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The Kibble-Zurek mechanism (KZM) describes the nonequilibrium dynamics and topological defect
formation in systems undergoing second-order phase transitions. KZM has found applications in fields
such as cosmology and condensed matter physics. However, it is generally not suitable for describing first-
order phase transitions. It has been demonstrated that transitions in systems like superconductors or
charged superfluids, typically classified as second order, can exhibit weakly first-order characteristics when
the influence of fluctuations is taken into account. Moreover, the order of the phase transition (i.e., the
extent to which it becomes first rather than second order) can be tuned. We explore quench-induced
formation of topological defects in such tunable phase transitions and propose that their density can be
predicted by combining KZM with nucleation theory.
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The Kibble-Zurek mechanism (KZM) combines
Kibble’s observation of the inevitability of topological
defect formation in cosmological phase transitions [1,2]
with the theory proposed by one of us [3–5] that relates
their density to the critical slowing down and, hence, to the
universality class of the second-order phase transition. The
resulting KZM predicts defect density as a function of the
quench rate during second-order phase transitions, in both
classical and quantum settings [6–27]. It finds applications
in condensed matter physics [3–5], cosmological phase
transitions [1,2,28–30], superconductors [31], liquid crys-
tals [32,33], superfluids [34–36], ultracold chemistry [27],
Bose-Einstein condensates [37–40], and quantum comput-
ing [41,42].
However, KZM is generally not suitable for describing

first-order phase transitions. In [43], it has been demon-
strated that the transitions associated with superconductors
or superfluids can exhibit weakly first-order characteristics
[44]. This should allow one to tune the order of the tran-
sition between the second and first order, with the weakly
first-order characteristics in between. Given the critical
properties shared between, e.g., smectic-A liquid crystals
and superconductors, the transitions in liquid crystals can
also exhibit a weakly first-order nature. In particular, there
is now compelling evidence that the order of the Fredericks
phase transition can be “tuned” in this manner [45].
In this Letter, we demonstrate that the formation of

topological defects in those systems can resemble either a
second-order or a first-order phase transition, or fall in
between these two regimes (i.e., become weakly first-
order). This variation depends on factors such as the
strength of the first-order component in the free energy,
the quench timescale, and the temperature.

While KZM has been investigated numerically [46–49]
and experimentally [31–36,41,42,50–53], its applicability
to weakly first-order or tunable phase transitions is an open
question. The following analysis demonstrates that KZM
can remain viable for predicting the density of defects
generated in a phase transition with tunable order when it is
integrated with thermally activated nucleation [54–58].
We note that Kibble suggested initially [1] that thermal

activation determines the density of defects even in the
second-order nonequilibrium phase transitions [59]. In
contrast to KZM, thermal activation would result in defect
densities independent of the quench rate. Nevertheless, as
we shall see, thermally activated nucleation can compete
with KZM in determining the density of topological defects
in the tunable transitions we consider.
Here, we first present numerical results illustrating the

interplay of critical slowing down and thermally activated
nucleation in the formation of topological defects in a phase
transition with tunable order. We then provide an analytical
interpretation of the results.
To explore KZM in a phase transition with tunable order,

we examine the numerical evolution of a one-dimensional
system governed by the equation of motion for a real scalar
field ϕ. The equation is derived from the modified Landau-
Ginzburg potential

