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The Dyakonov-Perel (DP) mechanism of spin relaxation has long been considered irrelevant in
centrosymmetric systems since it was developed originally for noncentrosymmetric ones. We investigate
whether this conventional understanding extends to the realm of orbital relaxation, which has recently
attracted significant attention. Surprisingly, we find that orbital relaxation in centrosymmetric systems
exhibits the DP-like behavior in the weak scattering regime. Moreover, the DP-like orbital relaxation can
make the spin relaxation in centrosymmetric systems DP-like through the spin-orbit coupling. We also find
that the DP-like orbital and spin relaxations are anisotropic even in materials with high crystal symmetry
(such as face-centered cubic structure) and may depend on the orbital and spin nature of electron wave
functions.

DOI: 10.1103/PhysRevLett.132.246301

Introduction.—Electron orbital angular momentum
(OAM) dynamics in solids has gotten increased attention
recently [1]. Theories [2–4] predict the orbital Hall effect
even in materials with strong orbital quenching and weak
spin-orbit coupling (SOC). Recent experiments [5–11]
verified various theoretical predictions [12–15] on the
OAM. Experiments also revealed surprising stability of
the OAM dynamics against disorder [7–11,16], necessitat-
ing studies on disorder effects. Disorder effects on the
orbital current generation are examined theoretically
[2,3,17–19]. Another urgent issue is to understand disorder
effects on orbital relaxation [20].
The first primary objective of our Letter is to theoreti-

cally understand the scattering effect on orbital relaxation
in centrosymmetric systems. In the case of spin, its
relaxation is typically attributed to two mechanisms [21–
27]. One mechanism is the Elliott-Yafet (EY) mechanism
[26,27], where scattering events alter the spin direction,
leading to the shorter spin relaxation time τs as the
momentum scattering time τm becomes shorter (τs ∝ τm).
The other is the Dyakonov-Perel (DP) mechanism [23–25],
where the momentum-dependent effective magnetic field
(spin texture) induces the spin precession and dephasing,
which is intervened by scattering. Thus, τs becomes longer
as τm becomes shorter (τs ∝ 1=τm). The momentum-
dependent effective field arises from the spin-momentum
coupling such as Rashba and Dresselhaus couplings, which
are forbidden in centrosymmetric systems. Thus, the spin
relaxation in centrosymmetric systems is commonly attrib-
uted to the EY mechanism [28–31].
Our analytic and numerical calculations show that the

orbital relaxation time τo in centrosymmetric systems
exhibits the DP-like relaxation (τo increases with decreas-
ing τm) for sufficiently long τm. That is, scattering helps
electrons maintain their OAM for a longer time. This is the

first main result of our study. The DP-like behavior in
centrosymmetric systems contradicts the common expect-
ation that disorder scattering accelerates orbital relaxation
and is also in clear contrast to the aforementioned common
wisdom for spin relaxation. When τm is sufficiently short,
we find that τo exhibits the EY-like relaxation (τo increases
with increasing τm).
Our second primary objective is to understand spin

relaxation when the SOC exists. When the spin S is
coupled to the OAM L, the spin relaxation may be
influenced by the orbital relaxation, raising the possibility
that even spin may exhibit the DP-like relaxation behavior
when τm is sufficiently long. Our analytic and numerical
calculations confirm this possibility. This is the second
main result of our study and provides a possible explan-
ation for the DP-like spin relaxation in centrosymmetric
metal Pt [32]. Our result differs from a model calculation
[33], which predicts the DP spin relaxation in centrosym-
metric systems when τm is sufficiently short.
Schematic illustration.—In centrosymmetric systems

