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The fate of the molecular geometric phase in an exact dynamical framework is investigated with the
help of the exact factorization of the wave function and a recently proposed quantum hydrodynamical
description of its dynamics. An instantaneous, gauge-invariant phase is introduced for arbitrary paths in
nuclear configuration space in terms of hydrodynamical variables, and shown to reduce to the adiabatic
geometric phase when the state is adiabatic and the path is closed. The evolution of the closed-path phase
over time is shown to adhere to a Maxwell-Faraday induction law, with nonconservative forces arising from
the electron dynamics that play the role of electromotive forces. We identify the pivotal forces that are able
to change the value of the phase, thereby challenging any topological argument. Nonetheless, negligible
changes in the phase occur when the local dynamics along the probe loop is approximately adiabatic. That
is, the geometric phase effects that arise in an adiabatic limiting situation remain suitable to effectively
describe certain dynamic observables.
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Introduction.—Geometric phases are fundamental con-
cepts in physics and chemistry, with wide-ranging implica-
tions. They are closely associated with various phenomena,
such as the quantum Hall effect, the quantum anomalous
Hall effect, and the quantum spin Hall effect [1,2], the exotic
physics of topological insulators [3,4], dielectric polarization
in crystals [2,5–9], the Aharonov-Bohm effect [10], and
conical intersections (CIs) in molecules [11–13]. Geometric
phases usually emerge when the Hamiltonian of a system
depends on a set of “environmental” parameters x that are
allowed to change adiabatically, as in Berry’s original work
[14], but they remain well-defined concepts for nonadiabatic,
noncyclic, and nonunitary evolutions as well [15–18]. In the
case of molecules, geometric phases play a critical role
around an intersection between two or more potential energy
surfaces. Even when the molecular dynamics remains nearly
adiabatic, the presence of a CI can significantly impact the
outcome of a chemical reaction [19–21] because of the
quantum interference of wave packets encircling the CI,
which crucially depends on the geometric phase [22,23]. In
these molecular problems, the Berry phase is often not just
geometric but also topological, that is, it is independent of
both the dynamics and the path (as long as homotopic paths
are compared). In fact, it is the phase introduced as early as
1958 by Longuet-Higgins [24,25] that is known to control
the energy level ordering in, e.g., Jahn-Teller systems.
However, these intriguing properties depend critically on
the adiabatic approximation and it is uncertain whether and
how they persist when the exact quantum dynamics is

considered. Recent works [26,27] have shown that the
topological character of the phase is an artifact of the
adiabatic approximation and suggest, more generally, that
the geometric phase in molecules may be a less useful
concept than previously believed.
The purpose of this Letter is to shed light on these issues

and to reconcile the adiabatic perspective with the exact
dynamical evolution. To this end we will first show that a
geometric phase is yet meaningful when the full electron-
nuclear (e-n) system is in a pure state. We will use the
framework of the exact factorization (EF) of the molecular
wave function [28,29] since this construction extends the
fiber structure of the adiabatic approximation to arbitrary
states, thereby enabling a natural extension of the Berry
phase [30]. This feature has already been used in previous
works on the geometric phase, namely in Refs. [26,27]
in a time-independent framework and, more recently, in
Ref. [31] in a time-dependent context. Subsequently, we
will explore the exact dynamical evolution of this phase.
This task is challenging when using the original equations
of motion of the EF approach due to their inherent gauge
freedom. However, a recently developed quantum hydro-
dynamical (QHD) description of the EF dynamics [32]
makes this step feasible. QHD offers an alternative for-
mulation for the e-n dynamics, relying on EF while
employing only gauge-invariant variables [32]. Within this
QHD-EF framework we will identify the key factors
influencing the evolution of the geometric phase and we
will analyze a model two-state problem for illustration.
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Gauge-invariant EF dynamics.—In the exact factoriza-
tion approach [28,29] the wave function is represented
exactly as

