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Gaussian states with nonclassical properties such as squeezing and entanglement serve as crucial
resources for quantum information processing. Accurately quantifying these properties within multimode
Gaussian states has posed some challenges. To address this, we introduce a unified quantification: the
“classical-nonclassical polarity,” represented by P. For a single mode, a positive value of P captures the
reduced minimum quadrature uncertainty below the vacuum noise, while a negative value represents an
enlarged uncertainty due to classical mixtures. For multimode systems, a positive P indicates bipartite
quantum entanglement. We show that the sum of the total classical-nonclassical polarity is conserved under
arbitrary linear optical transformations for any two-mode and three-mode Gaussian states. For any pure
multimode Gaussian state, the total classical-nonclassical polarity equals the sum of the mean photon
number from single-mode squeezing and two-mode squeezing. Our results provide a new perspective on
the quantitative relation between single-mode nonclassicality and entanglement, which may find
applications in a unified resource theory of nonclassical features.

DOI: 10.1103/PhysRevLett.132.240201

Gaussian states are continuous-variable (CV) quantum
systems that are not only straightforward to describe from a
theoretical standpoint, but also convenient to produce and
manipulate experimentally [1,2]. Nonclassical Gaussian
states such as single-mode squeezed vacuum states and
the Einstein-Podolski-Rosen state are essential resources
for quantum-enhanced applications [3–7], including quan-
tum teleportation [8], quantum dense coding [9], quantum
computing [10,11], and quantum sensing [12–15]. The
nonclassical characteristics of multimode Gaussian states
may originate from their reduced quadrature variance
falling below the vacuum noise level and/or the presence
of quantum entanglement among two or more modes. In
particular, a single-mode squeezed vacuum state can be
distributed in a multimode linear optical network of beam
splitters (BSs) and phase shifters to create multipartite
entangled states [8,16,17]. In general, qualitative aspects of
nonclassicality conversion have been explored [18,19].
However, a quantitative understanding of these nonclass-
ical properties in multimode Gaussian states is crucial for
evaluating the enhancement in quantum information
applications.
Various quantifications have been proposed to evaluate

the degree of single-mode nonclassicality [20–24] and
bipartite entanglement [5,25–29] individually. For a single-
mode state, the Lee nonclassical depth quantifies the
minimum number of thermal photons necessary to destroy
whatever nonclassical effects exist in the quantum state [20].
Resource theories of single-mode quantum states [30–33]
have been explored to determine their usefulness as a

resource, e.g., in metrology [33]. For two-mode Gaussian
states, the entanglement of formation gives the amount of the
entropy of the state minimized from all possible state
decomposition [34]. Yet, it is difficult to calculate this
quantity in general [35]. An easy entanglement measure
to compute is the logarithmic negativity, which quantifies
how much the state fails to satisfy the positive partial
transpose (PPT) condition [36,37]. The logarithmic nega-
tivity can be written as an analytical function of the
minimum symplectic eigenvalue of the partially transposed
state and it can quantify the degree of bipartite entanglement
of a 1 × ðn − 1Þ modes Gaussian state [38]. Yet, it remains
an elusive task to define a unified quantification for both
single-mode and multimode nonclassicalities. Furthermore,
exploring the conversion between these nonclassicalities
adds another layer of complexity.
Several previous works [39–43] have discussed the

