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Twisted bilayer graphene (TBG) can host the moiré energy flat bands with twofold degeneracy serving
as a fruitful playground for strong correlations and topological phases. However, the number of degeneracy
is not limited to two. Introducing a spatially alternative magnetic field, we report that the induced magnetic
phase becomes an additional controllable parameter and leads to an undiscovered generation of fourfold
degenerate flat bands. This emergence stems from the band inversion at the Γ point near the Fermi level
with a variation of both twisted angle and magnetic phase. We present the conditions for the emergence of
multifold degenerate flat bands, which are associated with the eigenvalue degeneracy of a Birman-
Schwinger operator. Using holomorphic functions, which explain the origin of the double flat bands in the
conventional TBG, we can generate analytical wave functions in the magnetic TBG to show absolute
flatness with fourfold degeneracy. Moreover, we identify an orbital-related intervalley coherent state as the
many-body ground state at charge neutrality. In contrast, the conventional TBG has only two moiré energy
flat bands, and the highly degenerate flat bands with additional orbital channels in this magnetic platform
might bring richer correlation physics.
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Introduction.—Moiré twistronics, focusing on the exotic
properties of moiré superlattcies from two-dimensional
(2D) twisted van der Waals multilayers, has attracted
enormous attention in contemporary research [1–10].
One well-known example is the twisted bilayer graphene
(TBG), where moiré interlayer coupling can significantly
alter the low-energy physics, and its electronic structure is
described by the Bistrizer-MacDonald model for a small
twisted angle [1]. Most prominently, when the twisted
angle is adjusted to be magic values, the low-energy Dirac
bands evolve to isolated twofold flat bands (FBs) with
“fragile” topology [4]. Thus, these FBs in the TBG offer an
exciting playground to explore emergent correlated and
topological physics, and a wide range of intriguing corre-
lated phenomena have been experimentally observed, such
as correlated insulating states [2,5,11–15], unconventional
superconductivity [3,5,15–18], and the quantum anoma-
lous Hall effect [19–22].
When chiral symmetry is preserved, at magic angles the

moiré FBs are absolutely flat in the entire moiré Brillouin
zone (BZ). This absolute flatness can be proved by the
construction of the wave functions (WFs) from holomor-
phic functions [23]. In addition, calculating the spectral of a
compact Birman-Schwinger operator can precisely deter-
mine all real magic angles for the twofold FBs (per valley/
spin) [24,25]. Until now, however, most studies have
focused on the double FBs in the TBG because this twofold

degeneracy originates from nondegenerate bands of the
Dirac cones. An interesting and outstanding question is
whether it is possible to realize FBs with higher degen-
eracy. Such an exploration is highly desirable as this
realization will not only provide new insights into the
origin of magic angles and FBs but also offer a more fruitful
platform hosting diversified strongly correlated physics.
Beyond the twofold degeneracy of the moiré FBs, in this

Letter, we show that an undiscovered generation of FBs
with fourfold degeneracy emerges in the presence of
spatially alternating magnetic fields, motivated by the
electronic tunability in 2D systems with external uniform
magnetic fields [26–29] modified by the hexagonal
Haldane model [30]. Then, the Dirac cone of the monolayer
acquires an additional magnetic phase φ. Importantly, this
magnetic phase expands the solutions of magic angles to
the complex eigenvalues of the Birman-Schwinger oper-
ator, in contrast to the real eigenvalues of the conventional
TBG. Interestingly, some complex eigenvalues correspond
to quadruple FBs (per valley/spin) with absolute flatness
and nontrivial topology. Moreover, to reveal the origin of
the quadruple bands, we show that the WFs can be
generated by holomorphic functions with two real-space
nodes, and the generating functions naturally lead to
absolute flatness with the fourfold degeneracy. Finally,
we discuss that the fourfold degeneracy can enrich corre-
lated physics due to additional filling selections in these
multifold FBs.
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Model.—To be specific, we consider monolayer gra-
phene with alternative magnetic fluxes in each triangle
inside a hexagonal plaquette [Fig. 1(a)], similar to the
Haldane model [30]. The blue (⊙) and yellow (⊗) triangles
denote outward and inward to the plane fluxes, and the total
flux through each hexagonal plaquette vanishes. With a
Peierls substitution, the nearest-neighbor hopping acquires
a magnetic phase φ. The Dirac Hamiltonian in the real
space gains an additional phase and reads [31]