jΨi ¼
Z
X
dxψðxÞjuðxÞijxi; ð1Þ

where fjxig is the position basis of the nuclear variables
x∈M ≅ RN , juðxÞi is the conditional electronic state at x,
and ψðxÞ is the marginal probability amplitude for the
nuclei, i.e., the “nuclear wave function.” The latter two can
be obtained, up to a gauge choice [33], by singling out a
normalized electronic wave function from the total prob-
ability amplitude at x, i.e.,

hxjΨiX ¼ ψðxÞjuðxÞi≡ jΨðxÞi huðxÞjuðxÞiel ¼ 1; ð2Þ
where the subscript X (el) indicates that integration is
performed over nuclear (electronic) variables only. In the
EF approach ψðxÞ and juðxÞi evolve in time according to
equations of motion that can be derived from either
the variational principle [28,29] or projection operator
techniques [34,35]. In the QHD description of the dynam-
ics [32] the nuclear wave function is replaced by a
probability fluid with density nðxÞ ¼ jψðxÞj2 and velocity
field v ¼ fvkðxÞg, and the electronic state is described by
conditional density operators ρelðxÞ ¼ juðxÞihuðxÞj. The
equations of motion consist of a continuity equation for the
density, ∂tnþP

k ∂kðnvkÞ ¼ 0, a momentum equation,

π̇k ¼ −Trelðρel∂kHelÞ −
ℏ2

n

X
ij

ξij∂iðngkjÞ − ∂kQ; ð3Þ

and a Liouville–von Neumann-like equation,

iℏρ̇el ¼ ½Hel þ δHen; ρel�: ð4Þ
Here, the dot denotes the material (or convective)
derivative, ξij is the inverse mass tensor of the nuclear
system, Q ¼ −ℏ2=2

P
ij ξ

ijn−1=2∂i∂jn1=2 is the Bohm
quantum potential [36],Hel ¼ HelðxÞ is the local electronic
Hamiltonian, and δHen is the e-n coupling, δHen ¼
−ℏ2=ð2nÞPij ξ

ij
∂iðn∂jρelÞ. Furthermore, gkj is the

Fubini-Study metric [37], which is the real part of the
quantum geometric tensor [14] qkj ¼ Trelðρel∂kρel∂jρelÞ.
The momentum field π ¼ fπkðxÞg is related to the

velocity field through the inverse mass tensor, vk ¼P
j ξ

kjπj, and is connected to the EF wave function by
πk ¼ ℜðp̂kψ=ψÞ − ℏAk, where p̂k ¼ −iℏ∂k is the canoni-
cal momentum operator and Ak is the Berry connection,
Ak ¼ ihuj∂kui. It can also be obtained from the total e-n
wave function, without referring to the EF, since

πkðxÞ ¼ ℜ
hΨðxÞjp̂kjΨðxÞiel
hΨðxÞjΨðxÞiel

; ð5Þ

where jΨðxÞi was introduced in Eq. (2). The circulation
of π around arbitrary closed paths γ in M satisfies a
quantization condition,

X
k

I
γ
ðπk þ ℏAkÞdxk ¼ 2πℏν ν∈Z; ð6Þ

which merely expresses the fact that the nuclear wave
function ψ must be smooth around any loop [38]. This
condition needs to be imposed at the initial time only [with
a smooth choice of the phases of the nuclear and electronic
wave functions in Eq. (2)], since Kelvin’s circulation
theorem holds for the fluid dynamics described here [39].
In the following we shall focus on a given instant of time
and investigate the geometric properties of the instanta-
neous fiber bundle induced by the EF of the total wave
function [40].
Nonadiabatic geometric phase.—The quantization

condition of Eq. (6) formalizes earlier observations that
the geometric phase is related to the circulation of the
momentum field in a dynamical context [31,41–43]. More
than that, since π is gauge-invariant, Eq. (6) shows how
to define an instantaneous, gauge-invariant “phase” for
arbitrary paths γ in M,

Γ½γ� ¼ −
1

ℏ

X
k

Z
γ
πkdxk: ð7Þ

For loops, Γ½γ� reduces, by construction, to the holonomy
of the vector bundle defined by EF, namely