VðϕÞ ¼ ðϕ4 − 2ϵϕ2Þ=8 − cjϕj3=3; ð1Þ

where the first two terms account for the typical second-
order phase transition behavior and the third term intro-
duces the first-order characteristics as presented in [43] (see
Fig. 1). Here, the constant c represents the strength of the
term responsible for first-order nature of the phase
transition.
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We assume that ϵ follows a linear quench, ϵðtÞ ¼ t=τQ,
with τQ representing the quench timescale.
The system is in contact with a thermal reservoir and it

obeys the Langevin equation

ϕ̈þ ηϕ̇ − ∂xxϕþ ∂ϕVðϕÞ ¼ ϑðx; tÞ; ð2Þ

where the noise term ϑ has correlation properties

hϑðx; tÞ; ϑðx0; t0Þi ¼ 2ηθδðx0 − xÞδðt0 − tÞ ð3Þ

with the temperature of the reservoir θ and η is the overall
damping constant. In this Letter, we set η ¼ 1.
When c ¼ 0, we recover the ordinary second-order

phase transition where ϵ measures the distance from the
critical point. t < 0 and t > 0 represent the time before and
after the transition at ϵ ¼ 0, respectively. This scenario was
thoroughly investigated in [49].
When c > 0, a characteristic of a first-order phase

transition emerges: for ϵ < −c2, the potential exhibits
symmetry with a single minimum, similarly to a second-
order phase transition. However, for −c2 < ϵ < 0, it
develops two minima at ϕ ¼ �ðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ ϵ

p
Þ correspond-

ing to the new phase in addition to the existing one at ϕ ¼ 0
representing the old phase, leading to nucleation associated
with the first-order phase transition. The positions of these
nucleation barrier peaks are �ϕbarrier, where ϕbarrier ¼
c −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ ϵ

p
, and their height is

hbarrier¼−
1

24

�
c−

ffiffiffiffiffiffiffiffiffiffiffi
c2þϵ

p �
2
h
3ϵþ2c

�
c−

ffiffiffiffiffiffiffiffiffiffiffi
c2þϵ

p �i
: ð4Þ

This indicates that the positions ϕbarrier and the height
hbarrier of the nucleation barriers approach 0 as ϵ → 0.
Hence, with both c ¼ 0 and c > 0, the potential with two
minima eventually emerges for ϵ > 0. Figure 1 illustrates
the snapshots of ϕ and corresponding VðϕÞ following
second-order phase transition (left) and phase transition
with nonzero c (right). For the second-order phase tran-
sition, ϕ initially fluctuates around its expectation value
hϕi ¼ 0 when ϵ < 0. After the symmetry breaking takes

place (i.e., ϵ > 0), ϕ is forced to choose one of two minima
and gradually settles locally around hϕi ≈� ffiffiffi

ϵ
p

while
forming defects. For a phase transition with c > 0, ϕ
follows a similar transition, except that nucleations can
occur when −c2 < ϵ < 0. Our primary interest lies in
assessing the impact of these nucleation events on the
density of defects after the transition (ϵ > 0).
Following the method described in [49], we numerically

investigate the number of defects generated by phase
transitions as a function of the quench timescale τQ. We
initiate the time evolution obeying Eq. (2) with ϵ ¼ −2 and
conclude it when ϵ reaches 5. The number of defects is
determined by counting the points where ϕ ¼ 0 at ϵ ¼ 5.
We performed 15 numerical simulations of the phase
transition for each τQ and obtained Fig. 2. Black squares
and dark red circles represent numerical results for c ¼ 0
(purely second-order phase transition) and c > 0, respec-
tively. The dashed black line represents the best fit of the
black squares. The best fit corresponds to nKZM ∝ τ−aQ ,
where a ¼ 0.267� 0.029, which agrees closely with the
theoretical prediction of KZM, a ¼ 1=4 [3–5]. As the
quench timescale τQ increases, we notice a pronounced
deviation of the dark red circles from the prediction of
KZM depicted by the dashed black line. This departure can
be attributed to the increased likelihood of nucleation
events. In the middle panel, we have a decrease in the
nucleation rate due to a low temperature θ ¼ 0.001.
Because of the low nucleation rate, there is only a small
overall deviation from the predictions of KZM. On the
other hand, the right panel presents the results for larger
value of c ¼ 2, indicating a stronger first-order phase
transition term in the potential (1). In this case, a significant
departure from KZM is observed even when τQ is rela-
tively small.
These plots can be understood as follows. When ϕ

fluctuates around its expectation value hϕi ¼ 0 initially, it
starts to interact with the nucleation barriers at t ¼ t1 whenffiffiffiffiffiffiffiffiffi
hϕ2i

p
is approximately equal to the location of the barriers

ϕbarrier. In the vicinity of ϕ ¼ 0, the potential can be
approximated by a harmonic potential VharðϕÞ ¼ 1