hφDðrÞ ¼ −v0
�

0 e−iφ2∂

eiφ2∂ 0

�
; ð1Þ

with ∂ ¼ ð1=2iÞð∂x þ i∂yÞ and Fermi velocity v0. The
standard Dirac Hamiltonian is restored for monolayer
graphene in the absence of magnetic flux. Then, we
introduce a twist with angle θ between these two graphene
layers [Fig. 1(b)]. We use the basis of ΦðrÞ ¼ ðeiðφ=2Þψ t

A;
eiðφ=2Þψb

A; e
−iðφ=2ÞχtB; e

−iðφ=2ÞχbBÞ⊤, which absorbs the mag-
netic phase, where t=b denotes the top/bottom graphene
layers and A=B is the sublattice index. The chirally
symmetric continuum model of TBG with alternating
fluxes can be written as

HφðrÞ ¼
�

0 Dφ�ð−rÞ
DφðrÞ 0

�
; ð2Þ

DφðrÞ ¼
�

2∂̄ eiðφþβÞα0UðrÞ
eiðφ−βÞα0Uð−rÞ 2∂̄

�
; ð3Þ

where UðrÞ ¼ e−iq1·r þ e−iq2·reiϕ þ e−iq3·re−iϕ with ϕ ¼
2π=3. q1 ¼ kθð−1; 0Þ, q2;3 ¼ kθð1=2;∓

ffiffiffi
3

p
=2Þ are shown

in Fig. 1(d) with kθ ¼ 2kD sinðθ=2Þ, and kD ¼ jKt=bj is
Dirac momentum in the monolayer graphene. The above
Hamiltonian is characterized by a dimensionless real
parameter α0eiβ ¼ ðωAB=v0kθÞ, where ωAB is the strength
of the interlayer coupling with a constant phase β. Unlike
the magnetic phase φ, the global phase β can be gauged
away. For simplicity, we define a complex parameter
αðφÞ≡ α0eiφ. In addition, HφðrÞ is off-diagonal as we
consider the chiral limit, where we neglect intrasublattice
(AA=BB) interlayer hopping. Since the twisted angle is
small, we also neglect the rotation effect on the Dirac
Hamiltonian hφDðrÞ [23]. In the momentum space, the
interlayer coupling UðrÞ can be illustrated by the network
of the two Dirac cones with the extension of the momentum
hoppings, where the hopping between the nearest-neighbor
momentum sites acquires a phase eiφ owing to the alter-
native fluxes [Figs. 1(c) and 1(d)]. This nonzero phase
plays a pivotal role in generating multifold FBs.
Multifold FBs.—We further discuss the conditions of ab-

solutely zero-energy FBs for the above continuum model.
After a gauge transformation V ¼ diagðe−ik·r; e−ik·rÞ, the
Hamiltonian Hφ

kðrÞ ¼ V†HφðrÞV can be written as

Hφ
kðrÞ ¼

�
0 Dφ�

k ð−rÞ
Dφ

kðrÞ 0

�
; ð4Þ

whereDφ
kðrÞ≡DφðrÞ − k and the momentum k is defined

in moiré BZ. The explicit form of Dφ
kðrÞ is given by

Dφ
kðrÞ ¼ ð2∂ − kÞðI þ αðφÞTkÞ;

