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Orbital angular momentum (OAM) provides an additional degree of freedom for optical communication
systems, and manipulating on-chip OAM is important in integrated photonics. However, there is no
effective method to realize OAM topological charge conversion on chip. In this Letter, we propose a way to
convert OAM by encircling two groups of exceptional points in different Riemann sheets. In our
framework, any OAM conversion can be achieved on demand just by manipulating adiabatic and
nonadiabatic evolution of modes in two on-chip waveguides. More importantly, the chiral OAM conversion
is realized, which is of great significance since the path direction can determine the final topological charge
order. Our Letter presents a special chiral behavior and provides a new method to manipulate OAM
on the chip.
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Introduction.—Orbital angular momentum (OAM) intro-
duces an additional degree of freedom for optical commu-
nication systems [1]. It is characterized by a spiral phase
front of expð−ilθÞ, where l is the topological charge and θ
is the azimuthal angle. Theoretically, it can form infinite
Hilbert space with different l [2]. OAM conversion is
necessary so that more complex information processing can
be realized through multichannel information exchange.
The most applicable platform for manipulating OAM is
metasurface [3,4]. By particularly designing the parameters
of the metasurface, it is achievable to convert different
OAM modes in free space [5–7]. Another straightforward
approach for OAM conversion involves employing helical
phase plates, which comprise optical elements with helical
phase delays [8]. Similarly, specific phase modulation
techniques can be implemented using liquid crystal ele-
ments for OAM conversion [9,10]. Furthermore, on-chip
OAM conversion is important in integrated photonics. By
developing efficient and compact devices for manipulating
OAM [11,12], it can be integrated with other on-chip
optical devices for a wide range of applications. In recent
years, laser direct writing has emerged as a promising
platform for on-chip OAM transmission [13,14]. However,
achieving efficient conversion of OAM topological charges
on chip remains a pressing challenge.

When two or more eigenvalues and their corresponding
eigenvectors in the parameter space of the system degen-
erate, singularities will generate that are known as excep-
tional points (EPs) [15–17], which are special in non-
Hermitian systems [18–20]. A sufficiently slow change of
system parameters near EPs [21–27] can be used as an
effective means of on-chip information processing and
control, and the conversion of optical degrees of freedom
occurs in a variety of systems [28,29], such as asymmetric
modes conversion [30,31], polarization states conversion
[32], quantum states conversion, etc. Table I compares our
Letter with Refs. [31–33].
In this Letter, we propose a method to realize the

conversion of OAM modes with different topological
charges by encircling EPs in different Riemann sheets.
We construct a non-Hermitian system consisting of two
doughnut-shaped waveguides. When different orders of
OAM in one waveguide couple with the same order of
OAM in the other waveguide, it leads to the generation of
two distinct sets of Riemann sheets. The chiral behavior is
of great importance since it can be used for OAM mode
conversion. For clockwise (CW) loop, topological charge
changes from higher to lower. For counterclockwise
(CCW) loop, it changes from lower to higher. Our Letter
presents a special chiral behavior and provides a new
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method to manipulate OAM for on-chip photonic
techniques.
We consider two coupled waveguides systems (WG-a

with OAM eigenmodes of topological charge l ¼ �1 or
l ¼ �2 and WG-b with l ¼ �1). Refractive indexes of
WG-b are different in two cases [34–36]. HamiltonianHðtÞ
at certain time t takes the form of Eq. (1), which is governed
by i∂tjψðtÞi ¼ HðtÞjψðtÞi. Generally, modes in a wave-
guide are orthogonal [37–39]. HðtÞ is derived from
coupled-mode theory for weakly guiding modes [40–42]
(detailed in Supplemental Material, Sec. I [43]),