without the SOC, energy eigenstates have vanishing
OAM expectation values. However, the orbital nature of
the eigenstates varies with the momentum k. This orbital
texture can induce the DP-like OAM relaxation as dem-
onstrated below. For concreteness of illustration, we take a
p orbital centrosymmetric system with three energy
bands (n ¼ 1, 2, 3), whose eigenstates have real orbital
characters jχnki ¼ m̂nk · x̂jpxi þ m̂nk · ŷjpyi þ m̂nk · ẑjpzi
with m̂nk · m̂n0k ¼ δn;n0 . Here, the k dependence of the unit
vector m̂nk describes the orbital texture. For a schemati-
cally illustrated electron trajectory in Fig. 1(a), we focus on
a ballistic segment from ra (a ¼ 0; 1; 2; � � �) to raþ1, where
the electron wave function for a given energy E may be
expressed as
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ψaðrÞ ¼
X

n

cn;a exp ðikn;a · rÞjχnkn;a
i: ð1Þ

The n dependence of kn;a in the exponential phase factor
arises since each band component has a different wave
vector for the given E. Then, the local OAM expectation
value for ψaðrÞ reduces to hLir ≡ ψ†

aðrÞLψaðrÞ at r, where
L is the OAM operator. Although the OAM expectation
value for each eigenstate eik·rjχnki vanishes for all r, we
emphasize that hLir is finite in general and varies as the
electron propagates from ra to raþ1. For simplicity, we take
m̂n¼1;kn¼1;a

¼ x̂, m̂n¼2;kn¼2;a
¼ ŷ, m̂n¼3;kn¼3;a

¼ ẑ. Then, the
three components hLxir, hLyir, and hLzir oscillate with
the wave vectors kn¼2;a − kn¼3;a, kn¼3;a − kn¼1;a, and
kn¼1;a − kn¼2;a, respectively. This illustrates that the
OAM can precess intrinsically due to the orbital texture,
which is allowed even in centrosymmetric systems [34].
To understand the scattering effect on the intrinsic OAM

dynamics, we note that the hLir evolution pattern depends
crucially on the eigenstate orbital characters, which vary
with the propagation direction due to the orbital texture.
This implies that hLir evolution pattern in a ballistic
segment between two consecutive scatterings at rj and
rjþ1 differs from the corresponding patterns in different
ballistic segments. Therefore, each scattering alters the
hLir evolution pattern [Fig. 1(a)], which resembles the hSir
evolution pattern change by scattering in noncentrosym-
metric systems. This implies that the DP-like OAM
relaxation may occur in centrosymmetric systems.
Next, we turn on the SOC. Then, the local spin expect-

ation value hSir should also evolve intrinsically since S is
coupled toL and hLir evolves intrinsically. Moreover, hSir

evolution pattern should change upon scattering [see the
evolution of the red arrows in Fig. 1(b)] just like hLir does.
This illustrates schematically that the DP-like spin relax-
ation may be possible in centrosymmetric systems when
the SOC exists.
Kinetic theory approach.—To gain a more rigorous

assessment of the orbital relaxation, we apply the semi-
classical kinetic theory to a centrosymmetric p-orbital
model system described by the Luttinger Hamiltonian
[35], which was used previously to demonstrate the
intrinsic orbital Hall effect in hole-doped silicon [2]. Its
Hamiltonian density is given by

Ho
k ¼ c0k2 þ c1

X

j

k2jL
2
j þ c2

X

i≠j
kikjfLi; Ljg; ð2Þ

where ki and Li denote components of k and L, respec-
tively, and i; j ¼ x, y, z. Note that there is no SOC in Ho

k.
In the first term, k does not couple to L, whereas in the
second and the third terms, k couples to L, generating the
k-dependent variation of the real orbital character jχnki
(orbital texture [4]). These forms of orbital-momentum
coupling do not break the inversion symmetry nor the time-
reversal symmetry [35,36].
Our semiclassical kinetic theory builds upon the original

work of Dyakonov and Perel [23–25], who solved the
quantum Boltzmann equation and demonstrated the DP
spin relaxation due to the spin texture in noncentrosym-
metric systems. To assess the effect of the orbital texture on
orbital relaxation in centrosymmetric systems, we treat the
orbital-momentum coupling terms in Ho

k as perturbations
and the first term in Ho

k as an unperturbed Hamiltonian. In
the interaction picture, the equation of motion for the
density matrix ρk then reads