quantitative conversion of nonclassicality and entangle-
ment during BS operations. For example, Ge et al. have
explored a conservation relation of the two quantities
during BS transformation for certain two-mode Gaussian
states [39]. Moreover, Arkhipov et al. have found an
invariant for nonclassical two-mode Gaussian states which
comprises the terms describing both local nonclassicality of
the reduced states and the entanglement of the whole
system related to the symplectic eigenvalues [41], and
extended the results to pure three-mode Gaussian states.
However, these results only hold for a subset of two-mode
or three-mode Gaussian states.
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In this Letter, we aim to establish a unified quantification
for both single-mode nonclassicality and multimode bipar-
tite entanglement that is invariant under passive linear
transformations. We introduce classical-nonclassical pola-
rity (CNP) for quantifying single-mode nonclassicality and
1 × ðn − 1Þ-mode bipartite entanglement. Contrary to the
measure quantification of quantum resource theories [44,45],
our definitions can be positive or negative. This dual nature is
necessitated by the conservation relation to hold for both
classical and nonclassical Gaussian states. By taking into
account the CNPs of the reduced single modes and all
possible bipartite modes, we find the total CNP of an
arbitrary two-mode or three-mode Gaussian state is a linear
function of the symplectic invariants [38] and the extreme
quadrature variances of the reduced single-mode states.
Moreover, we show that the total CNP is a conserved
quantity for arbitrary two-mode and three-mode Gaussian
states under an optical linear network (Figs. 1 and 2). Our
results provide a new perspective on the complex structure of
nonclassical features in multi-mode Gaussian states, which
may find applications in a unified resource theory of non-
classical states in different physical settings.
Gaussian state preliminary.—An n-mode Gaussian

state, whose density matrix is denoted as ρ, is fully
characterized, up to local displacements, by its covariance
matrix (CM) γ of elements γjk ¼ 1

2
hΔr̂jΔr̂†k þ Δr̂†kΔr̂ji,

where hX̂i ¼ TrðρX̂Þ, Δr̂j denotes r̂j − hr̂ij, and r̂ ¼
½â†1; â1;…â†n; ân�† is the vector of the bosonic field oper-
ators [28,46]. For a two-mode Gaussian state ρAB, the CM
γAB is given by a 4 × 4 matrix

γAB ¼
�
γA x

x† γB

�
: ð1Þ

Note that γA (γB) is a 2 × 2matrix, representing the reduced
single-mode Gaussian state ρA (ρB), and x describes the
correlation of the two modes.
Symplectic invariants in Gaussian states.—Gaussian

operations refer to unitary transformations that map a
Gaussian state onto another Gaussian state. The exponent
of these unitaries consists of terms up to quadratic in the
bosonic field operators [6]. When a Gaussian state ρ under-
goes a Gaussian unitary transformation Û, it induces a

symplectic transformation S on its associated covariance
matrix γ. This correspondence can be succinctly expressed as
ρ0 ¼ Û†ρÛ⇌ γ0 ¼ SγS† [49]. According to Williamson’s
theorem [50], the CM γ can always be symplectic diagon-
alized, namely, SγS† ¼ diagðν1; ν1; ν2; ν2;…; νn; νnÞ. Here
νj are the symplectic eigenvalues. Certain quantities
remain invariant under symplectic transformations, which
are defined as symplectic invariants. As discussed in
Refs. [38,51], a natural choice of symplectic invariants for
n-mode Gaussian states is given by [38]

I ðnÞ
k ¼

X
Mn−kðγÞ; ð2Þ

where Mn−kðγÞ represents the minors of order (n − k),
which are obtained by calculating the determinants of
submatrices that result from removing k rows and k
columns from the block matrix. Given that there are
various ways to select which rows and columns to delete,
multiple minors of the same order can be derived. The
summation encompasses all possible minors of the (n − k)
th order [46]. In terms of the symplectic diagonalized form
of the CM, we have [52]

I ðnÞ
k ¼

X
Sn
k

Y
j∈Sn

k

ν2j ; ð3Þ

where Sn
k represents a subset of n − k integers chosen from

integers 1; 2;…; n and the summation goes over all
possible subsets [46].
For a general scenario, consider a two-mode Gaussian

state whose CM is given by Eq. (1). Two symplectic

invariants can be identified: I ð2Þ
0 ¼ jγABj and I ð2Þ

1 ¼ jγAj þ
jγBj þ 2jxj [5,28,53]. Note that j · j signifies the matrix
determinant.

FIG. 1. Total classical-nonclassical polarity of a two-mode
Gaussian state.

