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Exceptional-point (EP) sensors exhibit a square-root resonant frequency bifurcation in response to
external perturbations, making them appear attractive for sensing applications. However, there is an open
debate as to whether or not this sensitivity advantage is negated by additional noise in the system. We settle
this debate by showing that increased fundamental noises of quantum and thermal origin in EP sensors, and
in particular self-excited (or PT-symmetric) EP sensors, negate the sensitivity benefit. Accordingly, EP
sensing schemes are only beneficial either with further quantum enhancement or if compared to sensors
limited by technical noise. As many modern sensors are limited by technical noise, EP sensors may still
find practical uses despite their lack of a fundamental advantage. Alternatively, we propose a quantum-
enhanced EP sensor that achieves a sensing advantage even when limited by quantum or thermal
fluctuations.
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Introduction.—A classical exceptional-point (EP) sys-
tem with modes a and b is governed by [1]�

ȧ

ḃ

�
¼ −iHEP

�
a

b

�
; ð1Þ

where, by definition, the matrix HEP has a degenerate
spectrum with a single complex eigenvalue ΩEP − iγEP.
Any physical realization of such a system has to be open,
i.e., featuring gain and loss.
A classical EP system is said to be an EP sensor if the

degeneracy of HEP is lifted by a perturbation of the form
HEP þ ϵHpert, such that for ϵ ≪ 1, the eigenfrequencies
bifurcate as

ffiffiffi
ϵ

p
; ϵ ¼ 0 is termed the exceptional point.

Their claimed utility as a sensor is that if ϵ is proportional to
some external parameter of interest, then, in contrast to
conventional sensors whose eigenfrequencies bifurcate as
ϵ1, EP sensors exhibit enhanced sensitivity because of the
ϵ1=2 scaling near the EP [2–10].
However, the efficacy of a sensor is not decided by large

sensitivity to the quantity being sensed, but rather by its
imprecision, which depends on both its sensitivity and
added noise. Since the sensitivity of EP sensors is well
understood, controversy has swirled around the fundamen-
tal noise inherent in EP sensors. Some say these sensors
offer a fundamental advantage even when limited by
fundamental quantum or thermal noise [11,12] or excess
fundamental noises can be mitigated by operating some-
what away from the point of degeneracy [13]. Others
disagree that EP-based sensors offer a fundamental sensing
advantage [14–20].
Part of the controversy is due to the restricted validity of

EP sensing models. If an EP sensor operates near an EP
with less gain than loss, it has no macroscopic mode

amplitudes unless it is excited externally, and can be
analyzed as a parameter estimation problem as in
Refs. [15,16,19]. However, when an EP sensor is operated
near an EP with equal gain and loss, it acts as a two-mode
laser above threshold and must be treated differently. This
regime has eluded previous theoretical analyses.
In fact, in an experiment demonstrating an EP sensor

above its lasing threshold [17]—a Brillouin ring laser
gyroscope—excess noise was found to exactly cancel
any enhancement from the gyroscope’s frequency splitting
near its EP. Our analysis shows that this behavior is
characteristic of all EP sensors operated above threshold.
Methods of EP sensing.—We break down the class of all

EP sensors into subcategories of sensors, which are more
amenable to individual treatment. Until we discuss quan-
tum-enhanced EP sensors, we assume these sensors have
phase-insensitive gain and reciprocal coupling, i.e., the
coupling rate from a to b is the same as from b to a.
EP sensors are primarily divided into passive EP sensors—

thosewith no gain—andactiveEPsensors—whichhavegain.
References [14,16,19] all conclude that passive EP sensors
have no observable

ffiffiffi
ϵ

p
bifurcation and thus no fundamental

sensing improvement over traditional schemes. We verify
these results using the quantum noise formalism of this Letter
in the Supplemental Material, Sec. II. A [21].
Since passive EP sensors have no fundamental sensing

benefit, we consider active EP sensing schemes with
classical equations of motion,