Tk ¼ ð2∂ − kÞ−1
�

0 UðrÞ
Uð−rÞ 0

�
; ð5Þ

where Tk (k ≠ 0) is known as the Birman-Schwinger
operator [24,25]. The appearance of zero-energy FBs
implies that the determinant of HamiltonianHφ

kðrÞ vanishes
for all k, i.e., detðDφ

kðrÞÞ ¼ 0. Because of detð2∂ − kÞ ≠ 0,
for all nonzero k the matrix ½I − αðφÞTk� should have at
least one zero eigenvalue and for k ¼ 0 two low-energy
states are fixed at zero energy. According to Refs. [24,25],
the eigenvalues of Tk are independent of k and we can
define a spectrum A ¼ 1=SpecðTkÞ and a corresponding
two-component eigenstate ψ0

kðrÞ. Therefore, once the
parameter α is tuned to be one of the complex eigenvalues
in A, Dφ

kðrÞψ0
kðrÞ ¼ 0 so that zero-energy FBs emerge in

Hφ
kðrÞ and α has a magic value.
In the absence of the alternative magnetic field (φ ¼ 0),

the magic parameters α in the conventional TBG appear
recursively on the real axis of spectrum A [24,25], and
indicate the presence of double FBs [Fig. 2(a)]. When the

FIG. 1. (a) Distribution of periodic local magnetic fluxes in
hexagonal plaquette of monolayer graphene with basis A and B.
(b) TBG with alternative fluxes. (c) The two monolayer BZs with
the twist form a moiré BZ. The red and green hexagons exhibit
the BZs of the bottom and top layers, each rotated by an angle
�θ=2, and the black hexagon indicates the moiré BZ with
momentum bases bI=II ¼

ffiffiffi
3

p
kθð−

ffiffiffi
3

p
=2;�1=2Þ. (d) The recip-

rocal lattice structures. The interlayer coupling with the phase φ
couple the red and green Dirac cones separately located in the top
and bottom layers.
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alternativemagnetic field is recovered, themagic values of α
are expanded to the entire complex plane. The spectrum A
exhibit no degeneracy (red circles) and twofold degeneracy
(blue circles), respectively [Fig. 2(a)]. The nondegenerate
and twofold degenerate eigenvalues correspond to double
and quadruple FBs in magnetic TBG [31]. That is, the
degeneracy of FBs is twice the degeneracy at magic values.
Introducing the alternative fluxes extends magic parameters
to more discrete values and leads to the emergence of
quadruple FBs.
To investigate the evolution of the degeneracy in the

spectra of the magnetic TBG, we take the complex eigen-
value closest to the origin in Fig. 2(b) as an example with
magnetic phase φN ¼ 0.254π to demonstrate the changes of
the low energy bands. The degeneracy of FBs is intimately
related to the degeneracy of the lowest energy states at Γ in
the TBG spectrum. To understand the transition of FBs with
different degeneracies as α varies, we can track the band
touch of the low-energy states at Γ [Fig. 2(b)]. The green
(blue) curves represent a threefold (fourfold) band touching
at Γ, resulting in band inversions between one singlet and
one doublet (between two doublets). Importantly, the three-
fold degeneracy curves [Fig. 2(d)] separate the magic
parameters α with double and quadruple FBs. Inside one
of these degeneracy loops, two connected bands near zero
energy in a direct gap [Fig. 2(c)] evolve to double FBs at
magic α (red circles). As α crosses a threefold degeneracy
line, the band inversion changes two connected bands to
four connected ones in the gap [Fig. 2(e)]. Outside these
degeneracy loops, the four connected bands evolve to
quadruple FBs [Fig. 2(f)] at magic α (blue circles). Then,
as discussed in the Supplemental Material [31], we consider
the effect of intrasublattice interlayer coupling, which can

result in a slight dispersion of the quadruple FBs. In addition,
within the quadruple FBs, two of them (No. 2=3) that
constitute Dirac points possess Chern numbers of�1 while
the Chern numbers of the remaining two bands (No. 1=4)
vanish.
Origin of quadruple FBs.—In the conventional TBG, the

