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We consider one-dimensional interacting quantum fluids, such as the Lieb-Liniger gas. By computing
the low-temperature limit of its (generalized) hydrodynamics we show how in this limit the gas is well
described by a conventional viscous (Navier–Stokes) hydrodynamics for density, fluid velocity, and the
local temperature, and the other generalized temperatures in the case of integrable gases. The dynamic
viscosity is proportional to temperature and can be expressed in a universal form only in terms of the
emergent Luttinger liquid parameter K and its density. We show that the heating factor is finite even in the
zero temperature limit, which implies that viscous contribution remains relevant also at zero temperatures.
Moreover, we find that in the semiclassical limit of small couplings, kinematic viscosity diverges,
reconciling with previous observations of Kardar-Parisi-Zhang fluctuations in mean-field quantum fluids.
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Introduction.—Quantum many-body interacting systems
pose an immense technical challenge to modern-day
physics due to their exponential complexity. A successful
approach in the past years has been in borrowing concepts
and ideas from classical hydrodynamic theory and applying
them to quantum systems [1–6]. The main idea behind
these methods is the same in classical and quantum physics:
the exponentially large information determining the state of
the system is reduced to few thermodynamic functions, the
hydrodynamic fields, that well characterize the local
equilibrium state. For quantum gases in one spatial dimen-
sion, the theory of generalized hydrodynamics (GHD) [7,8]
(see also, e.g., [9–11] for reviews) has shown to be able to
perfectly capture the dynamics of integrable, e.g., [12–19]
and near-integrable quantum gases [20–25], as well as spin
chains, e.g., [26–33], Fermionic systems [34–39], and
classical field theories [40–43]. At small values of temper-
atures and for gapless or gapped systems, GHD recovers
historically well-established results on the dynamics of
low-temperature systems, in particular the celebrated
Luttinger liquid theory [44–50] and the semiclassical
approaches [51,52]. In particular, by requantizing the
fluctuations on top of a classical background, evolving
with GHD at zero temperature, one recovers a Luttinger
liquid theory on top of an evolving hydrodynamic fluid,
connecting this way GHD with the most relevant field
theory description of one dimensional quantum systems
[33,53–57].
At zero temperature (or entropy) GHD is effectively a set

of equations describing the dynamics of the Fermi points of
the fermionized degrees of freedom [12]. In particular, it
was shown that, at the level of Euler hydrodynamics,
therefore neglecting any viscosity, the GHD evolution

of a single Fermi sea (with two Fermi points) is exactly
equivalent to the conventional hydrodynamics (CHD)
evolution of density ρ and momentum (or fluid velocity η)
as the two relevant hydrodynamic modes [12,58]. However,
while the latter creates hydrodynamic shocks and fails to be
meaningful after the time t� of the creation of the first shock
[59–62], Euler GHD is free of shocks as at time t� two new
modes, i.e., two new Fermi points are created, resolving
this way the shock into a simple contact singularity [12].
However, since Euler GHD is valid for strictly integrable
systems, it is unclear what is instead the correct hydro-
dynamics for quasi or even nonintegrable gases at very low
temperatures, that can describe different experimental
settings.
In this Letter, we show that as Euler CHD is plagued by

hydrodynamic shocks, one, on the other hand, cannot
neglect viscosity terms that are finite as soon as interparticle
interactions are nonzero. Viscous, or diffusive terms, have
been indeed incorporated into GHD for a few years [63–
67]. They have been shown to be essential for the thermal-
ization of quasi-integrable systems [68] and for well
describing spin dynamics in integrable spin chains [69–
74]. However, since integrable systems are typically
ballistic, they usually account for small perturbative effects
on top of the ballistic current. Here we shall show that the
picture changes drastically at very low temperature: when
T → 0 these terms enter the CHD as a dynamic viscosity
μðρ; TÞ and fully regularize its shocks, making the resulting
viscous CHD a perfectly valid hydrodynamics for low-
temperature gapless systems. By taking a low-temperature
limit of GHD we determine a simple and universal
expression for the dynamic viscosity which only depends
on the density ρ and on the Luttinger liquid parameter KðρÞ
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for a given interaction strength. Therefore, we claim that
our result is universal for any one-dimensional interacting
system at low temperatures.
GHD and CHD.—We start by deriving CHD by taking

the low-temperature limit of GHD, and we consider the
Lieb-Liniger model [75] as a reference, although our
derivation is fully generic. The Lieb-Liniger model for
N contact-interacting bosonic particles in an external
potential VðxÞ is given by the Hamiltonian