2
ω2ϕ2

FIG. 1. Snapshots of ϕ and corresponding VðϕÞ following second-order phase transition with c ¼ 0 (left) and phase transition with
c ¼ 1 (right). Plots of ϕðxÞ at different stages of the quench, starting with ϵ ¼ −1.5 (thick red line), ϵ ¼ −0.45 (blue line), and ϵ ¼ 1
(thin black line) are shown.
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where ω is given by VharðϕbarrierÞ ¼ hbarrier. Since the
temperature θ corresponds to the energy of ϕ, we have
hϕ2i ≈ θ=ω2. Therefore, ϕ starts to interact with the barrier
at t1 when ðθ=ω2Þ1=2 ¼ ϕbarrier. After t1, there is a pos-
sibility of nucleation occurring.
The nucleation rate per unit length of the metastable state

around ϕ ¼ 0 is given by [54]

Γ½ϵðtÞ� ¼ A expf−B½ϵðtÞ�=θg; ð5Þ

where

B½ϵðtÞ� ¼ 2

Z
ϕTP

0

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞ

p
: ð6Þ

Here, ϕTP is the classical turning point such that
Vðϕ ¼ 0Þ ¼ VðϕTPÞ ¼ 0. The prefactor A exhibits only
a soft dependence on temperature and ϵ. In this Letter, we
set A ≈ 0.4 obtained numerically. Since ϵ is time-depen-
dent, B and Γ are time-dependent. In particular, B → 0 as
ϵ → 0. This suggests that as the parameter ϵ approaches 0,
the influence of the barriers becomes insignificant in
comparison to the kinetic energy of the field hϕ̇2i, given
by the temperature θ. Then ϕ undergoes a transition to one
of the two broken symmetry minima, much like what
occurs in a second-order phase transition. In our model, this
behavior is observed after time t2 when the energy of the
nucleation barriers becomes equal to the kinetic energy of
ϕ, B½ϵðt2Þ� ¼ θ (Supplemental Material [60]).
The fraction of space f occupied by the new phase due to

nucleation events during the period between t1 and t2 can
be obtained using the Avrami equation [61–65]. This
equation describes the progress of phase transformations
via a nucleation-growth process in first-order phase tran-
sitions, under the assumption that the transformation
follows a sigmoidal function. It is applied in various areas,

including cosmology, to describe the fraction of space that
has undergone transition from the false vacuum to the true
vacuum [66–68]. It can be derived by assessing the
probability that a particular point in space is not enclosed
within any true vacuum bubbles. In Supplemental Material
[60], we provide a brief derivation of the equation by
following [67,68]. The equation reads

f ¼ 1 − expð−ΩÞ; ð7Þ

where

Ω ¼
Z

t2

t1

Γ½ϵðtÞ�Vðt; t2Þdt: ð8Þ

Here, Vðt; t2Þ ¼
R t2
t vðϵðτÞÞdτ represents the volume of a

nucleated bubble at the time t2, which was formed at time t.
v is the bubble wall velocity. f describes the fraction of
space transformed to the new phase between t1 and t2, and
f ¼ 1 when the entire space is covered by the new phase
through a nucleation-growth process during the time
interval. The velocity v is dependent on θ, η, and ϵ.
Since we fix θ and η during the time evolution in our
model, we only analyze the ϵ dependence of v by numerical
simulations as follows.
When ϵ with −c2 < ϵ < 0 is held fixed and time-

independent, both the nucleation rate Γ and the velocity
v become time-independent, and only a nucleation-growth
process takes place. Then we have the general Avrami
equation in one dimension written as

ffixed ¼ 1 − exp

�
−
1

2
vðϵfixedÞΓðϵfixedÞt2

�
: ð9Þ

By fitting this equation to the numerical results of the time
evolution of the fraction of space occupied by the new

