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Moiré materials provide a highly tunable platform in which novel electronic phenomena can emerge.
We study strained moiré materials in a uniform magnetic field and predict highly anisotropic electrical
conductivity that switches easy axis as magnetic field or strain is varied. The dramatic anisotropy reflects
one-dimensional localization (directional localization) of the electron wave functions along a crystal axis
due to quantum interference effects. This can be understood in an effective one-dimensional quasiperiodic
Aubry-André-Harper-like model, or in a complementary semiclassical picture. This phenomenon should be
observable in strained moiré materials at realistic fields and low strain disorder, as well as unstrained
systems with anisotropic Fermi surfaces.
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Introduction.—The advent of moiré materials has
recently unlocked new opportunities for the control and
engineering of two-dimensional quantum phases of
matter [1–9]. When subject to a quantizing magnetic field,
moiré systems exhibit a complex energy spectrum due to
the interplay between Landau level physics and the moiré
superlattice [10–15]. Indeed, unlike ordinary semiconduc-
tors, a key feature of moiré systems is that the magnetic
length l and moiré lattice constant aM are often compa-
rable, both on the order of tens of nanometers. This allows
access to two distinct sets of phenomena. First, the
electronic spectrum exhibits fractal Hofstadter features,
including Brown-Zak oscillations [16–18], due to the moiré
unit cell enclosing Oð1Þ flux quanta [19], as observed in
graphene-hexagonal boron nitride [10–12]. Second, the
destructive interference between the Landau level orbitals
and the moiré potential result in band flattenings, or magic
zeros, at a discrete set of magnetic fields, and other
commensurability phenomena [20,21].
Strain is ubiquitous in realistic moiré materials. Since a

small strain at the atomic scale is magnified by the large
superlattice period, strain often plays an important role in
understanding the phenomenology of the system [22–26].
Recent experimental advances in 2D materials also promise
greater control over strain as a tuning knob, paving the way
for “strain engineering” [27] or “straintronics” [28]. The
effect of strain on magnetotransport has just started to be
studied experimentally and theoretically [29,30].
In this Letter, we show that strain provides an avenue to

new physics in moiré superlattices: namely, the combination
of strain (specifically, uniaxial or shear heterostrain) and
magnetic field generally induces one-dimensional electronic
states, leading to highly anisotropic magnetotransport
(Fig. 1). Moreover, the resistivity anisotropy, including
the transport easy axis, is strongly tunable by carrier density
ρ or field. At fixed ρ, it alternates periodically in 1=B with

period ∼2kF=aM. This is due to an effective dimensional
reduction of the 2D system to an array of 1D extended states.
We support this picture in two complementary limits: in
the high field limit, the origin of this directional localiza-
tion is the noncommutativity of projected position oper-
ators x and y in the effective picture of the Landau level
perturbed by the moiré potential, while in the low field
limit, a semiclassical scattering model reproduces the same
results. We emphasize that this is a quantum interference
phenomenon largely independent of the microscopic
details of the moiré system. While highly anisotropic
transport has been observed in moiré materials with a
1D superlattice structure [31–33], in our case the transport
anisotropy varies periodically in 1=B. Because of its
universality and robustness, we expect field-induced direc-
tional localization is a readily observable effect in moiré
systems that is beyond the purview of traditional solids.
Directional localization from strain and field.—First, let

us review our expectations for magnetotransport in the 2D
electron systems. In a clean system, when the Fermi level is
between Landau levels, we expect familiar quantum Hall
plateaus with vanishing σii (i ¼ x, y) and σxy quantized to
e2ν=h. As the Fermi level sweeps through a Landau level,
plateau transitions occur in σxy and σii exhibits a peak.

FIG. 1. 1D localization in strained moiré systems. We consider
strained moiré systems in a perpendicular field. The result is highly
anisotropic conductivity that switches direction with ρ. This
phenomenon is universal, accessible, and robust to strain disorder.
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Our focus is on these peaks, and in particular oscillations
of their heights. Specifically, we predict drastic anisotropy
in the longitudinal conductivities in moiré systems due to
the (generic) presence of strain.
To proceed, our starting point is the continuum

Hamiltonian (ℏ ¼ 1)

H ¼ H0ðp − eAÞ þ VðrÞ; ð1Þ
which describes electrons minimally coupled to a uniform
magnetic field in the presence of a moiré potential. We
consider a moiré potential,

