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The recovery of an unknown density matrix of large size requires huge computational resources. State-
of-the-art performance has recently been achieved with the factored gradient descent (FGD) algorithm and
its variants since they are able to mitigate the dimensionality barrier by utilizing some of the underlying
structures of the density matrix. Despite the theoretical guarantee of a linear convergence rate, convergence
in practical scenarios is still slow because the contracting factor of the FGD algorithms depends on the
condition number κ of the ground truth state. Consequently, the total number of iterations needed to achieve
the estimation error ε can be as large as Oð ffiffiffi

κ
p

lnð1=εÞÞ. In this Letter, we derive a quantum state
tomography scheme that improves the dependence on κ to the logarithmic scale. Thus, our algorithm can
achieve the approximation error ε in Oðlnð1=κεÞÞ steps. The improvement comes from the application of
nonconvex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal
constant that is independent of the given state. Our theoretical results of extremely fast convergence and
nearly optimal error bounds are corroborated by the numerical results.
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The aim of quantum state tomography is to recover an
unknown density matrix ρ of size d × d from the meas-
urement outcome y∈Rm. Since the dimension of the
density matrix d ¼ 2n grows exponentially with the qubit
number n, the complexity of the reconstruction increases
very quickly. The fact that, up to now, experimental
demonstrations of tomography have only been performed
for small qubit numbers [1,2], shows the difficulties.
In the context of large matrix dimensions d, the challenge

arises from the substantial number of samples required to
reconstruct a state, leading to the sample complexity
problem of determining the necessary and sufficient copies
of ρ. For trace distance tomography aiming for a trace
distance error of δ, studies by O’Donnell and Wright [3,4]
established that Oðrd=δ2Þ input samples suffice for recon-
structing density matrices of rank r. Conversely, Wright [5]
indicated that ΩðrdÞ samples are necessary when δ is
held constant. On a different note, Yu [6] demonstrated
that Oð10n=δ2Þ copies are sufficient using Pauli measure-
ments. In the case of fidelity tomography aiming for a
description with 1 − ϵ fidelity, Haah et al. [7] showed that
Oðdr logðd=ϵÞ=ϵÞ copies of ρ are sufficient. This is com-
plemented by the corresponding lower bound of Ωðrd=
ðϵ logðd=rϵÞÞÞ, which was later improved to Ωðrd=ϵÞ in the
work of Yuen et al. [8].
However, the challenge extends beyond sample com-

plexity. Time complexity, governed by the algorithm used
for state estimation, significantly impacts tomography

quality. Computational tasks involving the entire matrix
become exceedingly slow with large system sizes. Finding
more efficient algorithms is crucial for practical applica-
tions. Many standard and state-of-the-art algorithms require
solving the eigensystems or the application of singular
value decomposition (SVD), especially when they involve
projection related to the eigenspectrum [9–11], singular
value contracting operator [12–14], or a unitary trans-
formation of eigenbasis [15,16]. Both SVD and eigenvalue
decomposition possess time complexityOðd3Þ and thus can
be slow. Some advanced approach can reduce the complex-
ity but still has complexity Oðd3Þ [17]. Other time-
consuming operations involve the full d × dmatrix, includ-
ing Hessian calculation [18] and matrix inverse method
[19–21]. Although computing a less costly proxy for the
Hessian matrix can improve the efficiency [18], it is still a
heuristic approach along with the initial costly rapid
descent calculation and still provides no theoretical guar-
antee of performance and convergence.
More practical approaches include incorporating local

information [22,23], adopting neural network architecture
[22,24–29], or restricting the form of states [23,30,31].
However, these methods usually have no convergence
guarantees or rely on some state representation assump-
tions. Another possible improvement in efficiency can be
obtained by adopting the graphical-processing unit (GPU)
for processing [32]. However, this relies on the hardware
and the use of full linear matrix inversion so is not an
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efficient approach from the algorithmic point of view.
Without utilization of the structures behind the matrix,
these algorithms tend to be slow when the system is large.
Time complexity can be reduced if the underlying