ȧ ¼ −iΩ0a − γaþ 1

2
ðgþ γÞb

ḃ ¼ −iΩ0bþ gb −
1

2
ðgþ γÞa: ð2Þ
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This system has one eigenfrequency, with real part ΩEP ¼
Ω0 and imaginary part γEP ¼ ðγ − gÞ=2. These systems
undergo a lasing transition around γEP ¼ 0 (“loss” =
“gain”). Marginally above threshold (γEP ¼ 0−), or beyond
it (γEP < 0), the mode amplitudes have a finite value.
Below threshold (γEP > 0), there is no finite mode ampli-
tude and the sensor is operated by an external drive. As
shown in Ref. [16] (see also Sec. II of the Supplemental
Material [21]), active EP sensors below threshold have no
observable

ffiffiffi
ϵ

p
bifurcation.

Thus, the only remaining cases to be analyzed are active
EP sensors above threshold with balanced gain and loss, or
beyond threshold with more gain than loss [22]. EP sensors
operating beyond threshold are unstable as one of their
modes is continually amplified. In any physical system,
saturation or other nonlinear mechanisms conspire to
eventually stabilize this runaway; i.e., the gain g is
decreased, or the loss γ increased, until the system reverts
to a stable state above threshold with balanced gain and loss
rates, i.e., g ¼ γ and γEP ¼ 0.
Such above threshold EP systems, i.e., EP systems with

γEP ¼ 0, are “PT-symmetric.” Their utility as a sensor is
qualitatively different depending on which elements of the
coupling matrix are perturbed: the diagonal elements,
corresponding to the modes’ frequencies and gain or
loss rates, or the off-diagonal elements corresponding to
the coupling between the modes. Section III in the
Supplemental Material [21] analyzes perturbations to the
diagonal elements. These perturbations either fail to lift
the degeneracy, lead to a linear-in-ϵ response, push the
system below threshold where the analysis of [16] and
Supplementary Material, Sec. II. B [21] applies, or are
equivalent to perturbing the off-diagonal matrix elements.
In sum, the only possible type of EP sensor that has not

been ruled out by previous analyses and has an enhanced
signal near the EP is a PT-symmetric EP sensor, where the
quantity being sensed alters the coupling between the
sensor’s modes.
The classical mode amplitudes of such a PT-symmetric

sensor satisfy

ȧ ¼ −iΩ0a − γaþ γð1þ ϵÞb
ḃ ¼ −iΩ0bþ γb − γð1þ ϵÞa; ð3Þ

where ϵ is the perturbation being detected by the sensor
relative to its EP with ΩEP ¼ Ω0 and γEP ¼ 0. We must
have ϵ > 0 for the sensor to be stable; otherwise one of the
system’s normal modes is continually amplified, which is
unphysical. So the sensor emits an output mode with a
finite amplitude whose frequency depends on ϵ, which is,
by assumption, coupled to the sensed quantity.
Fundamental frequency noise in PT-symmetric EP

sensors.—Since EP sensors are ultimately limited by
quantum and thermal fluctuations, the classical model of
Eq. (3) is incomplete as far as noise performance is

concerned. A minimal quantum model that reproduces
Eq. (3) in expectation value can be obtained by promoting
the mode amplitudes to operators and adding appropriate
noise terms that ensure the preservation of appropriate
commutation relations between the operators [23–27]. We
also decompose ϵ into its mean value and fluctuations as
ϵ ¼ ϵ̄þ δϵ, where ϵ̄≡ hϵi. This decomposition will allow
us to consider the EP sensor as a probe for weak forces
(modeled by δϵ) or as a probe to estimate the unknown
parameter ϵ̄. The resulting equations of motion for the
quantized mode amplitudes are