−
1

ℏ

X
k

I
γ
πkdxk ¼

I
γ
Akdxk mod 2π; ð8Þ

while more generally, for an open curve γ that connects xa
to xb, it turns out to be the sum of two contributions that are
separately invariant,

Γ½γ� ¼ −Θba þ Γel½γ�: ð9Þ

Here, Θba ¼ arghΨðxaÞjΨðxbÞi is the Pancharatnam phase
difference of the total e-n wave function between b and a,
while Γel½γ� reads as

Γel½γ� ¼ arghuðxaÞjuðxbÞi þ
X
k

Z
γ
Akdxk ð10Þ

and is the Pancharatnam phase accumulated by the elec-
tronic vector when parallel transported from xa to xb along
γ [15,17,18,44,45] [46]. In a sense, −Γ½γ� is a nuclear
phase, i.e., the phase difference of the total wave function
minus that of the electronic one. That is, Θba ¼ −Γ½γ� þ
Γel½γ� is a decomposition of the total phase difference into
nuclear and electronic contributions. For a loop Θba ≡ 0
and the nuclear phase difference is the opposite of the
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electronic one, i.e., Eq. (10) with only the second term on
the rhs surviving.
Importantly, Γ½γ� is only indirectly tied to the connection

defined by the EF: it is a property that relies on EF but does
not require that the EF of the wave function is performed. It
is an integral property of the momentum field which, as
mentioned above, can be obtained from the total e-n wave
function without performing its EF [Eq. (5)]. Its definition
is further consistent with the fluid dynamics: for stationary
loops the quantization condition [Eq. (6)] possibly jumps
by �2π during the dynamics (every time a wave function
node crosses the loop [32]) but this does not affect the
above interpretation.
Dynamics.—We now focus on the phase defined by

Eq. (7), evaluated for a loop γ, fixed in time, and use the
symbol ΓO½γ� to emphasize that the path is closed. The
dynamical evolution of ΓO½γ� is determined by Eq. (3),
upon observing that the advection term can be rearranged
as [47]

P
j v

j
∂jπk ¼

P
j v

jBkj þ
P

j v
j
∂kπj in order to

display the kj component of the curvature tensor Bkj ¼
−2ℏℑqkj and the kth derivative of the classical kinetic
energy T ¼ 1=2

P
ij ξ

ijπiπj. The result for the rate of
change of the phase shows three distinct, gauge-invariant
contributions, namely

−
dΓO½γ�
dt

¼ ENBO þ Eel þ Emag; ð11Þ

where

ENBO ¼ −
1

ℏ

I
γ

X
k

Trelðρel∂kHelÞdxk ð12Þ

depends on the electronic Hamiltonian, and

Eel ¼ −ℏ
I
γ

X
ijk

ξij

n
∂iðngkjÞdxk ð13Þ

Emag ¼ −
1

ℏ

I
γ

X
jk

vjBkjdxk ð14Þ

are geometric and related to the gauge fields acting on
the nuclei. Equation (12) represents a genuine non-Born-
Oppenheimer (NBO) contribution entirely due to the
nonconservative part of the Ehrenfest force FEh

k ¼
−Trelðρel∂kHelÞ appearing in Eq. (3). It disappears when
the system is in an adiabatic state. The second contribution,
Eq. (13), is generally nonvanishing, and it depends on the
(instantaneous) electronic state through the metric proper-
ties of the EF fiber bundle [48] and on the nuclear state
through the density n. The third contribution, Eq. (14), on
the other hand, is (possibly) nonvanishing only when the
nuclear state is current-carrying. It appears here only
because we fixed the loop [49]: if we allowed the loop
to follow the fluid dynamics we would find

−
dΓ̃O½γ�
dt

¼ ENBO þ Eel; ð15Þ

where now Γ̃O½γ� refers to the geometric phase along a
dynamical loop γ in motion with the fluid [50].
The above findings are general, and hold for arbitrary

states. For cases where Stokes’ theorem applies they can be
anticipated by the Maxwell-Faraday induction law,