structure of the matrices can be utilized. Since the density
matrices of interest are mostly of low rank [33–38],
nonconvex approaches encoding the rank structure inherent
to the algorithm can perform much better [39–44].
In particular, the nonconvex projected factored gradient
descent (FGD) approach [45], along with both the momen-
tum-inspired version (MiFGD) [46] and the stochastic
version [47], which maintain the low rank r structures
by decomposing each density matrix as ρ ¼ ŨŨ† for
Ũ∈Cd×r, have been adopted for tomography. Indeed,
faster estimation of quantum states has been achieved
by the MiFGD variant [46], than the state-of-the-art convex
[48–50] or nonconvex [51] algorithms, including recent
deep learning approaches [52–55]. This process, however,
ignores the eigenvalue dependence during factorization;
therefore, each update is heavily dependent on the con-
dition number κ of the underlying matrix. Moreover,
the minimization of errors in each step is related to the
eigenvalues and the contracting factor being close to 1.
Therefore, it still takes numerous iterations to obtain the
final estimation.
In this Letter, we use a much more efficient nonconvex

Riemannian gradient descent (RGD) algorithm [56] that
can overcome these difficulties, while still maintaining
high guaranteed accuracy. The RGD algorithm has
proven to be useful and efficient in both matrix recovery
problems [62] and matrix completion problems [63]. Its
success comes from suitably taking care of the eigenval-
ues (or singular values in general) in each iteration, so
that much more efficient convergence can be expected,
while still maintaining high accuracy. The results show
that it takes logarithmic steps to achieve the desired
accuracy and that nearly optimal error bounds under noise
are guaranteed.
Problem formulation.—Consider a n-qubit system

wherein the density matrix ρ∈HdðCÞ is of dimension
d ¼ 2n, where HdðCÞ ¼ fMjM∈Cd×d;M ¼ M†g is the
Hermitian space. Every n-qubit density matrix can be
expanded by using Pauli observables fWi∶ i∈ ½d2�g, each
of which is in the form of P1 ⊗ P2 ⊗ � � � ⊗ Pn, where ⊗
means tensor product and each Pi is a 2 by 2 matrix chosen
from the Pauli matrices fI2×2; σx; σy; σzg. In the Pauli basis
expansion of ρ, each Wi has a corresponding coeffi-
cient TrðWiρÞ=d.
For the quantum system of interest, we consider that

the density matrix ρ∈HdðCÞ has rank r. The input data
used to reconstruct ρ are considered to be from the common
Pauli measurement, that is, from the collection of TrðWiXÞ
with the corresponding Pauli observables. Since the ρ of
rank r only has ð2d − rÞr degrees of freedom, only m ¼
OðrdÞ ≪ d2 coefficients are needed to reconstruct the

matrix, leading to the problem of compressed sensing
in the tomography [34,35,64–68]. By choosing m basis
elements fS1; S2;…; Smg uniformly at random from the
Pauli basis set fW1;W2;…;Wd2g, we define the linear
(sensing) map A∶ HdðCÞ → Rm with its ith component
corresponding to Si as

�
AðXÞ�i ¼

ffiffiffiffi
d
m

r
TrðSiXÞ; ð1Þ

for X∈HdðCÞ. The corresponding adjoint operator,
A†∶ Rm → HdðCÞ, has its action on y∈Rm as

A†ðyÞ ¼
ffiffiffiffi
d
m

r Xm
i¼1

yiSi: ð2Þ

The coefficient
ffiffiffiffiffiffiffiffiffi
d=m

p
is chosen to make the expected

value E½A†ðAðXÞÞ� ¼ X, a necessary condition for having
the restricted isometric property (RIP) [69].
The linear map A obtained from Pauli measurement is

guaranteed to have the RIP with a high probability [64], as
long as m ¼ C · rdlog6d for some constant C ¼ Oð1=δ2rÞ,
depending only on δr, where δr is the RIP constant for the
matrices of rank r. Because of the guaranteed RIP of the
Pauli measurement, matrices of rank r can be recovered
through some suitable optimization approach.
Since measurement almost surely introduces errors,

we write y ¼ AðρÞ þ z to denote the scaled coefficients
carrying noise z. According to the concentration properties
of the random variables [70–72], as long as the number of
total measurements ml is large enough, the noise z can be
bounded by kA†ðzÞk ≤ λ, with a high probability for the
desired bound λ, where k · k is the spectral norm [69].
Pauli operators for measurements fSigi∈ f1;…;mg are