˙̂a ¼ ð−iΩ0 − γÞâþ γð1þ ϵ̄þ δϵÞb̂þ
ffiffiffiffiffi
2γ

p
δâin

˙̂b ¼ ð−iΩ0 þ γÞb̂ − γð1þ ϵ̄þ δϵÞâþ
ffiffiffiffiffi
2γ

p
δb̂†amp: ð4Þ

Here, modes âin and b̂amp have zero expectation
value. Their noise properties are quantified by the sym-
metrized, double-sided spectra S̄inqq ¼ S̄inpp ¼ 1

2
þ nin and

S̄amp
qq ¼ S̄amp

pp ¼ 1
2
þ namp, for their amplitude and phase

quadratures, q̂in;amp ≡ ðâ†in;amp þ âin;ampÞ=
ffiffiffi
2

p
and p̂in;amp≡

iðâ†in;amp − âin;ampÞ=
ffiffiffi
2

p
, respectively [28]. In these spectra,

nin;amp are the average thermal occupation numbers, which
can be zero; however quantum (vacuum) noise gives rise to
the 1

2
terms, which are unavoidable.

In order to observe the system’s frequency shifts, it is
necessary to consider the sensor’s output mode. The natural
candidate is the output mode [27] âout ¼

ffiffiffiffiffi
2γ

p
â − âin,

leaking out through the lossy element, as depicted in
Fig. 1(a). (A similar input-output relation exists for the
mode b̂out, but this is the amplifier’s out-coupled mode and
is usually unobservable.) A physical EP sensor’s loss
comes from a beam-splitter interaction, and the output
mode is transmitted out of the sensor’s feedback loop
through this beam splitter, as in Fig. 1(d).
Taking quantum expectation values of Eq. (4) gives the

classical amplitudes a≡ hâi and b≡ hb̂i

aðtÞ ¼ aþe−iΩþt þ a−e−iΩ−t

bðtÞ ¼ bþe−iΩþt þ b−e−iΩ−t; ð5Þ

oscillating at the normal-mode frequencies Ω� ¼ Ω0 �
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ̄ð2þ ϵ̄Þp

featuring the ϵ̄1=2 scaling around the EP. This
is depicted in Fig. 1(c). Here, a� and b� are complex
constants. As discussed in detail later, the EP sensor has
quadrature spectra with poles at Ω�, which will build up
coherent oscillations from noise, as in a laser. The coef-
ficients a� and b� will then be determined by saturation
effects, not by initial conditions, and will be independent of
ϵ as long as the saturation mechanism is.
The operators δâ≡ â − hâi, δb̂≡ b̂ − hb̂i characterize

the system’s noise. Their equations of motion follow from
linearizing Eq. (4):
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δ ˙̂a ¼ −iΩ0δâ − γδâþ γð1þ ϵ̄Þδb̂þ γbδϵþ
ffiffiffiffiffi
2γ

p
δâin

δ ˙̂b ¼ −iΩ0δb̂þ γδb̂ − γð1þ ϵ̄Þδâ − γaδϵþ
ffiffiffiffiffi
2γ

p
δb̂†amp:

ð6Þ

These fluctuations in the internal modes leak out according
to δâout ¼

ffiffiffiffiffi
2γ

p
δâ − δâin. To determine the system’s output

fluctuations, we solve Eq. (6) in the frequency domain,
assuming that the fluctuation dynamics are much faster
than the mean dynamics of Eq. (3). To simplify the
equations, we assume that we operate the sensor near
resonance and near the EP such that ω − Ω0 ≪ γ and
ϵ̄ ≪ 1. (We show in Sec. V of [21] that removing these
assumptions does not alter the results presented here.) The
sensor’s output phase quadrature fluctuations are given by

δp̂out½ω� ¼
2γ2

ðω − Ω−Þðω − ΩþÞ
½δp̂in½ω� þ δp̂amp½ω�

þ
ffiffiffiffiffi
2γ

p
ðp−

a δϵ½ω − Ω−� þ pþ
a δϵ½ω − Ωþ�Þ�; ð7Þ

where p�
a are the phase quadratures of the constants a�. A

similar result holds for the amplitude quadrature. Given the
EP sensor’s output fluctuations, we can now evaluate its
performance.