FIG. 2. Total classical-nonclassical polarity of a three-mode
Gaussian state.
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For a three-mode Gaussian state, represented as ρABC, the
CM is described by

γABC ¼

2
64
γA x z

x† γB y

z† y† γC

3
75; ð4Þ

where x; y; z denote the interaction of modes A, B, modes B,
C, and modes A, C, respectively. The symplectic invariants

of the three-mode Gaussian state are I ð3Þ
0 ¼jγABCj,

I ð3Þ
1 ¼ jγABj þ jγBCj þ jγACj þ 2jDxj þ 2jDyj þ 2jDzj, and

I ð3Þ
2 ¼ jγAj þ jγBj þ jγCj þ 2jxj þ 2jyj þ 2jzj, where

Dx;Dy;Dz are 4 × 4 matrices given by: Dx ¼
h
x
γB

z
y

i
,

Dy ¼
h
y
γC

x†
z†

i
, Dz ¼

h
z
y
γA
x†

i
. We explain the patterns of the

minors for a three-mode system γABC in [46].
Single-mode classical-nonclassical polarity.—The

origin of all nonclassical effects is that the P function
of a quantum state ρ, which is defined through
ρ ¼ R

Pðα; α�Þjαihαjd2α, are singular and not positive
definite [20,46,54]. The Lee nonclassical depth provides
a measure for this single-mode nonclassicality. In order to
quantify the nonclassicality of each single mode (tracing
out the rest modes [39,41]) in an n-mode Gaussian state, we
introduce the concept of single-mode classical-nonclassical
polarity, denoted as Pð1Þ. For a single-mode Gaussian state

with the CM γð1Þ ¼
h
a
b�

b
a

i
, the degree of polarity is defined

as [46]

Pð1Þ ¼ −
�
λ −

1

2

��
Λ −

1

2

�
; ð5Þ

where λ ¼ a − jbj, Λ ¼ aþ jbj are the minimum and the
maximum eigenvalues of the CM matrix γð1Þ, describing
the minimum and the maximum quadrature variances of
the quantum state. In the context of single-mode Gaussian
states, jγj ¼ λΛ ⩾ 1=4 [5]. Thus, Λ ⩾ 1=2 always holds.
For λ < 1=2, the state has the minimum quadrature variance
below that of coherent states [46], therefore it is nonclassical
and the CNP Pð1Þ > 0. For λ > 1=2, the state has the
minimum quadrature variance larger than that of coherent
states, meaning classical and Pð1Þ < 0 [55]. When λ ¼ 1=2,
Pð1Þ ¼ 0 is the classical-nonclassical boundary, where the
states are squeezed thermal coherent states with the mini-
mum quadrature variance being 1=2. For a pure state, it can
be calculated that Pð1Þ ¼ hâ†âi − jhâij2, which quantifies
the amount of averaged photon number from the non-
classical process, i.e., single-mode squeezing.
Our definition of single-mode CNP takes the purity

ð4jγð1ÞjÞ−1 [5] of the state into account. The smaller the
purity, the greater the absolute value of Pð1Þ. An arbitrary
single-mode Gaussian state can be described as a squeezed

thermal coherent state [6], where λ ¼ ð1=2þ hnthiÞe−2r
and Λ ¼ ð1=2þ hnthiÞe2r [46]. Here r is the squeezing
parameter and hnthi is the averaged number of thermal
photons. For nonclassical states with the same value of λ,
smaller purity is represented by a larger value of Λ. Thus,
the positive CNP for nonclassical states characterizes the
degree of squeezing for both pure and mixed states.
1 × ðn − 1Þ modes bipartite classical-nonclassical

polarity.—For a single-mode Gaussian state, the CNP
characterizes the squeezing property, while in a multimode
scenario, it is the entanglement between different subsys-
tems that introduces another degree of nonclassicality. The
positive partial transpose (PPT) criterion [5,25,36] is a both
necessary and sufficient condition for 1 × ðn − 1Þ mode
Gaussian entanglement. Therefore, violation of the cri-
terion can be used to construct bipartite entanglement
measures. For a partial-transposed state ρTA (without loss
of generality, transpose the first mode A here), the corre-
sponding CM is γTA ¼ TγT with T ¼ t ⊕ 12n−2, where
t ¼ �

0
1
1
0

�
and 12n−2 is the (2n − 2)-dimension identity

matrix [36]. For convenience, denote γTA as γ̃. The

symplectic invariants Ĩ ðnÞ
j of the PPT state ρTA are the

summations of minors of γ̃, which can be expressed by
the symplectic eigenvalues ν̃j of γ̃ in the same form as
Eq. (3). According to the PPT criterion, if ν̃j ⩾ 1=2, ρ is a
PPT state, implying mode A is separable from other
subsystems. Reference [38] demonstrates that at most
one symplectic eigenvalue can be smaller than 1=2.
Therefore, computable entanglement measures have been
defined by comparing the minimum partially transposed
symplectic eigenvalue ν̃min with 1=2, such as the negativity
and the logarithmic negativity, both of which quantify how
much the PPT condition is violated. However, these
quantifications do not differentiate states with the same
minimum symplectic eigenvalue but with other different
properties, such as the purity of the system.
In this context, we introduce the CNP for bipartite

1 × ðn − 1Þ-mode Gaussian states based on the symplectic
invariants of PPT state. Regarding the PPT state, Eq. (3)
suggests an analogywithVieta’s formulas ifwe treat ṽ2i as the
roots of a polynomial. With this insight, we define the

polynomial functions gðnÞðxÞ≡ 2
P

n
j¼0ð−1Þjþ1xjĨ ðnÞ

j of

degree n (n ⩾ 2), where Ĩ ðnÞ
n is set to be 1. Through

Vieta’s formulas, the gðxÞ function can be expressed as
gðnÞðxÞ ¼ −2

Q
n
j¼1ðṽ2j − xÞ. Therefore, the separability con-

dition ν̃j ≥ 1=2 is equivalent to gðnÞð1=4Þ ≤ 0. It reveals that
gð2Þð1=4Þ > 0 indicates two-mode Gaussian entanglement
exists, while gðnÞð1=4Þ < 0 leads to separable states. Hence
we define the 1 × ðn − 1Þ modes bipartite CNP as [46]

PðnÞ ¼ gðnÞ
�
1

4

�
¼ −2

Yn
j¼1

�
ṽ2j −

1

4

�
: ð6Þ
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Taking n ¼ 2, for example, the sign of Pð2Þ determines
whether the two-mode bipartite system is entangled or
separable, while the absolute value quantifies the distance
of the state to the separability-entanglement boundary.
Higher order of the multimode CNPs quantifies any
additional separability or entanglement contribution to
the 1 × ðn − 1Þ modes bipartite system. In terms of the
symplectic invariants, the two-mode CNP is given by

Pð2Þ
A∶B ¼ −

1

8
þ 1

2
Ĩ ð2Þ
1 − 2Ĩ ð2Þ

0 : ð7Þ

In [46], we show that Ĩ ð2Þ
1 ¼ I ð2Þ

1 − 4jxj ¼ jγAj þ jγBj −
2jxj and Ĩ ð2Þ

0 ¼ I ð2Þ
0 ¼ jγABj. Similar to the single-mode

CNP, the two-mode CNP exhibits linearity in relation to
(sub-)matrix determinants and is influenced by the system’s
purity. For entangled states, the value of Pð2Þ takes into
account the potential extra effort to prepare a more mixed
state with the same ṽmin. For separable states, a smaller
purity means more classical.
In a three-mode system, denoted as ρABC, bipartite CNP

can manifest in two ways: as two-mode polarity and as
three-mode polarity, as illustrated in Fig. 2. For the two-
mode CNP, by tracing out one mode from ρABC, it

encompasses three components: Pð2Þ
A∶B, P

ð2Þ
B∶C, and Pð2Þ

C∶A.
On the other hand, the three-mode CNP is divided into the

following three terms: Pð3Þ
A∶BC, P

ð3Þ
B∶CA, and Pð3Þ

C∶AB. These
terms can indicate the bipartite entanglement or separability
of the system. As an example, according to Eq. (6), the
CNP for A∶BC is given by