∂ρk
∂t

¼ 1

iℏ
½Hom

k ; ρk� þ
�
∂ρk
∂t

�

coll
; ð3Þ

where Hom
k denotes the orbital-momentum coupling terms

in Eq. (2). The commutator on the right-hand side of Eq. (3)
induces the intrinsic time evolution of the orbital. The
collision integral by impurities [last term in Eq. (3)] is
assumed to be elastic and isotropic. Furthermore, we
assume scattering-induced orbital relaxation is weak, which
can be justified in the large τm regime, where the EY-like
orbital relaxation is negligible. We investigate the evolution
of the OAM, Tr½ρkL�, by solving the corresponding equa-
tion and taking its angular average over the direction k.
As a result, we find the orbital relaxation time τo
given by

1

τo
¼ foτm; ð4Þ

where fo ¼ ð2k4F=15ℏ2γoÞð2c21 þ 3c22Þ, kF is the momen-
tum at the Fermi surface, and γo is a dimensionless constant
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FIG. 1. Schematic illustration of the DP-like relaxation. An
electron is scattered at positions r1, r2, etc., and forms a zigzag
trajectory. (a) Along the trajectory, the electron’s orbital density
(green) and OAM (blue arrows) evolve, which results in the DP-
like orbital relaxation even in centrosymmetric systems. Without
the SOC, the orbital dynamics does not affect the spin dynamics.
(b) When the SOC exists the spin (red arrows) dynamics is
affected by the orbital dynamics. Thus the OAM in (a) can cause
the spin to precess, leading to the DP-like spin relaxation.
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of order 1 that does not depend on τm [24,25,37]. Note that
1=τo is proportional to τm, that is, the orbital relaxation
follows the DP behavior.
Next, we introduce the SOC S ·L toHo

k and examine the
spin relaxation in a centrosymmetric p-orbital system
described by

Hos
k ¼ c0k2 þ c1ðk ·LÞ2 þ gsoS ·L; ð5Þ

where the third term is the SOC. The isotropic limit
(c1 ¼ 2c2) is assumed for simplicity. WithHos

k , we perform
a similar semiclassical calculation of the quantum
Boltzmann equation. We treat the SOC as a perturbation,
noting that the orbital-momentum coupling has a typical
energy scale comparable with the electron hopping and is
stronger than the SOC. We investigate the evolution of the
spin, Tr½ρkS�, and take its angular average over the
direction k. As a result, we find that in the large τm
regime, the spin relaxation time τs is given by

1

τs
¼ fsτm; ð6Þ

where fs ¼ ð16=3ℏ2γsÞg2so and γs is a dimensionless con-
stant of order 1 that does not depend on τm [24,25,37]. Note
that 1=τs is proportional to τm, that is, the spin relaxation
follows the DP behavior even though the spin-momentum
coupling is forbidden in this centrosymmetric system. This
DP behavior is realized by the combination of the orbital
texture and the SOC, as evidenced by fs being proportional
to g2so. Our results demonstrate that the orbital texture can
induce the DP-like relaxation of both spin and orbital in
centrosymmetric nonmagnetic systems.
Numerical calculation.—We examine the spin and

orbital relaxations in centrosymmetric nonmagnetic metals
(NM) numerically by using the tight-binding description.
We calculate the spin-dependent or orbital-dependent
charge conductances for a spin value [Fig. 2(a) inset] or
an orbital valve [Fig. 3(a) inset], where the NM of interest is
sandwiched between two spin ferromagnets (SFMs) or two
orbital ferromagnets (OFMs) [46,47], which act as spin or
OAM generators and detectors. We calculate the charge
resistance R between the two ferromagnets (FM) for the
two configurations, one with the two FMs magnetized
parallel to each other (RP) and the other with the two FMs
magnetized antiparallel (RAP). The resistance difference
ΔR ¼ RAP − RP amounts to the out-of-plane giant mag-
netoresistance, which decays as the distance d between the
two FMs increases. We extract the spin and orbital
relaxation lengths of the NM from the d dependence of
ΔR, which changes with the disorder strength in the NM.
This scheme allows one to focus on the scattering effect on
longitudinal spin or orbital current relaxation in the NM
and to decouple it from the scattering effect on spin [3,48]
or orbital [2,3,17–19] Hall current generation in the NM

since the latter effect does not affect ΔR. The relaxation
lengths are later converted to the spin and orbital relaxa-
tion times.
Since the modeling of the SFMs is more straightforward

than the OFMs, we examine the spin relaxation in a spin
valve structure first [Fig. 2(a) inset]. For both the left and