sampled only once before the measurements. Once fSig
are sampled, fixing operators A and A† simultaneously,
they are utilized to obtain the local measurement results
y ¼ ðyiÞi¼1���m ∈Rm. Both fSig and y ¼ ðyiÞi¼1���m serve as
inputs for the algorithms and remain fixed during the
execution of algorithms. We can then obtain an estimate ρ̂
of the density matrix ρ from a given y∈Rm, where each yi
corresponds to ðAðXÞÞi with respect to Si along with the
noise zi [69].
The tomography problem is formulated with y as the

input, and relaxed to the following nonconvex optimization
problem

min
X∈Cd×d

fðXÞ ≔ 1

2
ky −AðXÞk22

subject to rank ðXÞ ≤ r; ð3Þ

where the unit trace and semidefinite positive X≽0 con-
straints are relaxed. The relaxation of the unit trace
constraint is reasonable since the error distance between
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the estimated ρ̂ and the underlying ρ is small, along with the
fact that the trace of ρ̂ is influenced by the noise z and can
deviate from 1. The condition X≽0 is also relaxed since
the eigenvalues and singular values are the same for the
underlying to-be-solved ρ; therefore the final estimated ρ̂
will automatically satisfy the positive semidefinite con-
straint. The noise bound λ is also not used as a constraint;
the condition kA†ðzÞk ≤ λ is used to analyze the error
bound of the final result.
Main result.—We first discuss the steps of the nonconvex

RGD algorithm 1 applied to solve the tomography in detail,
then demonstrate how the RGD can efficiently update the
estimated solution with the error bound controlled as in
Theorem 1. The number of required steps can be further
deduced as shown in Corollary 1.
The RGD algorithm 1 is an iterative algorithm applied to

solve the optimization problem (3) with a well-defined and
fixedA which requires input y. It is basically a special type
of projected gradient descent approach. In the kth iteration
within the loop in Algorithm 1, the direction Gk ¼
−∇fðXkÞ in step 1 follows the usual gradient. With the
choice of a suitable step size αk in step 2, the current
estimated matrix Xk is updated along the gradient projected
into the tangent space Tk to give Wk in step 3. Supposing
that Xk has singular value decomposition (SVD) Xk ¼
UkΣkV

†
k, then the projections onto its column and row

spaces are denoted by PUk
¼UkU

†
k and PVk

¼VkV
†
k respec-

tively. The tangent space Tk at the current step is deter-
mined by

Tk ¼
�
X∈HdjðI − PUk

ÞXðI − PVk
Þ ¼ 0

�
;

and the corresponding projection PTk
is

PTk
∶ X ↦ PUk

X þ XPVk
− PUk

XPVk
:

The trick in step 4 is to apply the hard thresholding operator
Hr to get the updated (kþ 1)th step matrix Xkþ1 which is
still of rank r. No further normalization is needed. The
operator Hr acts on any matrix X to produce a truncated
rank r approximation Xr which preserves the top r singular

values σ1; σ2; � � � σr and the corresponding singular vectors.
All the remaining σrþ1; � � � are discarded under Hr.
A significant advantage of the RGD algorithm lies in the

fact that the SVD in each iteration step only needs to be
performed for matrices of size 2r × 2r, as opposed to
d × d, since Jk has rank at most 2r [62,69]. This efficiency
is crucial because the time complexity of SVD for matrices
of dimensions η × η is Oðη3Þ, and in most relevant cases,
matrices have low rank r ≪ d ¼ 2n.
In each iteration of the RGD algorithm 1, the step size αk

is determined from an exact line search, since the object
function is quadratic over the set of matrices. In contrast,
the FGD-type algorithms factorize each matrix X in the
form of ŨŨ† such that the objective function in the factored
matrix Ũ is quartic. This makes it impossible to do an exact
line search, meaning that some prior knowledge or param-
eters are required in FGD.
The power of the RGD to solve the tomography problem

is demonstrated in Theorem 1 and Corollary 1. Let ρ be the
ground truth density matrix of rank r with a measurement
result y ¼ AðρÞ þ z∈Rm where the mapping A is defined
as in Eq. (1), and the noise z is supposed to obey
kA†ðzÞk ≤ λ. Denote the condition number of ρ to be
κ ≔ σ1=σr, where σ1 and σr denote the first and the rth
singular values of ρ, respectively. Starting from the initial
point X0 ¼ HrðA†ðyÞÞ [73], the final estimated ρ̂ can be
arbitrarily close to the ground truth ρ for the noiseless case.
We can provide an upper bound for the error of the
estimated ρ̂ in terms of λ, which goes back to the noiseless
case for λ ¼ 0 (or z ¼ 0).
Theorem 1.—There exist constants C1; C2 > 0 such that,

