symmetry, while uN < uK favors a valley
order breaking the SO(2) symmetry, which in a latticemodel
can be interpreted as the VBS order.We note, however, such
an explicit perturbation away from the SO(5) symmetric
path has not been investigated in previous studies. If a direct
and continuous phase transition between these two states
arises at uK ¼ uN , at the transition the system has an explicit
SO(5) symmetry, which realizes a DQCP. While previous
works mainly focused on positive values for uK;N along the
SO(5) line, we sweep the entire ðuK; uNÞ plane for symmetry
breaking phases.
We perform a DMRG simulation with SUð2Þspin ×

Uð1Þcharge × Uð1Þangular−momentum symmetries in the tensor
library QSpace [62–64], and keep up to 4096 SU(2) invariant
multiplets [equivalent to ∼12000 U(1) states] to render the
truncation errors within 5 × 10−5. We also perform deter-
minant QMC as well as ED simulations as complements.
We denote the system size by the Landau level degeneracy
N ¼ 2sþ 1 and obtain converging results up to N ¼ 16,
the largest size achieved so far for the model on a sphere,
to our knowledge. To determine the VBS-disorder and
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Néel-disorder critical points and the critical exponents in an
unbiased manner, we adopt the crossing point analysis that
has been used in earlier studies for many in quantum-
critical spin models [3,11,15,50,51]. The derivation and
detailed steps are given in the SM [58].
Phase diagram.—We first give a summary of the

phase diagram. For all the ordered phases observed, the
order parameters take the form of fermion bilinears:
hOi ¼ R

dΩhψ†ðΩÞMψðΩÞi ¼ P
mhc†mMcmi, where M

is either a Γ matrix or one of the SO(5) generators Lij.
In the case of ðuK; uNÞ > 0, there are three phases includ-
ing the Néel state (ordered in the Γ3;4;5 directions), the VBS
(ordered in the Γ1;2 directions), and the disorder phase, as
shown in Fig. 1. At small uK;N (below ∼0.1), the Néel and
VBS phases are separated by a first-order phase boundary,
along the uK ¼ uN line with SO(5) symmetry. At large
uK;N , instead of the proposed direct and continuous
transition, we find that Néel and VBS phases are separated
by an intermediate disordered phase, and continuous
transitions from the disordered state to both Néel and
VBS states. (We will discuss the critical behavior of VBS-
disorder and Néel-disorder transitions in the next section.)
For negative values of uK and/or uN, we find three

phases: the FM state (M ¼ L34; L35; L45) where both
valleys exhibit the same magnetization direction, the VP
state (M ¼ L12) which breaks an Ising Z2 symmetry, and
another disorder phase. When juK;N j are small [i.e.,
ðuK; uNÞ > −1], the FM and VP states are directly con-
nected by a first-order transition along the SO(5) line.
Again, for larger juK;N j, the FM and VP phases are
separated by the disordered phase, while the transitions
between the FM, VP, and disordered states are all
first order.
The transition between the FM and Néel states takes

place in the quadrant of uK < 0 and uN > 0 through a first
order phase boundary. Similarly, a first-order transition
between the VBS and VP states is observed in the quadrant
of uK > 0 and uN < 0.
Phases of the ðuK; uNÞ > 0 quadrant.—We first focus

on the positive uK;N cases, and compute the squared
order parameter hO2

i i with Oi ¼
R
dΩψ†ðΩÞΓiψðΩÞ ¼

P
m c†mΓicm. We use m2

Néel ¼ 1
3N2 hðO2

3 þO2
4 þO2

5Þi and
m2

VBS ¼ 1
2N2 hðO2

1 þO2
2Þi for Néel and VBS orders,

respectively.
To systematically determine the VBS-Disorder transi-

tion, we fix a few uK ¼ 0.5, 2, 4 values and scan uN . The
representative uK ¼ 2 scan is shown in Fig. 2. Figure 2(a)
shows the VBS Binder ratio UVBS ≡ hO2

1i2=hO4
1i crosses

between the successive size pair ðN;N þ 1Þ, it is clear that
there is a crossing of the data which indicates the transition
point. To locate the transition point in an unbiased manner,
we employ the crossing point analysis as detailed in the
SM [58] and find that the u�N ¼ uc þ N−ð1=2νÞ−ðω=2Þ (the
asterisk indicates the finite-size crossing points) nicely
extrapolate to the uc ¼ 1.75ð4Þ with the correlation length
exponent ν ¼ 0.47ð3Þ and subleading exponentω ¼ 2.2ð4Þ
independently obtained from Binder ratio U�ðu�N;NÞ¼aþ
bN−ðω=2Þ and its derivatives 1