−∂tB ¼ dE; ð16Þ

which holds for the gauge fields governing the nuclear
dynamics in the EF approach [32]. Here, d denotes the
exterior derivative, B ¼ dω is the Berry curvature two-
form, ω ¼ ℏ

P
k Akdxk is the one-form associated with the

Berry connection, and E ¼ iℏdhuj∂tui − ∂tω ¼ P
k Ekdxk

is the gauge-invariant one-form defining the pseudoelectric
field Ek [51]. Indeed, application of Stokes’ theorem to an
open surface having γ as a boundary, and identification
of the pseudoelectric field Ek acting on the nuclei [see
Sec. III. A of Ref. [32] and, in particular, Eq. (59)] leads
again to Eqs. (11)–(14). This agrees with previous findings
for a particle in three dimensions [52]. Compared to the
Maxwell-Faraday induction law of classical electromag-
netism, though, here there is no varying magnetic flux
inducing an electromotive force on a circuit. Rather, it is the
pseudomagnetic flux (i.e., the geometric phase) of the
electronic subsystem that changes because of the noncon-
servative work done by the electrons on the nuclei around
the loop γ in nuclear configuration space. That is, Eq. (16)
becomes a reversed induction law.
Of main interest here is the analysis of the adiabatic

geometric phase, when the system is found in an adiabatic
state and, in particular, when the phase is topological. In
this situation, as mentioned above, the NBO circulation of
Eq. (12) vanishes since the Ehrenfest force becomes
conservative. However, also the “drift,” pseudomagnetic
term of Eq. (14) disappears since B≡ 0 (almost every-
where) if the phase is topological. Hence, we are left with
the electromotive force of Eq. (13), which thus represents
the key factor that converts a phase that is topological in the
adiabatic approximation into a geometric phase. Indeed, the
curvature departs from zero according to the induction law,
Eq. (16), driven by the local vorticity of the pseudoelectric
field, which is generally nonzero. Hence, B becomes
nonzero and the phase cannot remain topological.
Model two-state problem.—We now consider a two-state

model that highlights the key features of a molecular
problem involving a CI. The electronic Hamiltonian takes
the general form (in a diabatic basis [53]) Hel ¼ AðxÞσ0þ
BðxÞσ, where AðxÞ is a scalar, BðxÞ∈N ≅ R3 is an
effective magnetic field, σ0 ¼ I2 is the 2 × 2 unit matrix
and σ ¼ ðσx; σy; σzÞ is the vector of Pauli matrices.
The geometric properties of the adiabatic bundles are
well-known [14,54] and can be “pulled back” from the
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problem of a spin in a slowly varying magnetic field, with
N as parameter space [55]. In a typical molecular problem,
one of the B components identically vanishes because of
time-reversal symmetry. Hence, the curvature in nuclear
configuration space vanishes everywhere except at the CI
seam, and the Berry phase becomes topological.
In the adiabatic approximation the magnetic field B fully

characterizes the electron dynamics and the structure of the
relevant bundle. For an exact dynamics we further need the
polarization vector sðxÞ∈N that characterizes the condi-
tional density matrix, ρelðxÞ ¼ ðσ0 þ sðxÞσÞ=2 (ksk ¼ 1
for a pure state). Equation (4) gives its dynamical equation
in the form

ṡ ¼ ðΩbþ τÞ × s − ℏ=2
X
ij

ξij∂iðsj × sÞ; ð17Þ

where Ω ¼ 2B=ℏ is the Larmor precession frequency,
b¼B=B, sj ¼ ∂js, and τ¼

P
j u

jsj is the “nuclear torque,”
an effective field due to the e-n coupling, in which
uj ¼ −ℏ=2

P
k ξ

jk
∂k ln n. The bundle structure, on the

other hand, is characterized by the quantum geometric
tensor, qkj ¼ ½sksj þ isðsk × sjÞ�=4, and the contributions
appearing in Eq. (11) take the form of integrals of simple
one-forms, i.e., EX ¼ H