when provided with λ ≤ C1σr=
ffiffiffi
r

p
and m ≥ C2κ

2r2dlog6d,
then the kth iteration of the RGD algorithm 1 with an initial
point X0 ¼ HrðA†ðyÞÞ has a rank of at most r and is
guaranteed to be close to the true ρ in the Frobenius norm
distance bounded by

kXk − ρkF ≤ kX0 − ρkF · γ̄k þ 2
ffiffiffiffiffi
2r

p
λ

1 − δ3r

�
1

1 − γ̄

�
; ð4Þ

where the contracting factor γ̄ < 1 is a universal bound in
all steps and δ3r is the RIP constant of A.
Proof.—The outline of the proof starts by finding a

recursion relation between Xkþ1 and Xk. First, according to
the triangular inequality, we have

kXkþ1 − ρkF ≤ kXkþ1 −WkkF þ kWk − ρkF
≤ 2kρ −WkkF;

where kXkþ1 −WkkF ≤ kWk − ρkF comes from the
Eckart-Young theorem. Since Wk is in the tangent space
Tk of Xk, this is further related to a Bk term in terms of
kXk − ρkF plus another noise term Bz in terms of λ. The
recursion relation makes the noise propagate. The sufficient

Algorithm 1. RGD Algorithm.

Input: A, y and rank r.
Initialize X0 and do the singular value decomposition
X0 ¼ U0Σ0V

†
0.

for k ¼ 1;… do
1. find the direction Gk ¼ A†ðy −AðXkÞÞ
2. determine the step size αk ¼ kPTk

ðGkÞk2F=kAðPTk
ðGkÞÞk22.

3. find an intermediate matrix Jk ¼ Xk þ αkPTk
ðGkÞ.

4. update the estimated matrix Xkþ1 ¼ HrðJkÞ
end for
Output: ρ̂ ¼ Xk when the stopping criteria is met.
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conditions can then be quantified so that each update has
a contracting factor of γ̄ < 1 in the Bk term and the
accumulated Bz term can be upper bounded [69]. ▪
The error is reduced by the application of a multiplicative

contracting factor γ̄ in each update, leading to a favorable
linear convergence rate. Specifically, the factor γ̄ in our RGD
algorithm is a universal constant, which is independent of all
parameters, including the RIP constant, the condition num-
ber κ of the ground truth ρ and so on. In other words, the
error decays exponentially with a constant factor.
Corollary 1.—Under the conditions in Theorem 1,

there exist positive constants C0, C1, C2 all being Oð1Þ
and C1 < C2 such that the RGD algorithm 1 can output the
estimated density matrix ρ̂ close to ρ of rank r, obeying

kρ̂ − ρkF
kρkF

≤ C2

ffiffiffi
r

p
λ

kρkF
;

after

1

lnð1=γ̄Þ

 
ln

�
2C0kρkF

rκλ
þ 2

ffiffiffi
2

p �
− lnðC2 − C1Þ

!
ð5Þ

iteration steps, where κ ≔ σ1=σr is the condition number of
ρ, and γ̄ is a universal constant smaller than 1.
When applied to the noiseless case, that is λ ¼ 0, the

RGD algorithm outputs ρ̂ with

kρ̂ − ρkF
kρkF

≤ ε;

after ln ðC0=
ffiffiffi
r

p
κεÞ= lnð1=γ̄Þ iteration steps.

The corollary demonstrates two advantages. In terms
of the time, the convergence is extremely fast, with the
number of steps required to achieve the final error ε being
on the order of Oðlnð1=κεÞÞ. This logarithmic dependence
on κ in the convergence steps is an exponential improve-
ment over the FGD algorithm and its variants. Although the
FGD-type algorithms can also achieve a linear convergence
rate, their iterative contracting factor is not universal.
Its form can be written as 1 − ð1=καÞ, where α can be
improved to 0.5 in some variants. This gives a total number
of iteration steps of Oðκα lnð1=εÞÞ to achieve the final
error ε.
From the aspect of the estimation error, the RGD