HðtÞ¼

2
664

βðbÞl¼1 κl¼1;l¼1 κl¼1;l¼2

κl¼1;l¼1 βðaÞl¼1ðtÞ− iγðtÞ 0

κl¼1;l¼2 0 βðaÞl¼2ðtÞ− iγðtÞ

3
775; ð1Þ

where each element is a 4 × 4 matrix because one single
waveguide supports four OAM eigenmodes with �l and
two vertical polarizations. The diagonal elements β re-
present the propagation constant of OAM modes [44]. The
subscripts l ¼ 1, l ¼ 2 represent the topological charge of
OAMmodes supported by WG-a and WG-b (superscripts).
κ represents the coupling coefficient of modes between
WG-a and WG-b [45,46]. γ is the loss of WG-b. (The
relationship between β; γ and the refractive index n; k is
detailed in Supplemental Material, Sec. I. [43]) We obtain
the eigenvalues by solving Eq. (1). Figure 1(a) is the real
part of the eigenvalues. There are two groups of EPs (EP1
and EP2 in red box) in Space-1 and Space-2. Space-1 is the
Riemann sheets formed by the coupled OAM modes with
l ¼ �1 in WG-a and l ¼ �1 in WG-b, which contains four
EPs (red points marked by 1,2,3,4), as shown in Fig. 1(b).
Space-2 is formed by the coupled OAM modes of l ¼ �2
in WG-a and l ¼ �1 in WG-b with four EPs (red points
marked by 1’, 2’, 3’, 4’), as shown in Fig. 1(c). The high-
loss Riemann sheets of Space-1 and Space-2 are connected
by one group of EPs [EP-12 in Fig. 1(a)], which is formed
by the coupled OAM modes of l ¼ �1 and l ¼ �2 in
WG-a. The low-loss Riemann sheets of Space-1 and
Space-2 share the same Riemann sheets. Figure 1(d) is
the imaginary parts of the eigenvalues; two groups of EPs
are marked by 1,2,3,4 and 1’, 2’, 3’, 4’.
We consider a rectangular loop in Eq. (2a) and Eq. (2b)

with the initial point and end point at t0 ¼ 0 and t5 ¼ T,
respectively. T is the encircling period and ti ¼ i · ðT=5Þ,

βðtÞ ¼

8>>>>>>>><
>>>>>>>>:

ρ0 þ αρðt−t0Þ
t1−t0 t0 ≤ t ≤ t1

ρ0 þ αρt1 < t ≤ t2

ρ0 þ α
�
ρ − 3ρðt−t2Þ

t3−t2
�
t2 < t ≤ t3

ρ0 þ 2αρt3 < t ≤ t4

ρ0 þ α
�
2ρþ 2ρðt−t4Þ

t5−t4
�
t4 < t ≤ t5

; ð2aÞ

γðtÞ ¼

8>>>>>>><
>>>>>>>:

ρ1 − ρt0 ≤ t ≤ t1

ρ1 − ρþ 2ρðt−t1Þ
t2−t1 t1 < t ≤ t2

ρ1 þ ρt2 < t ≤ t3

ρ1 þ ρ − 2ρðt−t1Þ
t2−t1 t3 < t ≤ t4

ρ1 − ρt4 < t ≤ t5

; ð2bÞ

where ðρ0; 0Þ is the start coordinate of the encircling path
and ρ is path radius. ρ0 ¼ 0 and ρ0 ¼ ρ represent the initial
point that lies at Space-1 and Space-2, whose eigenstates
are jψA1i; jψB1i; jψC1i and jψA2i; jψB2i; jψC2i, respec-
tively. The loop is CCW when α < 0 and CW when
α > 0. We solve time-dependent equation numerically
and extract the amplitudes of instantaneous eigenstates at
each time step [21], i.e.,

jψðtÞi ¼
X3
i¼1

Cijψ iðtÞi; ð3Þ

where subscripts are associated with the eigenstates on
different sheets. In the same space, encircling an EP has the
same phenomenon as encircling a group of EPs, demon-
strated in Supplemental Material, Sec. II [43]. Therefore, to
simplify the model, we employ analysis with three eigen-
states. We obtain the trajectories of the state evolution (blue
curves) on the Riemann sheets [21] and the corresponding
amplitude coefficients logðCiÞ. The initial and end states
are marked by the blue and yellow points, respectively.
We consider a loop (α < 0, ρ ¼ 2, ρ0 ¼ 1, ρ1 ¼ 1.5) in
Figs. 2(a) and 2(b). For CW loop starting at jψA1i, the state
first evolves adiabatically in Space-1. A nonadiabatic
transition (NAT) occurs after a certain time, leading the