VðrÞ ¼
X
i

VieiQi·r; ð2Þ

built out of long-wavelength harmonics with Qi ∼ 1=aM.
Let us specialize for now to a quadratic dispersion
H0ðpÞ ¼ p2=2m. When V ¼ 0, the spectrum is described
by Landau levels with energy En ¼ ωcðnþ 1=2Þ, where
ωc ¼ eB=m. For small V0=ωc, the Landau levels acquire
a bandwidth of order V0 and we can work within a
low-energy effective theory. The effective Hamiltonian
in the nth Landau level is given by Ṽ ¼ PnVPn, where
Pn is the corresponding projector. Adopting a symmetric
gauge, we find

Ṽðr̃Þ ¼
X
i

ṼieiQi·r̃ ð3Þ

to leading order, where Ṽi ¼ Vie−Q
2
i l

2=4LnðQ2
i l

2=2Þ and
Ln is the nth Laguerre polynomial. Here, r̃ ¼ ðx̃; ỹÞ are the
projected position operators, which satisfy

½x̃; ỹ� ¼ il2: ð4Þ

Consider first the example of a square superlattice
potential, VðrÞ ¼ 2V0½cosQxxþ cosQyy�. The projected
potential is

Ṽðr̃Þ ¼ 2Ṽx cosQxx̃þ 2Ṽy cosQyỹ: ð5Þ

Let β ¼ 2π=QxQyl2 be the magnetic flux per unit cell in
units of ℏ=e. Then we may write

Ṽ ¼ 2ṼyðcosY þ λ cosXÞ; ½X; Y� ¼ 2πi=β; ð6Þ

where λ ¼ Ṽx=Ṽy. Let Xjxi ¼ xjxi and let c†j create the
state jϕj=Qxi where ϕj ¼ ϕ0 þ 2πj=β. For each ϕ0, we
may regard Ṽ as a 1D tight-binding model,

Ṽ ¼
X
j

2Ṽx cosðϕjÞc†jcj þ Ṽy

�
c†jþ1cj þ H:c:

�
: ð7Þ

This is equivalent to the Aubry-André-Harper (AAH)
model [34], a canonical model that exhibits a

localization-delocalization transition at jλj ¼ 1. This is
consistent with the duality of Eq. (6) under X ↔ Y and
λ ↔ 1=λ. In the presence of strict C4 rotational symmetry,
λ ¼ 1 and the model is at its critical point. However, any
superlattice strain [35] results in Qx ≠ Qy and can have
stark effects, as λ, being the ratio of oscillating functions,
fluctuates dramatically about the critical point. The appear-
ance of the AAH model in the study of Bloch electrons in a
magnetic field has been noted [44].
Previous studies have shown that this transition is

sharp if and only if β is a “Diophantine number” [36],
which is a dense subset of the irrationals that excludes
Liouville numbers (for which the wave functions never
localize [45]). The existence of localized and delocalized
phases at generic β, possibly separated by a mobility edge
near λ ¼ 1, has been verified numerically [46].
Consider next the more realistic case of a triangular

superlattice cosine potential, VðrÞ ¼P3
i¼1 2Vi cosQi · r,

with Qi ¼ Qfcos½2πði − 1Þ=3�; sin½2πði − 1Þ=3�g. The
projected potential can be written [47]

Ṽ ¼
X3
i¼1

2Ṽi cosXi; ½Xj; Xjþ1� ¼ 2πi=β; ð8Þ

where Xi ¼ Qi · r̃ and β ¼ 2π=jQ1 × Q2jl2. For Ṽ2 ¼ Ṽ3,
consider an X1 eigenbasis jx1i and let c†j create jϕj=Q1i,
where ϕj ¼ ϕ0 þ 2πj=β. Then for each ϕ0, we may again
regard Ṽ as a 1D tight-binding model,

Ṽ ¼
X
j

2Ṽ1 cosðϕjÞc†jcj

þ 2Ṽ2 cosðϕjþ1=2=2Þ
�
c†jþ1cj þ H:c:

�
: ð9Þ

In both of the examples Eqs. (6) and (8), the presence of
strain results in rapid switching between localized and
delocalized regimes in the effective models with varying
magnetic field. This implies a 1D localization in the 2D
model along a direction that switches with varying mag-
netic field. For instance, in the square lattice case, for
jṼyj > jṼxj we expect wave functions localized along the
y direction, and for jṼxj > jṼyj, we expect wave functions
localized along x.
So far, we have discussed the square and triangular

lattice cosine potentials in the perturbative regime. In fact,
this perturbative result holds for any 2D periodic potential
VðrÞ. In the absence of strain, VðrÞ and Ṽðr̃Þ possess
rotational symmetry. In the presence of strain, the eigenm-
odes of Ṽðr̃Þ are generically delocalized in one direction
and localized in the perpendicular direction. The localiza-
tion direction may be simply read off from the functional
form of Ṽðr̃Þ: it is the direction in which Ṽðr̃Þ has extended
level sets (i.e., open orbits). This direction is uniquely
defined for generic Ṽðr̃Þ, as the extended level sets of a 2D
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periodic function necessarily all run parallel to the same
lattice vector bext. As Ṽðr̃Þ is varied by tuning the strain,
the direction of the extended level sets bext can discretely
switch along crystal directions [48–51,52]. At the critical
points where bext. changes (including in the zero-strain
case), the wave functions are critically delocalized in all
directions.
While the discussion has so far dealt with the perturba-

tive regime, we now demonstrate that this phenomenon is
nonperturbative, and moreover holds for quite general
energy dispersions. Our starting point is the semiclassical
equations of motion for a Bloch wave packet,

ṗ ¼ −e ṙ × B; ṙ ¼ ∇EðpÞ; ð10Þ

where EðpÞ is the energy dispersion including the effect of
the moiré potential.
The relevant degrees of freedom at low temperatures are

the electronic states near the Fermi surface. Wave packets
formed of these states can be thought of as propagating in a
network made of copies of the original Fermi surface
separated by the superlattice wave vectors Qj. We will
consider the case of a strained square moiré superlattice,
Qx ≠ Qy. Away from the junctions, electrons propagate
freely and unidirectionally according to Eq. (10) while
picking up Aharanov-Bohm phases. Near the junctions,
two incoming modes scatter into two outgoing modes,
which is properly described as a Landau-Zener two-level
crossing with scattering unitary

U ¼
 ffiffiffiffiffiffiffiffiffiffiffi

1 − P
p

e−iφ̃S −
ffiffiffiffi
P

p
ffiffiffiffi
P

p ffiffiffiffiffiffiffiffiffiffiffi
1 − P

p
eiφ̃S

!
; ð11Þ

where the P is the magnetic breakdown probability,

P ¼ e−2π=δ; δ ¼ 16eBv1v2 sin β=E2
gap: ð12Þ

Here, v1 and v2 are the velocities of incoming electrons,
v̂1 · v̂2 ¼ cos β, Egap ¼ 2V0 is the band gap at the Bragg
plane due to moiré potential, and φ̃S ¼ φS − π=2 with
φS ¼ π=4 − ðln δþ 1Þ=δþ argΓð1 − i=δÞ [20,53]. The
form of P makes clear that this approach is nonperturbative
in V0=ωc. We refer to [54–57] for other examples of
semiclassical network constructions. We remark that the
regime of validity of the semiclassical approximation in this
setting is large Landau level index.
Because of the periodicity of the repeated Brillouin zone,

energy eigenstates are Bloch-periodic eigenmodes of the
network model. For this, it is instructive to study the
scattering matrices Wx and Wy across the intersections of
Fermi surfaces, which we call the “lens orbits,” as indicated
in Fig. 2. These take the form [20]

Wi ¼
1

ð1 − PiÞeiðξiþ2φ̃S;iÞ − 1

 
Pieiξi=2 κi

κi Pieiξi=2

!
ð13aÞ

κi ¼ e−iφ̃S;i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Pi

p
ðeiðξiþ2φ̃S;iÞ − 1Þ; ð13bÞ

where ξi ¼ l2SðLiÞ and SðLiÞ is the k-space area of Li.
When κi ¼ 0,Wi is purely diagonal, implying that electron
motion is entirely in the ith direction (i ¼ x, y). In other
words, the junctions of Li are “transparent” to the electrons.
The condition for electron motion to be entirely in the i
direction is thus κi ¼ 0 or

l2SðLiÞ þ 2φ̃S;i ¼ 2πn; ð14Þ

where n∈Z. This is a Bohr-Sommerfeld quantization
condition for Li.
If SðLxÞ ¼ SðLyÞ, then Eq. (14) is satisfied simultane-