Parameter estimation.—We first consider using the EP
sensor to estimate the unknown parameter ϵ̄. In this case,
we assume ϵ varies slowly and drop the δϵ terms in Eq. (7).
Considering the EP sensor’s spectrum near resonance and
near the EP, we defineΔω� ≡ ω −Ω� and invoke the near-
resonant approximation to work to leading order inΔω�=γ.
We continue to assume that we are near enough to the EP
that we can work to leading order in ϵ̄. We need to be
careful about how these approximations interact in the
denominator of Eq. (7): since PT-symmetric EP sensors
will operate around some small constant value of ϵ̄, but a
frequency measurement will only be affected by frequency
noise infinitesimally close to resonance, Δω� vanishes
faster than ϵ̄. With these approximations, the output phase
quadrature spectrum takes the form

S̄outpp½Ω� þ Δω�� ¼
γ2ð1þ 2nthÞ

2ϵ̄Δω2
�

: ð8Þ

In this expression, quantum zero-point fluctuations
contribute the constant term in the numerator, while
thermal noise in the amplifier and in-coupled mode
contribute identically via the average thermal occupa-
tion nth ≡ ðnamp þ ninÞ=2.
Since it is the frequency shift Ω�ðϵ̄Þ that is sensed, it is

the frequency noise corresponding to the above spectrum
that is relevant. The sensor’s output frequency spectrum is
given by S̄φ̇φ̇½Ω�þΔω��¼Δω2

�S̄
out
pp½Ω�þΔω��=ð4γja�j2Þ

(see Refs. [29–32] and Supplementary Material, Sec. IV
[21]). Converting Eq. (8) into an equivalent frequency
spectrum, we find

S̄φ̇ φ̇½Ω� þ Δω�� ¼
γð1þ 2n̄thÞ
8ja�j2ϵ̄

: ð9Þ

This can be recognized as the Schawlow-Townes spectrum
[33], with the 1=ϵ̄ factor interpreted as a Petermann factor,
which generically describes excess laser frequency noise in
multimode lasers with nonorthogonal modes [17,34].
Importantly, the frequency noise given by Eq. (9)

increases as we approach the EP (i.e., ϵ̄ → 0), meaning
that PT-symmetric EP sensors pay a penalty in the form of
increased quantum and thermal noise near the EP, as shown
in Fig. 2(a).

The scaling of the frequency noise
ffiffiffiffiffiffiffiffi
S̄φ̇ φ̇

q
∼ 1=

ffiffiffī
ϵ

p
in fact

precisely nullifies the
ffiffiffī
ϵ

p
scaling in the frequency sensi-

tivity. To wit, consider the scenario where the unknown
parameter is to be estimated from, say, the difference in
frequency of the modes (measuring a single frequency
does not change the conclusion): then the sensitivity to

ϵ̄ is S ¼ j∂ðΩþ −Ω−Þ=∂ϵ̄j, whereas the noise is N ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS̄φ̇ φ̇½Ωþ þ Δω� þ S̄φ̇ φ̇½Ω− þ Δω�ÞΔωmeas=ð2πÞ

q
(here,

Δωmeas is the measurement bandwidth). The imprecision
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FIG. 1. A schematic of PT-symmetric EP sensors used to detect
a weak signal. Mode â is coupled to the output by a decay rate γ,
while mode b̂ is amplified at a rate γ, which introduces a noise
mode b̂amp. The modes are coupled to each other at the rate
γð1þ ϵÞ, where ϵ is proportional to the weak signal being
measured. (a) shows a Markovian EP sensor with dynamics
described by Eq. (4). (b) is the output frequency spectrum, a pair
of delta-function spikes surrounded by white noise. The locations
of the delta functions in (b) are determined by the small quantity
being sensed and split quadratically, as in (c). (d) shows a
physical implementation of the sensor using a pair of beam
splitters, two delay lines, and an amplifier. The weak signal alters
the transmissivity of the beam splitter coupling modes â and b̂.
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in the estimate of ϵ̄ is [35], hϵ̄2impi≡N =S, which in
this case