FIG. 2. Number of defects as a function of quench timescale τQ. Black squares represent numerical results for c ¼ 0 where KZM is
expected to hold. The dashed black line represents the best fit of the black squares. Dark red circles represent numerical results for c ¼ 1,
θ ¼ 0.01 (left), for c ¼ 1, θ ¼ 0.001 (middle), and for c ¼ 2, θ ¼ 0.01 (right), respectively. The solid dark red lines represent the
number of defects derived from Eq. (10). The fraction of space f occupied by the new phase due to nucleation events (7) is depicted using
a color plot.
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phase at each fixed ϵ, we obtain the ϵ dependence of v,
which will then be substituted into Eqs. (7), (8) in the
following discussion (Supplemental Material [60]). For
c ¼ 1 and the temperature θ ¼ 0.01, vðϵÞ ¼ 0.026ϵþ
0.016 was obtained by the method described above. For
different values of c and θ, we repeated the same procedure
to obtain corresponding v.
In the absence of nucleation events, the fraction of space

occupied by the new phase due to nucleations is zero, i.e.,
f ¼ 0. The field ϕ then would follow second-order phase
transition behavior obeying KZM even in the presence of a
nonzero c. Conversely, with an increase in f, the behavior of
the first-order phase transition becomes dominant. It can be
assumed that the density of defects for the fraction of space
f follows nucleation theory, while the density for the
remaining space ð1 − fÞ obeys KZM. The number of
defects generated in a phase transition with tunable order
can then be estimated as

n ¼ fnnuc þ ð1 − fÞnKZM; ð10Þ

where nKZM obeys KZM in the second-order phase
transition, i.e., nKZM ∝ τ−aQ with a ¼ 1=4 in our model.
In general, the number of defects nnuc generated by a
nucleation-growth process increases with the increase in
the nucleation rate Γ and decreases with the rise of the
bubble wall velocity v. It is because a larger value of Γ leads
to the growth of the number density of bubbles.
Consequently, the distance between bubbles shortens,
and the average time before a collision between two
domains decreases. Conversely, the domain size increases
for larger v, as bubbles grow more rapidly before the
collision [58]. Since Γ is a complex function of ϵ, we
numerically obtain the ϵ dependence of nnuc by performing
the nucleation process for each fixed ϵ. nnuc exhibits an
almost linear dependence on ϵ within the relevant small ϵ
range of interest (i.e., −c2 < ϵ < 0). Numerically, we
obtained the equation nnuc ≈ 144ϵþ 74 for c ¼ 1 and θ ¼
0.01 (Supplemental Material [60]). For different values of c
and θ, we repeated the same procedure to derive the
equation for nnuc. Since ϵ changes over time during the
phase transition, nnuc also depends on time. We assume that
the number of defects created by the nucleation-growth
process throughout time evolution can be approximated by
the time-averaged value, nnuc ∼ nnucðϵ�Þ, where ϵ� repre-
sents the value of ϵ at the time when the fraction of space
occupied by the new phase reaches half of f, i.e., ϵ� ¼ ϵðt�Þ,
where f� ¼ 1 − exp ð− R

t�
t1
Γ½ϵðtÞ�Vðt; t�ÞdtÞ and f� ¼ f=2

(Supplemental Material [60]). After t2, the nucleation
barriers diminish in comparison to the kinetic energy of
ϕ, leading to a behavior similar to a second-order transition.
The number of defects generated within this regime obeys
KZM and is given by nKZM.
The solid dark red lines in Fig. 2 correspond to the