ously for x and y if at all, and electron motion always
remains delocalized in both directions. In the presence
of any strain, however, SðLxÞ ≠ SðLyÞ, so that electron
motion can alternate between strict localization in x and y,
corroborating the perturbative approach. This approach
places only topological constraints on the shape of the
Fermi surface, and reveals that this phenomenon general-
izes broadly and does not rely on perturbation theory,
though agreement with the perturbative method obtains
for large n [20].
Magnetotransport.—To reveal the observable effects,

we turn to a study of magnetotransport in strained moiré
superlattices. Conductivity can be taken as σab ¼ Dabτ
under the assumption of a single relaxation time τ, where
Dab is the Drude weight [37],

Dab ¼ −ieh½ja; xb�i0 þ A
X
n≠m

fnm
½ja�nm½jb�mn

En − Em
: ð15Þ

Here, ja is the current density operator, fnm ¼ fn − fm,
where fn¼ð1þeβðEn−μÞÞ−1 is the Fermi-Dirac distribution,
and A is the sample area. We derive this for completeness in
the Supplemental Material [35]. As an example, for a Fermi

(a) (b)

FIG. 2. Semiclassical approach. (a) Wi denotes the scattering
unitary across the lens orbit Li (i ¼ x, y). (b) Fermi surfaces in the
repeated zone scheme with moiré wave vectors Qx > Qy, with
example semiclassical trajectories when electron motion is
entirely in the ith direction, which occurs at the quantization
condition Eq. (14).
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gas, j ¼ −ep=mA and σab ¼ ðie2τ=mAÞh½pa; xb�i0 ¼
ðne2τ=mÞδab is the familiar Drude conductivity.
For a general Hamiltonian H ¼ T þ V with T ¼P
n EnPn (for projectors Pn) and V small, for any operator

M we may consider the projected low-energy operator M̃
that satisfies hψ1jMjψ2i ¼ hψ̃1jM̃jψ̃2i for all energy eigen-
states jψ ii, and with jψ̃ ii ¼ Pnjψ ii. Expanding perturba-
tively in V, this is given by

M̃ ¼ PnMPn þ
X
m≠n

PnMPmVPn − PnVPmMPn

En − Em
þOðV2Þ:

ð16Þ

The low-energy effective current density operator is given
to leading order by

j̃ ¼ ie½r̃; Ṽ�=A ð17aÞ

¼ el2
X
i

ðẑ × QiÞṼieiQi·r̃=A ð17bÞ

by application of Eq. (16). Note that j̃ vanishes to zeroth
order in V, as the bare current operator j only couples
neighboring Landau levels. Finally, conductivity may be
computed to leading order in V=ωc using the effective
operators Ṽ; r̃; j̃ in Eq. (15).
In Fig. 3, we use this method to plot longitudinal

conductivities in the presence of a magnetic field and
strain for square and triangular superlattices. Evidently σxx
and σyy show dramatic oscillations, consistent with our
picture of localization-delocalization transitions, for the
square superlattice, while σxx does so for the triangular
superlattice with milder oscillations in σyy. We note that the
x, y asymmetry in the triangular lattice case originates from

the principal strain axes aligning with only Q1jjx̂. We also
note the presence of Brown-Zak oscillations (horizontal
features) at small-numerator rational flux values.
We can infer the frequency of the directional switching

as follows. In the presence of two unequal wave vectors
Q1 ≠ Q2, the switching is driven by the parameter
λ ¼ Ṽ1=Ṽ2, which at large Landau level index n behaves as

λ ≈

ffiffiffiffiffiffi
Q2

Q1

s
cosð ffiffiffiffiffiffi

2n
p

Q1l − π=4Þ
cosð ffiffiffiffiffiffi

2n
p

Q2l − π=4Þ ; ð18Þ

where we used a large n approximation to Laguerre
polynomials [58]. The ratio of two incommensurate har-
monics ω;ω0 generically exhibits fast and slow oscillations
at frequencies ωþ ω0 and jω − ω0j. Relating density to
Landau level index by n ¼ 2πρl2, we conclude that the fast
oscillations are periodic in 1=B with frequency