FIG. 2. Spin relaxation in NM. (a) Magnetoresistance ΔR as a
function of the NM thickness d with random static disorder
potential with magnitude U ¼ 0.042 eV. Points denote ΔR
averaged over disorder configurations. The vertical bars denote
the standard deviation of ΔR. The curve denotes the exponential
fitting of the points. Inset: schematic of the spin valve structure.
(b) Spin relaxation length λs (blue) and mean free path l (red) as a
function of U. (c) Spin relaxation time τs as a function of
momentum scattering time τm. (d) λs’s dependence on the on-site
energy shift in SFMs.

FIG. 3. Orbital relaxation in NM. (a) Orbital relaxation length
λo (blue) and mean free path l (red) as a function of U. Inset:
orbital valve structure. (b) Orbital relaxation time τo as a function
of momentum scattering time τm. (c) λo and λs for several crystal
directions of NM. (d) λo for different values of orbital exchange
coupling parameter Jo. U ¼ 0.042 eV in (c) and (d).
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right SFMs in the spin valve, we adopt artificial FMs [37]
emulating permalloy Ni81Fe19, since permalloy is com-
monly used to investigate spin relaxation [29,32,49]. For
the NM in the spin valve, we adopt the Slater-Koster tight-
binding parameters of Pt. Additionally, we introduce static
on-site disorder potential with a Gaussian random distri-
bution (mean ¼ 0, standard deviation ¼ U) to induce
scattering in the NM. No disorder is introduced in the
SFMs. All three layers in the spin valve possess the face-
centered-cubic structure stacked along the [111] direction.
The magnetization directions of the SFMs are
perpendicular to the interfaces. Using the KWANT package
[50,51], we evaluate the average (symbols) and the standard
deviation (vertical bars) [Fig. 2(a)] of ΔR over the on-site
disorder potential realizations, for given values of U and d.
The d dependence of the average is fitted by the curve
(solid line)

ΔRave ¼ ΔR0e−d=λs ; ð7Þ

where λs is the spin relaxation length and ΔR0 is a
d-independent constant.
We then repeat the process in Fig. 2(a) for various values

of U to analyze how λs varies with U [blue symbols in
Fig. 2(b)]. The mean free path (l) is also evaluated as a
function U [red symbols in Fig. 2(b)]. To determine l, we
calculate the disorder-averaged resistivity of the NM
[37] and convert it into l and τm. For logðU=U0Þ≲ 2
(U0 ¼ 0.03 eV), we find that l decays rapidly as U
increases whereas λs decreases only mildly with U. This
difference in the U dependences of l and λs implies that the
spin relaxation time τs increases as U increases. This
confirms that even in centrosymmetric systems, the DP-like
spin relaxation is possible in the weak scattering regime. To
quantify τs, we utilize the relation τs ¼ 3λ2sv−2F τ−1m [52],
where vF is the Fermi velocity. This relation is derived in
the diffusive regime (λs ≫ l), and thus not strictly valid
when λs is comparable to l [Fig. 2(b)]. Nevertheless, we use
the relation since the diffusion picture is commonly used in
the spin transport analysis even when λs ∼ l [32,53–55].
Figure 2(c) shows the resulting τs plotted as a function of
τm. In the weak scattering regime, (τm ≥ 1.5 fs), τs
increases with decreasing τm, thus exhibiting the DP-like
spin relaxation. On the other hand, in the strong scattering
regime (τm ≤ 1.5 fs), τs increases with increasing τm, thus
exhibiting the EY-like spin relaxation.
Next, we examine orbital relaxation numerically via an