Pð3Þ
A∶BC ¼ 1

32
−
1

8
Ĩ ð3Þ
2 þ 1

2
Ĩ ð3Þ
1 − 2Ĩ ð3Þ

0 ; ð8Þ

where Ĩ ð3Þ
1 ¼ I ð3Þ

1 − 4jDxj − 4jDyj, and Ĩ ð3Þ
2 ¼ I ð3Þ

2 −
4jxj − 4jzj [46].
In particular, for pure state, the following theorem holds.
Theorem 1.—For any pure multimode Gaussian state,

the order of n (n ≥ 3) CNP bipartite PðnÞ equals zero.
As the two-mode polarities Pð2Þ

A∶B, P
ð2Þ
A∶C already quantify

some amount of entanglement or separability of the three-
mode system when one mode is traced out, the three-mode

polarity Pð3Þ
A∶BC can be zero even if the bipartite A∶BC is

entangled. In this case, the three-mode polarity avoids over-
counting the entanglement or separability of the system.
For example, for a one-mode biseparable state ρAB ⊗ ρC
with ρAB entangled, Pð3Þ

A∶BC ¼ 0 when ρC is pure and

Pð3Þ
A∶BC > 0 when ρC is a mixed state. Yet, we show

numerically that by adding a separable state ρC to the
two-mode ρAB, the total bipartite polarities in general do not
increase.
Conservation relation for two-mode Gaussian states

before and after a beam splitter.—Beam splitters and

phase shifters are linear optical devices that do not generate
additional nonclassicality [33,56]. Entanglement can be
generated from single-mode nonclassical states using beam
splitters [16]. Previous work [39] attempted to find a
conservation relation of the total nonclassicality from both
single-mode reduced systems and the two-mode system.
However, only a subset of two-mode Gaussian states has
been shown to satisfy the conservation of nonclassicality
under some quantifications. Here we show that the sum of
single-mode CNPs and two-mode bipartite CNP is con-
served before and after a beam splitter for arbitrary input
states ρAB [Fig. 3(a)]. We obtain that the total CNP [46]

P ≡ Pð1Þ
A þ Pð1Þ

B þ Pð2Þ
A∶B

¼ 1

2
ðλA þ ΛA þ λB þ ΛBÞ −

1

2
I ð2Þ
1 −

5

8
− 2I ð2Þ

0 ; ð9Þ

where λAðBÞ and ΛAðBÞ represent the minimum and the
maximum eigenvalues of γAðBÞ. In addition to the invariants

I ð2Þ
1 and I ð2Þ

0 , it can be shown that λA þ ΛA þ λB þ ΛB is
related to the average number of photons and it is also
invariant before and after a BS [46]. Therefore, the total CNP
of a two-mode Gaussian state is conserved under linear
optical transformations. It is worth noting that although P is
the sum of the total classical-nonclassical polarity, P < 0
does not necessarily mean the system is classical. For
example, a two-mode system consisting of a weak single-
mode squeezed vacuum state and a large thermal state, which
has a non-positive-definiteP function.We note that a similar
nonclassicality invariant under linear unitary transformations
is introduced in Ref. [41]. As an example, we calculate the

FIG. 3. (a) Two-mode Gaussian state, ρAB, undergoes mixing
by a BS to produce a new two-mode Gaussian state, ρA0B0 . (b),(c)
Three-mode Gaussian state, ρABC, passes through linear optical
networks.
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total CNP for a two-mode squeezed vacuum state [57],which
givesP ¼ hâ†1â1 þ â†2â2i.We conclude that the total CNPof
a single-mode squeezed vacuum equals that of a two-mode
squeezed vacuum for the same average number of photons.
Conservation relation for three-mode Gaussian states in

linear optical networks.—The conservation relation can be
extended to arbitrary three-mode Gaussian states using the
concept of the single-mode and multimode bipartite CNPs
(Fig. 2) in a linear optical network.
The total polarity P, determined by summing the single-

mode, two-mode, and three-mode CNPs as illustrated in
Fig. 2, follows the cluster-expansion structure outlined
below: [46]