γ Φ
X (for X ¼ NBO, el, and mag),

where ΦNBO¼ℏ−1Bds, Φel¼1=2τds−ℏ=4
P

ijξ
ij
∂isjds,

and Φmag¼1=2ðν×sÞds, upon defining ν ¼ P
j v

jsj [50].
The circulations are therefore all mapped on the Bloch
sphere S2 ⊂ N , where sðxÞ traces a curve γ̃ when x moves

along the curve γ. The results for an adiabatic state follow
upon setting s ¼ �b for the upper and lower adiabatic
states, respectively.
For concreteness, we consider 2þ 1 nuclear degrees of

freedom (M ≅ R3) mimicking a one-dimensional CI seam,
with parameter values typical of a molecular problem and a
diagonal mass tensor, ξij ¼ δijM−1 (with M ¼ 1 amu).
Upon taking AðxÞ independent of z the problem becomes
effectively two-dimensional. Specifically, setting AðxÞ ¼
1
2
Mω2

xx2 þ 1
2
Mω2

yy2 (ωx ¼ ωy ¼ ω ¼ 1000 cm−1) and
employing a linear vibronic coupling B ¼ κxxe1 þ κyye2
(κx ¼ κy ¼ κ ¼ 0.1 a:u:) the problem becomes a standard,
linear E ⊗ e Jahn-Teller model (Fig. 1). We solved the
time-dependent Schrödinger equation for this problem
using a numerically exact method and computed the
geometric phase along a number of paths fixed in time [50].
Figure 1 shows the main results of our numerical inves-
tigation. The wave packet, prepared in the adiabatic ground
state, spreads along the valley of the “Mexican hat”
potential and its trailing edges meet each other and interfere
at time t ≈ 75 fs, after which the wave packet covers more
or less uniformly the valley, with a time-varying interfer-
ence pattern [panels (b)–(d)]. Figure 1(e) shows the
evolution of the geometric phase (in π units) along three
significant paths, i.e., three different circles on the valley
floor. The behavior of the phase at short time (t≲ 20 fs) is
to some extent undetermined due to regions of near-
vanishing nuclear density that impose intrinsic limits on
the numerical implementation [50]. After this transient,
the phase is seen to undergo an evident variation, which is

(b) (c)

(d)(a)

(e)

FIG. 1. Exact quantum dynamical results for the two-dimensional, two-state model problem described in the main text. (a) Nuclear
density at t ¼ 0 along the x coordinate. Also shown is the adiabatic ground-state potential and the ladder of vibrational states of the
diabatic potential. The arrows denote the radii of some circular paths, centered at the CI point, along which the geometric phase was
computed. (b)–(d) Snapshots of the nuclear density at three significant times, t ¼ 0, 75, and 240 fs, as indicated, along with the adiabatic
potential energy surfaces intersecting at the origin of the coordinate system. The density is nodeless, even though it is seen to decrease to
small values. (e) Evolution of the geometric phase of Eq. (7) (in π units) along the three paths marked in (a), namely for circles of radius
R ¼ 2.0, 2.5, and 3.0a0 (from bottom to top, as indicated). The red vertical bars denote the three times chosen for panels (b)–(d). See text
for details.
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numerically robust, when the wave packet edges start to
interfere, and later gets back to the value expected for an
adiabatic dynamics [Fig. 1(e)]. This provides direct evi-
dence for the transition between the geometric and topo-
logical phase from the vantage point of exact quantum
dynamics. Analysis of the contributions to the electromo-
tive force confirms that the NBO component contributes
little to the phase change, while the pseudoelectric one
plays the major role [50].
Conclusions.—We have shown that the molecular

geometric phase of the adiabatic approximation can be
seamlessly extended to exact quantum dynamics. The
generalized phase is shown to be related to the circulation
of the mechanical momentum, it is time-dependent and its
evolution is governed by a (reversed) Maxwell-Faraday
induction law, with nonconservative forces arising from
the electron dynamics that play the role of electromotive
forces. Though generally evolving in a complicated way,
this geometric phase remains highly relevant when the
dynamics is close to adiabatic and a physically motivated
choice of the path is performed.
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