Ĥ ¼ −
XN

i¼1

ℏ2

2m
∂
2
xi þ

ℏ2c
m

XN

i<j¼1

δðxi − xjÞ þ
XN

i¼1

VðxiÞ ð1Þ

and it represents a paradigmatic model for one-dimensional
interacting systems and cold atomic gases, see, e.g.,
Refs. [76–78]. For convenience, we consider from there-
after ℏ ¼ m ¼ 1, and kB ¼ 1 to express temperature in
units of mkB=ℏ2. In the repulsive regime c > 0, its
eigenstates are labeled by (fermionic) quasiparticles with
bare energy εðθÞ ¼ θ2=2 and momentum kðθÞ ¼ θ, where
θ∈ ½−∞;∞� are the rapidities or the quasimomenta of the
particles. In the thermodynamic limit, the state is specified
by a filling function nðθÞ fixed by the temperature and
chemical potential. Within the framework of GHD, one
assumes that at each position x, t there exists a fluid cell
where the gas is locally thermodynamic, and where we can
introduce a local filling function nðθ; x; tÞ. The time
evolution of the latter then reads, given also the external
force f ¼ −∂xV, as

∂tnðθ;x; tÞþveffðθ;x; tÞ∂xnðθ;x; tÞþ f∂θnðθ;x; tÞ ¼ 0 ð2Þ

where veffðθ; x; tÞ ¼ ð∂θεÞdr=ð∂θkÞdr is the dressed velo-
city of the quasiparticles on top of the background
fixed by the filling nðθ; x; tÞ. The latter can be found
by knowing the explicit dressing operation, which
reads as fdr ¼ ð1 − φnÞ−1 · f with the scattering matrix
φðθÞ ¼ c=ðπðc2 þ θ2ÞÞ acting as a convolution operator
φ · f ¼ R

φðθ − αÞfðαÞdα.
At low temperatures, the filling function becomes very

close to a sharp Fermi sea, such that ∂xnðθ; x; tÞ ¼
−
P

σ σ∂xθ
σðx; tÞδ½θ − θðx; tÞσ� with θσ the two Fermi

edges, indexed by σ ¼ �1, and Eq. (2) can be rewritten
as an equation for the two Fermi edges [12]

X

σ

δðθ − θσÞ½∂tθσ þ ðηþ σvFðρÞÞ∂xθσ − f� ¼ 0: ð3Þ

For convenience, we described the fluid in a co-moving
frame with fluid velocity η ¼ ðθþ þ θ−Þ=2, such that at
each position x the gas is found in a Fermi sea with
symmetric Fermi edges �q ¼ �ðθþ − θ−Þ=2, and Fermi
velocity vF ¼ πρ=K proportional to the local density ρ,
with K the Luttinger liquid parameter, obtained from the
dressed charge as K ≡ 1drðθ�Þ2 [46,79]. Eq. (3) can be

shown, see Supplemental Material [80], to be fully equiv-
alent to CHD for density and fluid velocity readings as

∂tρþ ∂xðηρÞ ¼ 0;

∂tηþ η∂xηþ ρ−1∂xP
ð0Þ
s ðρÞ ¼ f; ð4Þ

with Pð0Þ
s ðρÞ is the static pressure of the gas at zero

temperature, fixed by the equation of state of the system.
In the specific example of the Lieb-Liniger gas, the static
pressure at zero temperature is given by the integral of the

dressed energy εdr, Pð0Þ
s ðρÞ¼−

R
q
−qdθε

drðθÞ=2π, and where

q is obtained by inverting the relation ρ ¼ R
q
−q 1

drðθÞdθ=2π.
Notice also that the fluid velocity η is related to the
momentum field p as η ¼ p=ρ.
The equation for the fluid velocity η in Eq. (4) takes the