key to rigorously showing the emergence of the double
absolutely FBs is that at the magic angles, the absolute
values of the WFs with the zero energy at K=K0 have a
linear-momentum-dispersion node at BA/AB stacking
[Fig. 3(a)]. Using this WF at K, one generates two
eigenfunctions with zero energy at any momentum point
[23]. For the magnetic TBG, we can use a similar approach
to show the absolute flatness of the quadruple bands at
magic α by identifying the nodes of the WFs at K and
extending this function to the entire Moiré BZ.
To distinguish the quadruple FBs, consider α slightly

away from the magic value [Fig. 2(e)]. The two lowest
bands are labeled by No.1=2, and the remaining two bands
can be generated by chiral symmetry operator S ¼ τzσ0.
In addition, due to C2T symmetry, the nondegenerate
four-component WF Ψk;iðrÞ can be expressed by a two-
component vector ψk;iðrÞ with band index i ¼ 1; 2. At the
magic αM ¼ 1.379eiφN , the norm ½ψ†

K;1=2ðrÞψK;1=2ðrÞ�1=2
shows that for FBNo.1 atK, two nodes appear at theAAand
BA stacking with a dominant linear real-space dependence
[Fig. 3(b)]. Meanwhile, for FB No.2 atK, there is only one
node at the AB stacking, and the norm exhibits real-space
quadratic dependence near it, implying a second order node
[Fig. 3(c)]. These nodal features in sharp contrast to the
conventional TBG are the important ingredients for the
absolute flatness of the quadruple bands.
To simplify the absolute flatness problem,we focus on the

solution of DφðrÞψkðrÞ ¼ 0 for all k. Previously, we
numerically obtain the two-component WFs ψKðrÞ pinned
at zero energy at K, which is a good starting point to
construct WFs of the FBs at other k. As k ≠ K, the
conjectural WF can bewritten as ψkðrÞ≡ fkðzÞψKðrÞwith

FIG. 2. (a) The spectra A shows the magic values of the
dimensionless complex parameter α corresponding to double
(red) and quadruple (blue) FBs. (b) The distribution of lowest
energy band touching at the Γ point in the spectra A. The band
structures of the Hamiltonian HφðrÞ with magnetic phase φN ¼
0.254π in the different α0 values marked by blue triangle in (b):
(c) α1 ¼ 0.3eiφN , (d) α2 ¼ 0.55eiφN , (e) α3 ¼ 1.0eiφN , and
(f) αM ¼ 1.379eiφN . The inset in (c) indicates the spectrum path
in the moiré BZ. The green circle in (d) denotes band inversion
between double degenerate and nondegenerate points at Γ.

FIG. 3. (a) Schematic moiré pattern. The red, green, and yellow
points indicate theAA,AB, and BA stacking points, andLI=II ¼
4π=3kθð−1=2;�

ffiffiffi
3

p
=2Þ are moiré lattice vector. (b) and (c) The

norm of the two-component WFs ψK;1=2ðrÞ at theK point for FB
No.1=2 at magic αM. The blue dashed line in (c) represents the
fitting of quadratic function.
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z ¼ xþ iy since DφðrÞψkðkÞ ¼ fkðzÞ½DφðrÞψKðrÞ� ¼ 0.
The holomorphic function fkðzÞ is either a constant or
unbounded by Liouville’s theorem, indicating that fkðzÞ is
meromorphic and thus has poles as k ≠ K. The eigenfunc-
tions ψkðrÞ are valid when the poles of fkðzÞ are smoothed
out by the nodes of ψKðrÞ in the Moiré unit cell. For the
double FBs in the conventional TBG, only one node appears
in ψKðrÞ. Differently, for the quadruple FBs, a second-order
node at theABstacking point emerges inψK;2ðrÞ of the band
No. 2 at themagicα, while there are already two linear nodes
in the ψK;1ðrÞ of the band No.1. We note that ψK;2ðrÞ is
always pinned at the zero-energy and possesses the node
only at the magic α. In contrast, ψK;1ðrÞ always has the two
nodes and drops to zero energy at the magic α. The zero
energy and the presence of the nodes at the magic α lead to
the solution of the zero-energy absolutely FBs in the entire
Moiré BZ.
We turn to the construction of WFs for the quadruple