FIG. 1. (a) Real part of eigenvalues as a function of γ and β. It
contains two groups of EPs (EP1 and EP2) (b) Space-1. The red
points 1, 2, 3, 4 are four EPs of EP-1. (c) Space-2. The red points
1’, 2’, 3’, 4’ are four EPs of EP-2. (d) Imaginary part of
eigenvalues.
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state to evolve on the low-loss Riemann sheet (purple) that
connects the two spaces. Then the state evolves adiabati-
cally from Space-1 to Space-2. Finally, the state experi-
ences a NAT in Space-2 and evolves to jψC1i. While
starting at state jψB1i, as illustrated in Figs. 2(c) and 2(d),
the state evolves adiabatically on the low-loss Riemann
sheet (purple) from Space-1 to Space-2. Finally, the state
experiences a NAT in Space-2 and evolves to jψC1i. For
such process, we realize conversion of OAM from l ¼ 1
to l ¼ 2.
We then consider a loop (α > 0, ρ ¼ 1, ρ0 ¼ 0,

ρ1 ¼ 1.5). As shown in Figs. 2(e) and 2(f), for CCW loop
starting at state jψA2i, the state first evolves adiabatically in
Space-2. NAT occurs after a certain time. Then the state
evolves adiabatically from Space-2 to Space-1. Finally, the
state experiences a NAT in Space-1 and evolves to jψC2i.
While starting at state jψB2i, as illustrated in Figs. 2(g)

and 2(h), the state evolves adiabatically from Space-2 to
Space-1. Finally, the state experiences a NAT in Space-1
and evolves to jψC2i. For such process, we achieve
conversion of OAM from l ¼ 2 to l ¼ 1. No conversion
occurs in the opposite encircling direction (detailed in
Supplemental Material, Sec. III [43]).
We then demonstrate the evolution of the Hamiltonian

with time t by using the waveguide transmission process
along the z direction. Because the coupled-mode theory
equation is mathematically equivalent to a time-dependent
Schrödinger’s equation, time parameter t can be linearly
mapped onto propagation axis z (detailed in Supplemental
Material, Sec. I [43]). We construct a practical waveguide
system for on-chip OAM conversion with two coupled
doughnut-shape waveguides [WG-1 and WG-2 of inset in
Fig. 3(a)]. The background refractive index is 1.44. The
refractive index of WG-1 and WG-2 is n0 þ ΔnðzÞ þ
iΔkðzÞ and n0ðn0 ¼ 1.442Þ. nðzÞ ¼ n0 þ ΔnðzÞ and
kðzÞ ¼ ΔkðzÞ are the real and imaginary refractive index
of WG-1 as a function of z. We only change the parameters
of WG-1 to induce the coupling of modes carrying different
OAM in WG-1 through WG-2, since these modes are
orthogonal and have no coupling effect. For doughnut-
shape waveguides with identical parameters, the topologi-
cal charge of OAM eigenmodes increases as n increases,
because higher-order OAM modes have a smaller effective
mode index (neff ) than lower-order modes. We calculate the
neff , i.e., the eigenvalue of the waveguide system, as a
function of nðzÞ and kðzÞ. The real parts of the eigenvalues
are shown in Fig. 3(a), which form two groups of EPs (EP1
and EP2 marked with red points). Giving specific wave-
guide parameters Δn ¼ −10−3 and Δk ¼ 4 × 10−5, mode
l ¼ �1 in WG-1 is coupled to l ¼ �1 in WG-2. We choose
these two eigenstates (A1 and B1, marked with blue points)
as the initial states of the CW process. When Δn ¼ 0, the
mode l ¼ �2 in WG-1 is coupled to l ¼ �1 in WG-2 (A2
and B2 as the initial states of the CCW process). The
eigenfield and phase distributions of eigenstates
A1; B1; A2; B2 are shown in Fig. 3(b).
The configuration is shown in Fig. 3(c). Along

z direction, we vary the parameters of WG-1 as a function
of n and k, the loop functions are detailed in Eq. S(20) and
Eq. S(21) in Supplemental Material, Sec. III [43], as shown
in Figs. 3(d) and 3(e). The initial states are A1 or B1 for
CW process (Loop1) and A2 or B2 for CCW process
(Loop2). The total length of the system is 10 mm, which is
long enough to ensure adiabatic evolution. Simulation
results are calculated through LUMERICAL FDTD solutions.
We show the xz transmission field intensity distributions of
the evolution (middle in Fig. 4) and the xy phase distri-
butions of the input and output states (bottom and top
in Fig. 4).
For Loop1 with eigenstate A1 input at z ¼ 0 (Fig. 4(a)),

the topological charge in WG-1 is l ¼ 1. When
0 < z < L=2, the state evolves in Space-1. During this