estimated matrix ρ̂ is close to the ground truth ρ with a
nearly optimal error distance, under the following con-
ditions: small noise λ ≤ C1σr=

ffiffiffi
r

p
and a large enough

sample m ≥ C2κ
2r2dlog6d. The final achievable error

bound depends on the initial input noise z∈Rm. In the
noiseless case, where z ¼ 0, the error can be reduced to
nearly zero with arbitrary precision. In the noisy case, the
RGD result shows the error bound to be in the Frobenius
norm kρ̂ − ρkF ≤ C

ffiffiffi
r

p
λ, which is tighter than the more

commonly seen nuclear norm. By virtue of triangular

inequality, this bound can be converted to the nuclear
norm kρ̂ − ρk� ≤ Crλ. Both are of the same order as the
best theoretical results obtained from the convex optimi-
zation approaches [71,76], and hence are nearly optimal.
Numerical experiment.—As FGD-type algorithms have

demonstrated superior performance compared to existing
state-of-the-art methods, to the best of our knowledge,
we conducted a numerical comparison between our RGD
approach and the MiFGD algorithm [46], an improved
variant of the original FGD [45]. To ensure a fair com-
parison, both RGD and MiFGD were executed to recover
the same ground truth density matrices ρ [77].
Three types of density matrices are demonstrated: (a) the

GHZ state [78]: GHZðnÞ ¼ ½ðj0i⊗n þ j1i⊗nÞ= ffiffiffi
2

p �, (b) the
Hadamard state: HadamardðnÞ ¼ ½ðj0i þ j1iÞ= ffiffiffi

2
p �⊗n, and

(c) the randomly generated mixed states. For pure states (a)
and (b), the quantum states ρ are generated by using the
open-source software Qiskit [79], with the vectors y
obtained from the frequency counting result of l shots
measurements [69]. For mixed states (c), random density
matrices are generated by using the QuTip package [80,81],
along with the exact value of the vector y being used for
matrix recovery.
The numerical results regarding the scaling of compu-

tation time with respect to the qubit number n are

FIG. 1. (a),(b), and (c) The computation time scaling with
respect to the qubit number n for the (a) GHZ state, (b) Hadamard
state, and (c) random mixed states of rank 3, respectively. (d) The
final target error kXk − ρkF for random mixed states correspond-
ing to (c). Both (c) and (d) are plotted using the average value
with standard deviation over 5 independent samples. The label
“algo X0” refers to each algorithm designed initial X0, while the
“rand X0” is the random initial X0 chosen the same for both RGD
and MiFGD algorithms. Here the theoretical value of parameters
ðμ; ηÞ is used for demonstration in the MiFGD, while RGD is
parameter free. In (d), it is evident that the RGD algorithm algo
X0 initialization consistently achieves the lowest final target error
kXk − ρkF, reaching as low as 10−4 ∼ 10−5 in most cases.
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summarized in Fig. 1. The algorithms converge based
on the iteration relative error, calculated as kXkþ1 −
XkkF=kXkk or kUkþ1 −UkkF=kUkk, being less than
the stopping criteria (10−4 or 10−3) during the iterations.
The criterion is applied instead of a target error, as the
algorithms assume the target density matrix ρ to be
unknown. It is apparent that the RGD with the algorithm
initialization X0 ¼ HrðA†ðyÞÞ requires the shortest con-
vergence time to achieve the smallest final target error.
Consequently, the numerical results corroborate the supe-
riority of the RGD algorithm in terms of both convergence
time and final target error. Further simulation results,
including different choices of parameters ðμ; ηÞ for the
MiFGD and testing various condition number κ cases,
support this conclusion [69].
Summary.—We show that the tomography problem can

be efficiently solved using a Riemannian gradient descent
(RGD) algorithm, because the RGD searches for the
solution over a tangent space of low rank. The estimated
matrix is updated iteratively with the error minimized by a
multiplicative contracting factor γ̄ in each step. Specifically,
the γ̄ is universal and independent of the condition number
κ, the rank, and so on. Therefore, the required steps are
O½lnð1=κεÞ� to achieve the final error ε. In the noiseless
case, the error can be arbitrarily small. For the noisy case,
the regimes are quantified to theoretically prove that the
RGD approach can converge to the ground truth density
matrix with a nearly optimal bound difference. The
numerical results corroborate that the RGD outperforms
the current state-of-the-art FGD-type approaches.
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