ν� ≡ 2N ln½ðU0ðu�N; N þ 1ÞÞ=
ðU0ðu�N; NÞÞ� ¼ 1

ν − cN−ðω=2Þ at finite N, as shown in
Fig. 2(b). With the obtained uc and ν, one can further
collapse the VBS order parameter as m2

VBS · N
ΔVBS againstffiffiffiffi

N
p

1=νðuN − ucÞ=uc and unbiasedly obtain the scaling

(a)

(b) (c)

FIG. 1. The ground state phase diagram and RG flow of the
SO(5) model. (a) Overall phase diagram with Néel, VBS,
ferromagnet (FM), valley polarized (VP) phases, and the disorder
phases as denoted. The deep blue lines denote the continuous and
the non-Wilson-Fisher transition, the red lines denote the first-
order transition, and the deep green dot denotes a multicritical
point. The four symmetry-breaking states are schematically
depicted by two spheres for the two opposite valleys, and the
spin degrees of freedom are depicted by the arrow directions.
(b) Enlarged phase diagram as indicated by the dashed box in
panel (a). The two critical boundaries meet at a multicritical point
(deep green dot) below which the SO(5) symmetry is sponta-
neously broken. (c) Possible RG flow in the considered parameter
space in (b), with multicritical point (deep green dot), SO(5)
disorder (grey dot), non-Wilson-Fisher fixed points (blue dots)
towards SO(2) breaking VBS-ordered (light purple dot) and
SO(3) breaking Néel-orderd (light green dot) fixed points, and the
SO(5) breaking (red dot) fixed point. The α and u=U0 axes are
indicated in panel (b).
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dimension ΔVBS ¼ 0.64ð9Þ, as shown in Fig. 2(c). We note
the collapse is of very good quality and the obtainedΔVBS ¼
0.64ð9Þ is substantially larger than its O(2) Wilson-Fisher
counterpart 0.519. This gives a clear signature, that the
VBS-Disorder transition is not of Wilson-Fisher type and
there is no direct VBS-Néel DQCP transition at uK ¼ 2. We
have further performed the same analysis at uK ¼ 0.5, 4 and
obtained an equally good and consistent critical point uc ¼
0.43ð3Þ; 3.3ð2Þ and exponents ν ¼ 0.55ð5Þ; 0.49ð5Þ, ω¼
2.2ð4Þ;2.1ð1Þ, and VBS scaling dimensionΔVBS¼0.63ð8Þ;
0.63ð9Þ; the results are shown in the SM [58]. Similar
simulations are performed with fixed the uN ¼ 2 cut and
uc ¼ 1.5ð3Þ;Δ ¼ 0.55ð3Þ are found. With these data, we
map out the phase boundaries of both VBS-Disorder and
Néel-Disorder transitions as shown in Fig. 1(a). We find the
continuous VBS-disorder and Néel-disorder transitions are
merged into one multicritical point at uK ¼ uN ≃ 0.1, as
denoted in Fig. 1(b). For uK ¼ uN ¼ u≲ 0.1, the SO(5) line

represents a first-order phase boundary with the SO(5)
symmetry spontaneously broken.
To verify such a first-order line, we simulate along the

exact SO(5) line uK ¼ uN ¼ u. As shown in Fig. 2(d),
correlation ratios R≡ 1 − hO2

l¼1i=hO2
l¼0i for up to sizes

N ¼ 15, indicate the phase transition point near u ≃ 0.1.
Here Ol ≡ ðO1;l;…; O5;lÞ is the O(5) order parameter with
angular momentum shift l [58]. Since the multicritical point
is the meeting point of the SO(2)-breaking and SO(3)-
breaking critical boundaries, it requires us to fine-tune two
different control parameters, uK and uN , in order to access.
Within disordered phase, we calculate the spin-singlet

gap Δ0 ¼ E1ðS ¼ 0Þ − E0ðS ¼ 0Þ and triplet gap Δ1 ¼
E0ðS ¼ 1Þ − E0ðS ¼ 0Þ, with EiðSÞ the ith lowest energy
in the total spin-S sector. In Fig. 3, both kinds of gaps
follow a clear 1=

ffiffiffiffi
N

p
behavior and scale to zero in the

thermodynamic limit. Such a scaling behavior of the gaps
strongly implies the disordered phase is gapless, fully
consistent with the symmetry-enforced gaplessness dis-
cussed in Ref. [4].
Phases of the ðuK; uNÞ < 0 quadrant.—For negative uK

and uN , the order parameter with M ¼ Γi vanishes in the
thermodynamic limit. Instead, the relevant order parameter
involves the SO(5) generator M ¼ Lij. We calculate the
squared generators hÕ2

iji with Õij¼
R
dΩψ†ðΩÞLijψðΩÞ¼

P
mc

†
mLijcm, and define the squared FM order parameter as

m2
FM ¼ 1

N2 hðÕ2
34 þ Õ2

35 þ Õ2
45Þi, and the squared VP order

parameter as m2
VP ¼ 1

N2 hÕ2
12i. As L12 ¼ τz, L34 ¼ −σz,

L35 ¼ σy, L45 ¼ σx, the finite value of m2
VP and m2

FM
suggests the VP and FM states, respectively.
In Figs. 4(a) and 4(b), we simulate along the negative