FBs. To cancel the poles of ΨKðrÞ, we choose two theta
functions in the denominator of fkðzÞ and adjust fkðzÞ to
render the two-component WF ψkðrÞ to obey the Bloch
boundary conditions on moiré lattice vectors LI=II, namely,
ψkðrþLI=IIÞ ¼ eik·LI=IIUψkðrÞ with U ¼ diagðe−iϕ; eiϕÞ
[23]. The analytical expressions for the quadruple FB
WFs Ψk;1=2ðrÞ read

Ψk;1ðrÞ ¼
ϑa1;b1ðνjωÞϑa01;b01ðνjωÞ
ϑ1

2
;1
2
ðνjωÞϑ5

6
;7
6
ðνjωÞ ΨK;1ðrÞ; ð6Þ

Ψk;2ðrÞ ¼
ϑa2;b2ðνjωÞϑa02;b02ðνjωÞ

½ϑ7
6
;5
6
ðνjωÞ�2 ΨK;2ðrÞ; ð7Þ

with ν ¼ z=LI, ω ¼ ðLII=LIÞ ¼ eiϕ and LI=II ¼ ðLI=IIÞxþ
iðLI=IIÞy. To satisfy the Bloch boundary conditions, the
rational characteristics a and b obey

ai þ a0i ¼
1

3
þ ðk −KÞ ·LI

2π
þ nI; ð8Þ

bi þ b0i ¼
2

3
−
ðk −KÞ ·LII

2π
þ nII; ð9Þ

where nI and nII are arbitrary integers due to the lattice
transnational symmetry. The definition of the theta function
ϑa;bðνjωÞ and the detailed derivations of Eqs. (6) and (7) are
provided in the Supplemental Material [31]. The equations
above cannot determine the explicit expressions of the
rational characteristics, which are functions of k, unless the
node locations are given.
To prove the absolutely FBs, we numerically calculate

the flat-band WFs from Hamiltonian HφðrÞ and determine
the node locations. The node locations fix the values of a, b
in theta functions Eqs. (6) and (7). To confirm the validity
of the WF expressions in Eqs. (6) and (7), we first select a

general point P as an example. Figures 4(a) and 4(b) show
the norm of WFs ψk;1=2 for FB No.1=2 at k ¼ P, where the
WFs from Hamiltonian HφðrÞ and Eqs. (6) and (7) are
labeled in red squares and blue triangles, respectively. We
find a good agreement between them, and the agreement
can be extended to other general k points [31]. Therefore,
through the evolution of nodes and real-space WF, we have
verified the validity of WF in Eqs. (6) and (7), and
quadruple FBs are absolutely flat. In Supplemental
Material [31], we further confirm the validity of the relation
between Eqs. (8) and (9) and nodal coordinates.
Correlation states.—The presence of multiplefold FBs

provides an excellent platform for exploring correlated
quantum states. Besides the valley and sublattice degrees of
freedom in double FBs [39], the quadruple FBs introduce
an emergent orbital degree of freedom, which can signifi-
cantly enrich the correlated states. Within the quadruple
FBs, two of them (No. 2=3) that constitute Dirac points
possess exhibit Chern numbers of �1 labeled by the o
orbital while the Chern numbers of the remaining two
bands (No. 1=4 o0 orbital) vanish. Therefore, in the spinless
case with the two valleys, the total Chern numbers of �2
can be realized in the quantum Hall (QH) states at integer
filling [39–41]. With a fractional filling of the high-Chern-
number FBs [42], fractional quantum Hall states at a variety
of filling factors can be realized. We use the half-filling
scenario (four out of the eight FBs are filled) as a primary
example. Assuming the intrasublattice-intraorbital interac-
tion scale is much larger than other scales, the ground state
of this interaction is the one where each of the eight bands is
completely filled or empty [39]. There are C8

4 ¼ 70

degenerate many-body ground states [31], while only C4
2 ¼

6 ground states are present in the conventional TBG.