form of the celebrated Burgers equation, which is known
to display hydrodynamic shocks [81]. In Euler GHD
such shocks are resolved by adding to Eqs. (3) two extra
Fermi edges, i.e., by introducing 2n hydrodynamic fields
θσ with σ ¼ 1;…; 2n that describe n split Fermi seas [12].
In the phase space ðθ; xÞ this translates into the existence
of a continuous one-dimensional contour ΓðsÞ that
separates the region where nðθ; xÞ ¼ 1 from the region
where nðθ; xÞ ¼ 0.
Clearly, this picture is based on the underlying integra-

bility of the model, i.e., in the fact that all the rapidities θ
are conserved quantities. For nonintegrable generic sys-
tems, it is clear that this phenomenon cannot be the one that
regularizes the shocks. As shocks in the Burgers equation
are regularized by a finite viscosity, we shall then see in the
coming section how to indeed introduce viscosity in
CHD (4).
Viscous CHD.—We now wish to include diffusive or

viscosity effects. In order to do so, we shall consider local
thermodynamic states with finite but small temperature, as
there are no viscosity effects at strictly zero temperature.
We consider therefore local canonical equilibrium states
with given density ρ (or chemical potential μ), fluid
velocity η and temperature T ¼ 1=β ≪ Td, with Td ¼
ρ2=2 the quantum degenerate temperature of the gas
[82]. In the Lieb-Liniger model, this corresponds to filling
functions of the form nðθ; x; tÞ ¼ ð1þ eβε

drðθ;x;tÞÞ−1 given
in terms of its pseudo-energy

εdr ¼ ε½θ − ηðx; tÞ� − ½qðx; tÞ�2 − φ · logð1þ e−βεÞ
βðx; tÞ : ð5Þ

We then move to introduce diffusion terms into CHD by
taking the high β limit of the diffusive GHD, which is
known from Refs. [63,64] and it is given by adding to the
rhs of Eq. (2) the diffusive part

R · ∂x½R−1 · D̃ · ∂xnðαÞ�; ð6Þ
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with the kernels Rθ;θ0 and D̃θ;θ0 presented in [80]. As
diffusive GHD contains ∂

2
x terms, a description only in

terms of the Fermi edges becomes impossible, as we cannot
simply use that the derivative of the filling is a delta
function at the edges, as this would produce δ0ðθ − θσÞ ¼
∂δðθ − θσÞ, whose meaning outside integration is unclear.
The only way to clarify their role is to plug them within

the hydrodynamic equation for the only two modes that are
relevant here, i.e., density and momentum (fluid velocity).
This already clarifies the essential difference of viscous
CHD from Euler GHD: while the latter can be simply
obtained as an equation for the evolution of the Fermi edges
(3) it can be trivially extended to any number of them
during time evolution. Viscous CHD instead requires fixing
the number of Fermi edges from the start, and, as we shall
see, does not require producing new Fermi edges, as
hydrodynamic shocks are regularized by viscosity. By
means of a long but straightforward calculation deferred
to the Supplemental Material [80], we then arrive to

∂tρþ ∂xðηρÞ ¼ 0;

∂tηþ η∂xηþ
∂xPsðρ; TÞ

ρ
¼ ∂x½μðρ; TÞ∂xη�

ρ
þ f; ð7Þ

with the dynamic viscosity at the leading order is linear in
temperature, as already remarked previously [83]. In terms
of dimensionless interaction γ ¼ c=ρ and temperature
τ ¼ T=c2, the dynamic viscosity reads as

μðγ; τÞ
c

¼ Kτγ3

4π
ð∂γ logKÞ2 þOðτ3Þ; ð8Þ

which can be also rewritten for fixed interaction c as
μðρ; TÞ ¼ ðρTK=4πÞð∂ρ logKÞ2 ¼ Tð1−K∂ρvF=πÞ2=4vF.
This result can be understood similarly as in the kinetic
picture of diffusion in integrable models proposed in [84]:
the excitations close to the Fermi edges move with
Fermi velocity vFðρÞ ¼ πρ=KðρÞ but as there are local
density fluctuations ρ → ρþ δρ within the fluid, the
Luttinger parameter (i.e., the Fermi velocity) also fluctu-
ates K → K þ ∂ρKδρ, giving a diffusive spreading to the
trajectories. The dependence of the Luttinger parameter on
density (and therefore on the position in an inhomogeneous
fluid) is what makes inhomogeneous Luttinger liquids for
interacting systems nonconformal invariant [85] and it is a
direct effect of nontrivial interactions. In the so-called
Tonks regime of strong repulsion γ ≫ 1, the dependence of
the Luttinger parameter on the density trivializes, K → 1,
and viscosity vanishes, as expected for noninteracting
particles. The first correction at γ ≫ 1 is obtained from
(8) using K ≃ ð1þ 4=γÞ [47], and reads as