hϵ̄2impi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2n̄thÞΔωmeas

16πγja�j2
s

ð10Þ

is independent of the sensor’s proximity to the EP. Thus,
operating a sensor near a PT-symmetric EP offers no
fundamental imprecision reduction for parameter estima-
tion since the sensitivity and noise are enhanced equally.
Weak force sensing.—Instead of using the EP sensor to

estimate the value of ϵ̄, we could instead consider using it to
measure a weak force coupled to δϵ. Assuming the
fluctuations in δϵ are weak stationary near the EP, the
sensor’s output quadrature spectra can be computed from
Eq. (7) using the known spectra of the fundamental input
noises. Near the EP and near resonance, the output
quadrature spectra are given by

S̄outxx ½ω� ¼ 4γ4
ð1þ 2nthÞ þ 2γðjx−j2 þ jxþj2ÞS̄ϵϵ½ω − Ω0�

ðω −Ω−Þ2ðω − ΩþÞ2
:

ð11Þ

Here, x∈ fq; pg is the amplitude or phase quadrature.
From Eq. (11), we see that as in the parameter estimation
case, there is no sensing advantage to using an EP sensor to
measure a weak force: the fluctuations in the weak force S̄ϵϵ
and the fundamental noises ∼ð1þ 2nthÞ, are both trans-
duced to the output via the same response 1=ðω − Ω�Þ2, so

that any scaling of the response with ϵ is immaterial in
distinguishing the weak force from the fundamental noises.
Relaxing the assumptions of weak stationarity and/or
proximity to resonance and/or EP do not alter this con-
clusion (see Sec. V of [21]).
In sum, neither parameter estimation nor weak-force

sensing benefits from using an EP sensor because unavoid-
able quantum frequency noises in an EP system precisely
nullify the enhanced sensitivity.
Practical advantage of PT-symmetric sensors.—While

PT-symmetric sensors do not offer any advantage in over-
coming the limitation set by fundamental noises of quan-
tum and thermal origin, they can potentially be
advantageous when the sensor is limited by technical
noises. By technical noise, we mean any noise that is
uncorrelated with the fundamental noises and independent
of ϵ (an example is apparent frequency noise in the readout
of the sensor). Suppose technical noise is characterized by
its spectrum S̄techφ̇ φ̇ , the imprecision with which ϵ̄ can be
estimated is

hϵ̄2impi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S̄φ̇ φ̇ þ S̄techφ̇ φ̇

2γ2=ϵ̄

s
: ð12Þ

If technical noises dominate (i.e., S̄techφ̇ φ̇ ≫ S̄φ̇ φ̇), it is
advantageous to operate the sensor by approaching the
EP; however, since the spectrum of fundamental noises is
characterized by S̄φ̇ φ̇ ∼ 1=ϵ̄, approaching the EP will
eventually make the fundamental noises dominate, satu-
rating the imprecision in estimating ϵ̄ to the value given
in Eq. (10).
Effects of non-Markovian dynamics.—The analysis

above considers PT-symmetric EP sensors in the
Markovian limit where the coupled-mode equations of
Eq. (4) are valid. This case is depicted in Fig. 1(a). While
the Markovian assumption leading to these input-output
equations [26] is often an excellent assumption, physical
optical systems are more accurately described by a set of
non-Markovian coupled mode equations. Such a physical
system is depicted in Fig. 1(d). We analyze the non-
Markovian case in depth in the Supplemental Material,
Sec. VI [21], and find that fundamental noise still increases
as 1=ϵ̄ in this regime, preventing any fundamental sensing
enhancement.
Quantum-enhanced EP sensors.—While we have shown

that EP sensors have no fundamental advantage without
quantum enhancement, we can recover this advantage by
engineering the sensor’s quantum states. This could be done
by replacing the phase-insensitive amplifier in Fig. 1(d) with
a phase-sensitive one such as an optical parametric amplifier
[23,36,37] or a Josephson parametric amplifier [38–40]. A
phase-sensitive PT-symmetric sensor is described by the
coupled-mode equations (see Supplementary Material,
Sec. VII. A [21])