FIG. 2. OAM conversion behavior by dynamically encircling
EPs in different Riemann sheets. (a),(c),(e),(g) Three-dimensional
trajectory (blue curves) in the real part of the eigenvalues with
different encircling directions and initial states. The blue and
yellow points are the starting and end points. (b),(d),(f),(h)
Calculated amplitudes of eigenstates.
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time, the system undergoes a NAT to ensure the field
intensity mainly located in WG-2, corresponding to the
state evolves on low-loss Riemann sheet that connects two
spaces. When L=2 < z < L, state completes the final
evolution in Space-2, the topological charge in WG-1
changes to l ¼ 2. For Loop1 with B1 as the initial
eigenstate [Fig. 4(b)]; topological charge in WG-1 is also
l ¼ 1. The state evolves on low-loss Riemann sheet from
Space-1 to Space-2, and the field intensity mainly located
in WG-2. Finally, the state evolves in Space-2 and the
topological charge in WG-1 changes to l ¼ 2. For Loop2
with eigenstate A2 input at z ¼ L (Fig. 4(c)), the topo-
logical charge in WG-1 is l ¼ 2. As the state evolves in
Space-2 (L=2 < z < L), it undergoes NAT to ensure that
the field intensity is primarily located in WG-2, corre-
sponding to the evolution on a low-loss Riemann sheet that
connects the two spaces. When 0 < z < L=2, state com-
pletes the final evolution in Space-1, the topological charge
in WG-1 changes to l ¼ 1. For Loop2 with B2 as the initial
eigenstate [Fig. 4(d)], topological charge in WG-1 is also
l ¼ 2. The state evolves on low-loss Riemann sheet from
Space-2 to Space-1, and the field intensity mainly located

in WG-2. The state completes the final evolution in
Space-1, topological charge in WG-1 changes to l ¼ 1.
We also verify no OAM conversion results with the same
initial eigenstates but different encircling directions in
Supplemental Material, Sec. III [43]. We calculate the
field, the Ey field, and phase distributions at t ¼ 0 and
t ¼ T (illustrated in Supplemental Material, Sec. V [43]).
Therefore, we demonstrate that for CW direction starting at
A1 or B1, OAM in WG-1 changes from l ¼ 1 to l ¼ 2. For
CCW direction starting at A2 or B2, OAM in WG-1
changes from l ¼ 2 to l ¼ 1. In the opposite direction,
no conversion occurs. It is evident from the phase dis-
tribution. The process has chiral properties, and the
encircling direction determines the final topological charge.
For the CW loop, the topological charge changes from
higher to lower. For the CCW loop, it changes from lower
to higher. Our Letter is expected to be performed in
experiment, and we discuss that n and k can be tuned as

FIG. 3. (a) Real part of the neff of the system as a function of n
and k. (b) Eigenstates of A1; B1; A2; B2. (c) System configura-
tion. (d),(e) Loop-1 and Loop-2 of the practical system as a
function of n and k.

FIG. 4. Simulated OAM conversion evolution with different
encircling directions and initial eigenstates. (a) CW with initial
eigenstate A1. (b) CW with B1. (c) CCW with A2. (a) CCW with
B2. The xy phase distributions of input and output states are
shown on the top and bottom.

TABLE. I. Our Letter compared with other works.

System Eigenstates Reference

Two-waveguide system Symmetric modes 31
Waveguide system with
slanted sidewall

Polarization states 32

A single nitrogen-vacancy
center in diamond

Quantum states 33

Two doughnut-shaped
waveguide system

OAM modes Our Letter
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required to accomplish the encircling loop in the
Supplemental Material, Sec. VI [43].
Moreover, arbitrary topological charge conversion can be

achieved by such EP encircling process. By constructing an
encircling loop from Space-m to Space-n (where m ≠ n; if
m < n, the loop should be CCW, if m > n, the loop should
be CW), we can achieve the conversion of topological
charge from l ¼ m to l ¼ n. It undergoes the similar
aforementioned encircling process and is detailed in our
theoretical analysis in SupplementalMaterial, Sec. VII [43].
In conclusion, we construct a non-Hermitian system

comprising two doughnut-shaped waveguides, achieving
OAM conversion by encircling EPs in different Riemann
sheets. The conversion process is chiral, and the encircling
direction determines the final topological charge. For the
CW loop, the topological charge changes from higher to
lower. For the CCW loop, it changes from lower to higher.
Our Letter presents a special chiral behavior and provides a
new method to manipulate OAM on-chip. In the future, it is
expected to perform an experiment using laser direct
writing [34,47] or 3D direct printing [48].
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