μðγ; τÞ
c

≃
4τ

πγ
þOðγ−3Þ: ð9Þ

The pressure in (7) of the interacting gas is given by taking

the first correction to static pressure in T2, Pð0Þ
s ðρÞ →

Psðρ; TÞ with

Psðρ; TÞ ¼ Pð0Þ
s ðρÞ þ T2ρχ̃e=2; ð10Þ

with χ̃e ¼ K=ð3ρ2Þ. Equation (7) gives the evolution of
density and momentum of the fluid, which is one-to-one
with the chemical potential q and the boost η. Given that the
system is at a finite temperature, and this also represents a
hydrodynamic variable, an extra equation is needed: the
one for the evolution of the energy density e. We define
energy density at rest as e ¼ E=ρ − η2=2, where E is the
total energy of the fluid, which in the Lieb-Liniger model is
computed via E ¼ R

dθnðθÞðθ2=2þ VðxÞÞdr. By proceed-
ing in an analogous manner as to derive the Eqs. (7), we
obtain

∂teþ η∂xeþ
Psðρ; TÞ

ρ
∂xη ¼

μðρ; TÞ
ρ

ð∂xηÞ2: ð11Þ

As expected, the kinematic viscosity ν ¼ μ=ρ now enters
the equation. We can convert this equation into an equation
for the evolution of the temperature field Tðx; tÞ ¼
1=βðx; tÞ using the definition of the energy susceptibility
at fixed density δe=δT

��
ρ ¼ χ̃eT. Given the expression at

zero temperature for generic interacting systems, we then
obtain

∂tT þ η∂xT ¼ −
PT

s

ρχ̃e
T∂xηþ

μðρ; TÞ
Tρχ̃e

ð∂xηÞ2: ð12Þ

On the rhs of (12), PT
s ¼ πρð1=ρþ ∂ρvF=vFÞ=ð3vFÞ is the

low temperature correction to the stationary pressure at
constant density, and we omitted the thermal conduction
∂x½κðρ; TÞ∂xT� with κðρ; TÞ ∼ T2Kμðρ; TÞ½∂ρðχ̃eKÞ�2=32,
which is subleading in temperature. Both terms are derived
in the Supplemental Material [80].
Equations (7) and (12) take exactly the same form as the

standard Navier-Stokes equations for a fluid, i.e., continuity
equation, conservation of momentum and conservation of
energy, and it is quite remarkable that we can derive them in
an exact, nonperturbative way. We first notice that the
heating factor in Eq. (12) is ∼μ=T, namely, it is order zero
in temperature. Therefore, even if the system is initially at
zero temperature, the rapid growth of the velocity gradient
∂xη heats the system, giving therefore finite viscosity μ to
the dynamics of η and regularizing its shocks. Moreover,
given that the dynamic viscosity in Eq. (8) is expressed
only in terms of the universal features of the low-temper-
ature effective field theory, namely, the Luttinger liquid
constant K and its density dependence (which is nontrivial
only for interacting quantum gases), we conjecture that its
form is universal for generic one-dimensional quantum
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fluids. The argument is simple: at low temperatures, all
quantum fluids become effectively integrable, as their
description is in terms of Luttinger liquid freely propagat-
ing bosonic modes. Their diffusion is therefore expected to
be the same as for integrable quasiparticles, where the
kinetic picture explained above applies. We also stress that
there is no fundamental difference in the nature of transport
at small temperatures between integrable and noninte-
grable systems, contrary to what is claimed in previous
literature [86].
Front dynamics in integrable gases.—We now focus on

the fate of an initial density bump, for example, in a system
at a given temperature T0 ≪ Td and density ρ0. Such a
setting is paradigmatic to understanding the response of a
system to external perturbations, and we here use it to
establish the main differences between viscous CHD and
integrable diffusive GHD at low temperature, see Fig. 1.
When the system is integrable, one could expect that not
only temperature and chemical potential can characterize a
local stationary state, but a large number of Lagrange
multipliers γn associated to higher conserved quanti-
ties hQ̂ni ¼