ω0 ¼
ffiffiffiffiffiffiffiffi
4πρ

p
ðQ1 þQ2Þ ð19Þ

and slow modulating features are present at frequencyffiffiffiffiffiffiffiffi
4πρ

p jQ1 −Q2j (visible for larger strain).
When Q1 ∼Q2, ω0 ∼ 2kFQ, which is the familiar fre-

quency of Weiss oscillations in 1=B [20]. However, while
Weiss oscillations exist even in a 1D potential, the phe-
nomenon at hand requires a 2D potential, and thus it
consolidates both Hofstadter and commensurability physics.
Discussion.—We have discussed a series of transitions

between highly anisotropic conductivities in the same
universality class as the localization-delocalization transi-
tion of the AAH model, which can be readily observed in
magnetotransport experiments on strained moiré materials.
This is a manifestation of “directional localization” due to
the fundamental quantum noncommutativity of position
operators in the presence of a magnetic field.
In fact, this phenomenon can be observed more broadly

in 2D materials with anisotropic Fermi surfaces and in a
nonperturbative regime V0 ≳ ωc, as we have demonstrated
using a semiclassical approach. However, the magnetic
length should be on the order of the lattice constant, making
this difficult to realize outside moiré materials.
Our predictions are remarkably robust to strain disorder,

which is omnipresent in moiré systems [35]. At large fields
(B≳ ffiffiffi

ρ
p

Q), no reasonable strain disorder disrupts homo-
geneous 1D localization. At small fields (B ≪ ffiffiffi

ρ
p

Q) a
strain disorder up to δα ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=

ffiffiffi
ρ

p
Q

p
is tolerable. For

instance at B ¼ 5 T, Q ¼ 2π=10 nm−1 and one electron
per unit cell, up to 30% is permissible (far larger than the
strain disorder in many clean moiré graphene samples). This
is consistent with the fact that the switching frequency ω0

depends quite weakly on strain. A more detailed discussion
of strain disorder is given in the Supplemental Material [35].
We remark that evidence for unusual magnetotransport

in moiré systems has been previously found in related

FIG. 3. Conductivity switching. σxx and σyy in a strained square
(left) and triangular (right) lattice and magnetic field, with
uniaxial strain x ↦ αx, y ↦ α−1y, α ¼ 0.98. The ratio σxx=σyy
is plotted in color, with the intensity proportional to average
magnitude up to maximum σM. We observe sharp conductivity
anisotropy that switches as a function of B /density. Horizontal
dark features are Brown-Zak oscillations at flux 1=q per unit cell.
(Q ¼ 2π=10 nm−1, V0 ¼ 5 meV, T ¼ 0.5 meV).
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contexts. Reference [59] observed unusual magnetotran-
sport in twisted bilayer graphene that was captured well
by an anisotropic Hofstadter model. Such a model was
also studied in Ref. [60], which noted enhanced σxx=σyy,
but no “switching”.
One intriguing question for future work is whether this

effect can be achieved in a general Chern band or in the
absence of magnetic field. Indeed, the fundamental non-
commutativity of the projected position operators depends
only on the quantum geometry of the band. Other interest-
ing directions for future studies include possible techno-
logical applications of this phenomenon, such as for “moiré
transistors” or magnetic sensors.
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moiré superlattices, Nature (London) 497, 598 (2013).

[11] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias,
R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R.
Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot,
M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea,
V. I. Fal’ko, and A. K. Geim, Cloning of Dirac fermions in
graphene superlattices, Nature (London) 497, 594 (2013).

[12] B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M.
Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P.
Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori,
Massive Dirac fermions and hofstadter butterfly in a van der
Waals heterostructure, Science 340, 1427 (2013).

[13] E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi, K.
Watanabe, M. P. Zaletel, and A. F. Young, Observation of
fractional Chern insulators in a van der Waals heterostruc-
ture, Science 360, 62 (2018).

[14] Y. Xie, A. T. Pierce, J. M. Park, D. E. Parker, E. Khalaf,
P. Ledwith, Y. Cao, S. H. Lee, S. Chen, P. R. Forrester, K.
Watanabe, T. Taniguchi, A. Vishwanath, P. Jarillo-Herrero,
and A. Yacoby, Fractional Chern insulators in magic-angle
twisted bilayer graphene, Nature (London) 600, 439 (2021).

[15] C. R. Kometter, J. Yu, T. Devakul, A. P. Reddy, Y. Zhang,
B. A. Foutty, K. Watanabe, T. Taniguchi, L. Fu, and B. E.
Feldman, Hofstadter states and reentrant charge order in a
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