number of defects derived from Eq. (10). They show

reasonable agreement with the numerical results repre-
sented by the dark red circles. The fraction of space f
occupied by the new phase due to nucleation events (7) is
depicted using a color plot. The phase transition occurs so
rapidly that ϕ does not have sufficient time to interact with
the nucleation barriers for the small quench timescale τQ.
Consequently, nucleation does not occur, and the prediction
of KZM remains valid in this regime. As τQ increases, f
also grows, and we see the transition into a regime where
the behavior of the first-order phase transition becomes
dominant, leading to a significant departure from KZM. As
the temperature θ decreases, the nucleation rate also
decreases, which in turn supports the applicability of
KZM for even larger values of τQ. Conversely, with larger
values of c, the nucleation barriers persist for a longer
duration, resulting in deviations from the predictions of
KZM even with relatively small τQ.
By modifying Eq. (10), we can estimate the discrepancy

δ between the value predicted by KZM and the value
obtained in a numerical simulation of a phase transition
with tunable order,

δ ¼
���� n − nKZM

nKZM

���� ¼ f

����1 − nnuc
nKZM

����: ð11Þ

Figure 3 shows the discrepancy as the function of c and
temperature θ where the quench timescale τQ ¼ 2048. The
left panel shows the discrepancy between the numerical
results and the predictions of KZM. As c and θ increase, we
observe a larger discrepancy, represented by the red color.
For higher temperature θ, the kinetic energy of ϕ increases,
thereby enhancing the likelihood of nucleation occurring
prior to the second-order phase transition. For larger c, the
nucleation barriers persist longer, thus increasing the
occurrence of nucleation events. The fraction of space
occupied by the new phase that forms due to nucleation
events and the discrepancy can be evaluated using Eq. (7)

FIG. 3. The discrepancy between theory and numerical experi-
ment as the function of c and temperature θ. The quench
timescale τQ ¼ 2048. Left: the remaining discrepancy between
the numerical results and the predictions of KZM alone. Right:
the remaining discrepancy between the numerical results and the
predictions of Eq. (10) that combines KZM and nucleation.
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and Eq. (11). This yields f ¼ 0, δ ¼ 0 for c ¼ 0.25, θ ¼
0.0002 (white square), f ¼ 0.55, δ ¼ 0.16 for c ¼ 1,
θ ¼ 0.001 (black circle), and f ¼ 1, δ ¼ 0.66 for
c ¼ 1.75, θ ¼ 0.007 (blue triangle). These values closely
align with the numerical results illustrated in the figure.
The right panel displays the discrepancy between the
numerical results and the predictions of Eq. (10), i.e.,
jðnnumeric − nÞ=nj, where nnumeric represents the mean value
of the number of defects obtained numerically and n is
given by Eq. (10). It demonstrates that Eq. (10) effectively
predicts the number of defects generated in a phase
transition with tunable order.
In this Letter, we investigated topological defect for-

mation in a phase transition with tunable order. Such phase
transitions can be observed in various systems, including
superconductors, charged superfluids, and liquid crystals. It
has been shown that KZM can remain effective in predict-
ing defect density when integrated with nucleation theory.
The fraction of space f occupied by the new phase due to

nucleation events from the Avrami equation proves to be
useful for distinguishing between regimes governed by
KZM and those dominated by nucleation processes. When
f ¼ 0, nucleations do not occur prior to the second-order
phase transition, and KZM can provide an accurate
prediction of defect density. When f ¼ 1, the entire space
undergoes a transition to the new phase through nucleation-
growth processes before the second-order phase transition,
and the defect density is determined by nucleation theory.
When 0 < f < 1, we postulated that the defect density in
the region covered by the new phase between times t1 and
t2 can be described by nucleation theory, while the density
in the remaining space follows KZM.
Our numerical results provide support for this conjec-

ture. It is conceivable to validate our findings within the
phase transitions of liquid crystals [45] in the future.
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