R
dθnðθÞðθnÞdr=n!, i.e., a generalized Gibbs

ensembles (GGE), deviating this way from the behavior of
a generic nonintegrable system. This amounts to replacing
the bare energy ε ¼ θ2=2 with a higher-order polynomial

ε ¼ θ2

2
þ
X

n≥3
γnðx; tÞ

θ

n!
ð13Þ

in Eq. (5), still yielding a valid stationary state of the Lieb-
Liniger gas, due to its integrability. By extending the result
for the temperature field in (12) to the higher potentials
γnðx; tÞ, we find quite lengthy partial differential equations,
see [80] for their expression. The main relevant fact is that
while ∂tT ∼OðTÞ, we instead find ∂tγn ∼OðT0Þ. Namely,
even if we prepare a thermal gas at low temperature [where
γnðx; 0Þ ¼ 0], the integrable gas will generate finite gen-
eralized temperatures in the post-shock dynamics. For
instance, at the shock time t� for a certain position x0,
we find that βðx0; tÞ < 0 and γ3;4ðx0; tÞ ≠ 0, leading to the
splitting of Fermi seas defined via (13) (cf. inset of Fig. 1).
Similarly, higher potentials are activated when the Fermi
seas further split. Such temperature dynamics leads to a
significantly different shock regularization in GHD com-
pared to the CHD one, even if both are regular hydro-
dynamics. Indeed, while GHD displays a growing shock
region, viscous CHD converges to a given profile, with a
finite front width, and it never develops a shock as
temperature is lowered. Namely, even if temperature
T → 0, the heating factor μ=T entering (12) remains finite,
and leads to a self-regulation of the shock driven by the
kinematic viscosity.
In Fig. 1, zero-temperature GHD agrees with diffusive

GHD at finite temperature, signaling how the zero-temper-
ature approximation is often able to capture out-of-equi-
librium fluids. On the other hand, observed deviations from
viscous CHD are attributed to the absence of higher
conservation laws, as discussed above.
The small coupling limit c → 0þ and KPZ physics.—As

already discussed in the first Lieb-Liniger paper [75], the
limit of small coupling of the Lieb-Liniger gas does not
simply recover free bosons. Indeed, when c → 0þ, its
ground state becomes the one describing the so-called
(semi-classical) condensate solution of the nonlinear
Schrödinger equation (NLS) [87]. This is characterized
by vanishing Fermi momentum q ∼

ffiffiffi
c

p
but with diverging

dressed functions 1dr ∼ 1=
ffiffiffi
c

p
in order to keep the density ρ

finite in the limit. The relevant excitations become then the
Bogoliubov excitations with spectrum given by εk ∼ jkj and
therefore with a degenerate group velocity vk ∼ sgnðkÞ. As
∂ρvFðρÞ ∼ limq→0∂qvq the latter diverge, giving a divergent
dynamic viscosity at low coupling as

μðρ; TÞ ∼ Tffiffiffi
c

p ; ð14Þ

signaling the breakdown of the viscous CHD and the
emergence of Kardar-Parisi-Zhang physics [88]. The latter