SO(5) line uK ¼ uN ¼ u < 0. The ground state energies
eg ¼ 1

N hψ jHΓjψi show clear kinks at ucðNÞ which can be
extrapolated to ucð∞Þ ≃ −1.056 (c.f. the inset). As shown
in Fig. 4(b), such a first-order transition can also be seen
from the squared order parameter hÕ2i=N2, which rapidly
jumps from zero to a finite plateau, whose height decreases
upon increasingN and can be extrapolated to the value of 4.

(a) (b)

(c) (d)

FIG. 2. Crossing point analysis of the VBS-disorder tran-
sitions. Along the fixed uK ¼ 2 cut, (a) the VBS Binder ratio
UVBS ≡ hO2

1i2=hO4
1i crosses between successive size pair

ðN;N þ 1Þ, whose crossing points u�N drift towards larger uN
with larger N. In the inset, u�N’s are extrapolated to uc ¼ 1.75ð4Þ
in the thermodynamic limit with the scaling form u�NðNÞ ¼
uc þ N−ð1=2νÞ−ðω=2Þ, with ν ¼ 0.47ð3Þ and ω ¼ 2.2ð4Þ from the
crossing point analysis shown in the SM [58]. (b) The subleading
operator exponent ω, correlation length exponent ν, and the
critical point uc are obtained from the scaling form of the crossing
point, Binder ratio value at crossing point and its first-order
derivatives. (c)m2

VBS rescaled by N
Δ with scaling dimension Δ ¼

0.64ð9Þ versus ffiffiffiffi
N

p
1=νðuN − ucÞ=uc, collapses nicely for various

system sizes N ¼ 9; 10;…; 16. (d) Correlation ratio R (up to
N ¼ 15), along the SO(5) line, indicates the phase transition
point near u ≃ 0.1.

(b)(a)

FIG. 3. Spin gaps within disordered phase. Within the disor-
dered phase, (a) spin singlet gaps and (b) spin triplet gaps are
calculated in the finite-size cases, and extrapolated to zero with
1=

ffiffiffiffi
N

p
in the thermodynamic limit.
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In Fig. 4(c), we further determine the uK ¼ −3 cut in the
phase diagram. The value of m2

FM jumps from zero to finite
around uNðN ¼ ∞Þ ≃ −1.25. Similarly in Fig. 4(d), we
simulate the fixed uN ¼ −3 cut wherem2

VP jumps to a finite
value of four around uKðN ¼ ∞Þ ≃ −1.38. More DMRG
results concerning the first-order transitions between VP
and VBS, and between FM and Néel phases, are shown in
the SM [58].
Discussions.—Our study provides a comprehensive

phase diagram for the ð2þ 1ÞD SO(5) NLSM with a
WZW term on a sphere. It reveals novel quantum states
and suggests a SO(5) disordered region separating the
SO(2) breaking VBS and SO(3) breaking Néel phases,
which terminates at a multicritical point [27]. Our discov-
ery of the extended disordered phase and the multicritical
point using a novel method of crossing point analysis of the
DMRG data, may also offer a platform for the search of the
predicted pseudocritical behavior [4], which we leave for
future studies. These results, combined with recent obser-
vations of a weakly first-order transition from entanglement
measurements [32–36,39,53,54] as well as the conformal
bootstrap deconfined quantum tricriticality [52], open up
new directions for the two-decade long pursuit of the
DQCP in various Néel-to-VBS settings.
Furthermore, our results find resonance with the experi-

ments both in the VBS-AFM transition in the quantum

magnet SrCu2ðBO3Þ2 [16–18,20,21] and the QSH-SC
transition in monolayer WTe2 [65], where the systems
either exhibit a first order transition or an intermediate
phase. A new pathway towards a conformal 2D SU(2)
DQCP was recently proposed, with SOð5Þf × SOð5Þb
global symmetry [66]. Investigating the validity of this
newly proposed DQCP using present techniques would be
of great interest.

Note added.—Recently, Ref. [67] reported pseudocritical
behavior for the SO(5) line. The parameter range of the
reported pseudocritical behavior and (approximate) con-
formal symmetry, i.e., 0.7 < V=U < 1.5, correspond to
0.1187 < u=U0 < 0.4286, close to the multicritical point
in our phase diagram.
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