orbital valve structure [Fig. 3(a) inset] with an NM
sandwiched between two OFMs. All three layers in the
orbital valve possess the face-centered-cubic structure
stacked along the [111] direction. For the NM, we turn
off the SOC in the tight-binding parameters of Pt. For the
OFMs, we adopt a simple modeling of artificial OFMs
instead of real OFMs [46,47]; we introduce the orbital
exchange coupling JoM̂ ·L to the tight-binding parameters

of the NM. Here, the unit vector M̂ denotes the magneti-
zation direction of an OFM and Jo is the strength of the
orbital exchange coupling. Because of the coupling, eigen-
states of the OFMs have finite OAM expectation values.
The reversal of M̂ does not modify the band structure of the
OFMs but reverses the OAM expectation values of eigen-
states. The SOC is absent everywhere in the orbital valve so
that we can focus on pure orbital relaxation dynamics,
decoupled from spin dynamics. The rest of the analysis
procedure is the same as the spin relaxation analysis
procedure. Figure 3(a) compares the resulting orbital
relaxation length λo and l as a function of U. Their U
dependences are similar to those in Fig. 2(b). This confirms
that orbital relaxation in centrosymmetric systems can
exhibit the DP-like relaxation in the weak scattering
regime. The relation τo ¼ 3λ2ov−2F τ−1m is used to convert
λo to the orbital relaxation time τo. The resulting τo is
shown as a function of τm in Fig. 3(b), where the DP-like
and EY-like orbital relaxations are evident in the weak and
strong scattering regimes, respectively.
Discussions.—A few experiments [32,38,39,49] reported

that the spin relaxation in centrosymmetric metallic sys-
tems exhibits the DP-like behavior in the low-temperature
regime (low-resistivity regime). A recent calculation [40]
also reported the DP-like spin relaxation in Pt. Since the DP
spin relaxation has been believed to be forbidden in
centrosymmetric systems, some [38–40] attributed the
behavior to the interfaces of the centrosymmetric materials,
where the inversion symmetry is broken and the spin-
momentum coupling may be present. On the other hand,
the experiment on Pt [32] argued that the DP spin relaxation
by the interfaces is not relevant in their measurement
geometry of the out-of-plane magnetoresistance [same as
our spin valve geometry in Fig. 2(a) inset] and the observed
DP-like behavior should originate from centrosymmetric
bulk Pt. We argue that our work provides a possible
explanation for the previously reported DP-like behaviors
in centrosymmetric systems. To separate the interfacial and
bulk contributions to the DP-like relaxation in our calcu-
lation, we turn off the SOC S ·L in the bulk of the NM and
retain the SOC only near the SFM/NM and the NM/SFM
interfaces. A significantly longer spin relaxation length is
obtained in this case [37], implying that the DP-like spin
relaxation in Fig. 2 arises mainly from the bulk NM,
consistent with the argument of Ref. [32]. For the orbital
relaxation, on the other hand, we are not aware of any
experiments that systematically examine the scattering
effect. We argue that such experiments are highly needed
to clarify the nature of the orbital relaxation.
Our numerical calculations reveal a couple of properties

that go beyond the simple model HamiltoniansHo
k [Eq. (2)]