FIG. 1. Evolution of the excess density δρ ¼ ρ − ρ∞ for an
initial bump obtained as the ground state density of (1) with
interaction c ¼ 1 and Gaussian potential VðxÞ ¼ −a1−
a2 expð−x2=σ2Þ, released at t > 0; here σ ¼ 1, a1;2 are set such
that the background density ρ∞ ¼ 1 and maximum ρ0 ¼ 1.2. We
compare the result by zero-entropy GHD (0-GHD, solid thick
lines), diffusive GHD (dashed lines) and viscous CHD (vCHD,
dash-dotted lines) at different values of inverse temperatures β
(see legend). Kðγ ≡ 1Þ ≃ 3.4 is obtained from Bethe ansatz [79]
and used in (8). Times are t ¼ 0, 3, 6, 12.5, 18.5, 25 and increase
from the leftmost to rightmost peak in the figure. Inset: Evolution
of the inverse temperature and generalized temperatures starting
from a thermal case at low temperature in the integrable gas, here
for simplicity the Lieb-Liniger gas at large coupling (Tonks
limit). The temperatures are obtained by fitting the quasiparticle
occupations nðθ; x; tÞ at a given position x0 during the front
dynamic expansion. We clearly see the moment when the Fermi
sea split as the moment of temperature inversion.
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is well known to emerge in the stochastic Burgers equation,
i.e., given a white δ-correlated noise w, a local perturbation
of a hydrodynamic field ϕ satisfying ∂tϕþ ∂xðvϕþ
κϕ2 þ wÞ ¼ 0, moves with finite velocity v and spreads
superdiffusively, as opposed to the diffusive case of Eq. (7)
whenever μ is finite. Such a phenomenon is known to
appear in generic finite-component one-dimensional fluids,
as described by the nonlinear fluctuating hydrodynamic
(NLFH) theory [89], which can be successfully applied also
to lattice (i.e., nonintegrable) NLS [90]. Again, the argu-
ment is simple: whenever the Euler currents contain non-
linearities, one should expect that the introduction of a
small noise (which, for example, can describe the inter-
action with other nonhydrodynamic modes) always leads to
the KPZ universal fixed point. However, this is not the case
at finite coupling since, although it is true that Eq. (7)
contains the nonlinearity η2, there exists a continuous,
thermally activated, spectrum of modes around the Fermi
points with velocities vF � δvðθÞ [with δvðθÞ ≪ vF peaked
at θ ¼ θσ] that are responsible for a finite diffusion constant
in the system. It is only in the small coupling limit c → 0þ
that the velocities of all such excitations become degen-
erate, therefore diminishing the number of effective hydro-
dynamic modes to only the three macroscopic ones. In this
limit, therefore, the theory of NLFH applies and KPZ
physics emerges, as signalled by the divergent dynamic
viscosity. We should stress that the existence of KPZ
physics in the NLS at low temperature was first established
in [91] and we here give a first analytical proof of its
divergent diffusion constant. Moreover, it is interesting to
notice that the degeneracy of the hydrodynamic modes
leads to superdiffusive KPZ physics similarly also in the
Heisenberg spin chain (and any other integrable model with
non-Abelian symmetry) [74,92] at finite temperatures.
There the relevant degenerate excitations are not the ones
around the Fermi points but the so-called giant magnons
[93,94], namely, magnonic excitations with large spin and
vanishing velocities.
Conclusion.—We have here shown that the standard

Navier-Stokes equations for the evolution of density,
momentum, and temperature can be derived from the
low-temperature expansion of the GHD for the Lieb-
Liniger gas. We have found universal expressions for the
linear part in temperature of the dynamic viscosity, which
we conjecture to apply to generic one-dimensional fluids.
We have shown that the viscosity is zero in the free
fermionic limit, as expected, and that it diverges in the
semiclassical limit of weakly interacting bosons at small
temperatures, which despite many numerical works, it was
never established from first principles. The divergent
viscosity signals the emergence of KPZ superdiffusive
spreading [91], in analogy to the one observed in integrable
spin chains [95].
We have shown that the viscous terms regularize hydro-

dynamic instabilities in one-dimensional gases, although

the inclusion of generalized temperatures is necessary in
order to predict the full form of the shock front in the
integrable gas. Moreover, one should also expect that when
the system is strongly out of equilibrium and thus gradients
of η become large at the shock points, the system strongly
heats locally, invalidating, therefore, the zero-entropy
approximation. Our findings therefore suggest that zero-
entropy hydrodynamics becomes harder to physically
realize whenever interactions are present.
Differently from previous attempts to derive viscosity in

quantum fluids by perturbative corrections to Luttinger
liquids, see, for example, [6,83,86,96], we here derive
nonperturbatively using the generalized hydrodynamic of a
specific model, the Lieb-Liniger gas, and we extend our
result to generic systems, given the universality of its
formulation. Clearly, a different derivation only involving
Luttinger liquid modes would also be desirable in the
future. Our result is ready to be checked by means of
numerical simulations [97–99] and to apply to different
quantum fluids as such as chiral edge modes [100–102], to
open the way for a full fluctuating hydrodynamic theory
[103] of Luttinger liquid field theories, and to unveil
Burgers-like turbulent phases [104] in low-dimensional
quantum fluids.
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