FIG. 4. (a) and (b) The norm of WFs ψk;1=2ðrÞ for FBs No.1=2
at k ¼ P with P ¼ 0.5bI − 0.3bII. N1=2 and N0

1=2 are corre-
sponding nodal points. (c) and (d) The configurations for QH and
½K-IVC�o½K-IVC�o0 states with CT ¼ þ1 and CT ¼ 0, and the
IVC bases are a coherent superposition of two valley FB bases
and the relations can be found in Supplemental Material [31].
The FBs labeled by gray, orange, and pink lines possess Chern
number C ¼ 0, C ¼ þ1, and C ¼ −1. The symbols

p
or ×

indicate whether the processes are permitted or forbidden.
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However, for intervalley-coherent (IVC) states, the types of
ground states increase significantly, and an exotic combi-
nation of the QH and IVC states, such as time-reversal IVC
(T-IVC) and Kramers IVC (K-IVC) states, can be realized
[31,39]. We schematically show the two representative
examples: orbital related QH and ½K-IVC�o½K-IVC�o0 states
in Figs. 4(c) and 4(d). The former state features three fully
occupied o-orbital FBs and one fully occupied o0-orbital
FB, where the o orbital can contribute to the Chern number
CT ¼ þ1. In the latter state, both o- and o0-orbital sectors
feature K-IVC states with antiparallel pseudospin between
two orbitals.
Now we introduce the effect of single-particle dis-

persion, intersublattice–intraorbital interaction and intra-
sublattice–interorbital interaction as perturbations, so the
high degeneracy of the ground states can be lifted. The
single-particle dispersion introduces a hopping between the
horizontal pair states (A ↔ B) [denoted by red curves in
Fig. 4(c)], yielding a energy reduction of the order of J. For
the latter two interaction terms, the corresponding energy
increments are proportional to λA=S

P
i¼1;2 n̂ið1 − n̂īÞ,

where n̂i is the particle number operator for one of the
horizontal (A ↔ B) or vertical (o ↔ o0) pair states. They
are denoted by green and blue wavy lines in Figs. 4(c) and
4(d), respectively. It is evident that three types of energy
corrections are nonzero when only one of the pair states is
occupied. Therefore, the energy correction can be formu-
lated as ΔE ¼ NAλA þ NSλS − NJJ [43]. From the energy,
we identify the anti-orbital K-IVC state in Fig. 4(d) as the
ground state at charge neutrality. Varying doping and
twisted angles may induce transitions between different
correlated states, necessitating detailed Hartree Frock
calculations, which we defer to future investigations.
Discussion and conclusion.—In recent experiments, FBs

have been achieved in twisted-bilayer optical lattice sys-
tems [44]. Moreover, the experimental achievement of
alternative magnetic flux has been demonstrated in tri-
angular and honeycomb optical lattices [45,46]. These
developments clearly indicate that the experimental reali-
zation of our proposed model is both feasible and highly
promising in optical lattice. In summary, introducing
alternative fluxes opens a venue for undiscovered multiple
magic angles and another generation of absolutely FBs
with higher degeneracy. Specifically, we report that the
double and quadruple FBs appear recursively in TBG with
alternative magnetic fluxes, and adjusting the twisted angle
and magnetic phase can control the transition between
double and quadruple FBs. The quadruple FBs share the
same origin with the conventional TBG, and by using
holomorphic functions, we can generate analytical WFs to
show the absolute flatness of the quadruple bands.
Moreover, additional orbitals in the quadruple bands lead
to more diversified strongly correlated physics. Our Letter
demonstrates that the magnetic phase is a unique tuning
parameter to tailor the electronic structure in moiré

twistronics, which can significantly enrich topological
and correlated phenomena.
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