andHos
k [Eq. (5)], since the Hamiltonians for the numerical

calculations are more complicated. The first such property
is the anisotropy of relaxation in the weak scattering
regime. The anisotropy of the EY-type spin relaxation
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was reported before [56,57]. To examine the relaxation
anisotropy, we change the stacking direction of the spin and
orbital valves from [111] to [001], and [110], and examine
the out-of-plane magnetoresistance. The magnetization
direction is maintained to be parallel or antiparallel to the
stacking direction.We find that λs (λo) in theweak scattering
regime (U ¼ 0.042 eV) varies factor 4.1 (3.5) with the
stacking direction [Fig. 3(c)]. We attribute the relaxa-
tion anisotropy to the inequality λs; λo ≲ l [Figs. 2(b) and
3(a)], frequently encountered situations in experiments
[5,10,30,58,59]. In such situations, electron properties are
not averaged over the entire Fermi surface but instead
influenced strongly by relatively narrow regions of the
Fermi surface that vary with the electron propagation
direction. Interestingly, the [111] ([110]) direction has the
smallest (largest) λs but the largest (smallest) λo.We attribute
this behavior to the direction-dependent orbital environment
change. Along the [111] direction, the C3 rotational sym-
metry safeguards the twofold orbital degeneracy of dxy and
dx2−y2 character states [60] (z along [111]), facilitating the
transport of Lz ¼ �2ℏ orbital (dx2−y2 � idxy) and resulting
in the longest λo. The importance of the degeneracy for λo
was reported for NM [61] and FM [62]. In such a situation
with orbital degeneracy, the SOC becomes more effective
and can modify the eigenstates significantly (thereby sup-
pressing λs). Exactly opposites apply to the [110] direction,
along which a large crystal field splitting occurs. In such a
situation with the lifted orbital degeneracy, the SOC
becomes ineffective (thereby enhancing λs). The relaxation
anisotropy also raises a possibility that for a givenmultilayer
structure with a well-defined stacking direction, its out-of-
plane transport [32,59] and lateral transport [49,63] may
have different relaxation length scales [52]. A recent
calculation on Pt [40] reported that the spin relaxation
lengths along the transverse and longitudinal directions are
different from each other, although its relation with our
result [Fig. 3(c)] is unclear. Further study is needed to clarify
the relaxation anisotropy, which is in clear contrast to the
spin (orbital) Hall conductivity that is isotropic in the face-
centered-cubic materials.
Also, we find that λo and λs depend not only on the

material parameters of NMs but also on those of OFMs and
SFMs. Figure 3(d) shows the variation of λo as the orbital
exchange coupling parameter Jo changes, and Fig. 2(d)
shows the variation of λs with ΔESFM

F , where ΔESFM
F

denotes the on-site energy shift of all sites in SFMs.
Both figures are obtained in the weak scattering regime
(U ¼ 0.042 eV). Considering that Jo and ΔESFM

F modify
the wave function shape of the states at the Fermi energy of
OFMs and SFMs, respectively, we attribute the Jo- and
ΔESFM

F dependences to the λo and λs dependences on the
wave function nature of injected electrons when λo; λs ≲ l.
This result may provide a partial explanation as to why
diverse values of λs are obtained for the same NMs in
experiments [52,58,64] since λs may vary with FMs in
contact with NMs.

An important outstanding problem is to resolve the
discrepancy between experiments reporting long λo (rang-
ing from several nanometers [5,16] to tens of nanometers
[7,8,16]) and calculations reporting much shorter λo (typ-
ically less than one nanometer [20,40,61,65]). Although
our calculation cannot resolve the discrepancy since it aims
to explore qualitative behaviors of λo and τo instead of their
quantitative accuracy, the anisotropy [Fig. 3(c)] and the FM
dependence [Fig. 3(d)] of λo may be of relevance to the
discrepancy. Another outstanding problem, which may be
related to the above problem, is to understand orbital
relaxation in polycrystalline systems. Most experiments
on orbital transport utilize polycrystalline materials [7–
11,16], whereas polycrystallinity is ignored in all existing
calculations. It was suggested [66] that orbital transport
may be more efficient in polycrystalline materials than in
single crystals. A recent experiment [16] supports this
suggestion. Further studies are needed for these outstanding
problems.
Conclusion.—We demonstrated that in the weak scatter-

ing regime, both orbital and spin relaxations may exhibit
DP-like behaviors even in centrosymmetric systems. The
orbital texture plays a crucial role in the DP-like relaxations.
Our results provide an explanation for a recent experiment
on DP-like spin relaxation in Pt [32] and predict the
relaxation anisotropy and relaxation’s dependence on the
orbital and spin nature of electron wave functions. More
experiments are needed to investigate intriguing properties
of orbital and spin relaxations systematically.
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