(a) (b)

FIG. 2. Markovian PT-symmetric EP sensors’ output phase
quadrature spectrum, S̄outpp½ω�. (a) The phase quadrature spectrum
of a sensor with a phase-insensitive gain as a function of
frequency and fractional distance to the EP, ϵ. The dashed black
line shows the sensor’s resonant frequencies scaling as

ffiffiffi
ϵ

p
, giving

rise to increased sensitivity for ϵ ≪ 1. But the fundamental noises
(quantum and thermal) also increase with the same scaling so
that resonance locations are no easier to distinguish than when the
sensor is farther from the EP. (b) While the ability of an EP sensor
to estimate the value of small parameter ϵ̄ is independent of ϵ̄ for a
sensor with a phase-insensitive gain, sensors with phase-
sensitive gain are more sensitive as ϵ̄ decreases. In these plots,
we take n̄th ¼ 0. In (b), we take Δωmeas=ð16πγaja�j2Þ ¼ 1 and
γbΔω2

meas=½6γ2aðγa þ γbÞ� ¼ 1.
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˙̂a ¼ −iΩ0â − γaâþ γað1þ ϵ̄þ δϵÞb̂þ
ffiffiffiffiffiffiffi
2γa

p
δâin

˙̂b ¼ −iΩ0b̂þ ðγa − rÞb̂þ e−2iΩ0trb̂† − γað1þ ϵ̄þ δϵÞâ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγa þ γb − rÞ

p
δb̂†amp þ

ffiffiffiffiffiffiffi
2γb

p
δb̂in: ð13Þ

We assume that the out-coupled mode âout is observable,
whereas b̂out is not and represents loss. Here, r is the rate of
phase-sensitive amplification; for stability, 0 ≤ r ≤ γa þ γb.
In the most optimistic case the gain is purely phase-

sensitive, i.e., r ¼ γa þ γb (see Supplemental Material,
Sec. VII [21] for a more general analysis). The output
phase spectrum near resonance is then given to leading
order in Δω� and ϵ̄ by

S̄outpp½Ω� þ Δω�� ¼
γb

2ðγa þ γbÞ
ð1þ 2n̄thÞ: ð14Þ

This spectrum is independent of ϵ̄, so this sensor will have
an imprecision that decreases as

ffiffiffī
ϵ

p
. The right panel of

Fig. 2 shows the phase quadrature spectrum of a phase-
sensitive EP sensor.
We could also consider using the phase-sensitive EP

sensor for weak-force sensing. We show in Supplemental
Material, Sec. VIII. A. 4 [21], that there is still no sensing
enhancement in this regime. Note that the advantage due to
this phase-sensitive strategy is different from strategies
relying on nonreciprocal coupling of the modes [15].
Conclusion.—Using a self-consistent theory of funda-

mental noises in PT-symmetric EP sensors, and plugging
a range of potential loopholes, we have shown that
PT-symmetric EP sensors do not offer any advantage for
parameter estimation or weak-force sensing if the sensor is
limited by fundamental (i.e., quantum and thermal) noises.
That is because these noises scale in exactly the same
manner as the scaling of the sensitivity near the EP,
thus nullifying any improvement in signal-to-noise ratio.
However, an advantage exists if PT-symmetric EP sensors
are limited by technical noises, as is most common. Beating
the limits set by quantum noise requires quantum resources:
we outline a phase-sensitive generalization of an EP sensor
that does confer an advantage by harnessing the square-root
bifurcation near an EP. A final loophole is a nonstationary
EP sensor—for example, an EP analog of Ref. [41]; we
leave this for future studies.
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