P ¼
X

α¼A;B;C

Pð1Þ
α þ 1

2

X
α;β¼A;B;C

Pð2Þ
α∶β þ

1

2

X
α;β;κ¼A;B;C

Pð3Þ
α∶βκ

¼ −
3

8
I ð3Þ
2 −

1

2
I ð3Þ
1 − 6I ð3Þ

0 −
33

32
þ 1

2
Λ; ð10Þ

where α, β, κ take all the permutations of A, B, C in the
summations, the factor 1=2 in the first line is due to the

commutativity of indexes. I ð3Þ
0 , I ð3Þ

2 , and I ð3Þ
3 are sym-

plectic invariants of the three-mode system, which stay
conserved during any Gaussian operation, while Λ̄≡ λA þ
ΛA þ λB þ ΛB þ λC þ ΛC also stay invariant before
and after a BS [46]. Hence, P is a conserved quantity
during linear optical transformations. An example of a BS
network is given in Fig. 3(b). A general scenario is shown
by Fig. 3(c) where a three-mode Gaussian state is input into
an arbitrary linear optical network comprising BSs, wave
plates, and phase shifters [30,58]. The conserved total CNP
describes the conversion between all kinds of classical-
nonclasscial features within Gaussian states through a
passive Gaussian transformation using our definitions
Eqs. (5) and (6).
Additionally, the following theorem holds:
Theorem 2.—For any pure two-mode or three-mode

Gaussian state, the total classical-nonclassical polarity
equals the sum of the mean photon number from single-
mode squeezing and two-mode squeezing.
The proof of Theorem 2, along with a concrete example

using CV GHZ=W Gaussian states [52,59] are provided in
Supplemental Material [46]. We also note that the treatment
of CV GHZ=W using CNP may not be conclusive due to
the complex nature of the CV states.
Discussion.—We have established a quantitative relation

of classical-nonclassical polarity within Gaussian states up
to three modes. Our results on CNP quantification and the
conservation relation on Gaussian states suggest a new
method for evaluating different classical-nonclassical prop-
erties on the same footing, which has multiple implications.
First, the quantitative conversion between various non-

classical properties provides the basis for preparing quan-
tum resources from one to another. This suggests that in

order to maximize the resource output of one type, e.g.,
entanglement, we can design unitary transformations to
deplete the input resource of the other kind [60]. Second,
our results provide a unified quantification for single-mode,
two-mode, and three-mode Gaussian states in terms of the
total CNPs. We can compare the degree of CNP for
resources from completely different processes, such as
single-mode squeezed vacuum states for SUð2Þ interfer-
ometers and two-mode squeezed vacuum states character-
ized by SUð1; 1Þ interferometers [57]. The unified
quantification may also support a more general resource
theory of quantum states with linear optical unitaries as free
operations [30–33]. Third, our findings offers innovative
methods for implementation in experimental settings. For
instance, in the case of pure two-mode states, quantum
entanglement can be determined through measurements of
single-mode squeezing or the total average number of
photons using the conservation relation or Theorem 2. This
method circumvents the need for two-mode tomography,
which, despite its complexity, is often essential for
detecting entanglement within quantum light fields or
quantum superconducting circuit systems. Fourth, our
Letter may inspire the future study of higher-mode
Gaussian states. For example, how the nonclassicality of
a single-mode squeezed vacuum state is distributed in a
multimode linear network for distributed quantum metrol-
ogy [14,61]. Yet, the structure of the system would be more
complex as the dimension grows. For four-mode Gaussian
states, the positive-partial-transpose (PPT) criterion we
used to indicate 1 × n bipartite entanglement is no longer
valid for n×mGaussian entanglement (m, n ⩾ 2). For n⩾4
scenarios, there is a lack of an efficient, well-accepted
theorem for determining n ×mðn;m ⩾ 2Þ Gaussian entan-
glement in the current research field. However, if we
suppose the validity of the conservation relation, the total
CNPP contains only invariant valuewhich is usually related
with the symplectic invariants of the CM γABCD. It provides
us a way to derive back the formula of 2 × 2 entanglement

witness
P

α;β;κ;δ¼A;B;C;D Pð4Þ
αβ∶κδ [46].

Conclusion.—The current research field faces challenges
in finding a universally accepted measure of entanglement,
not to mention a comprehensive metric for nonclassicality.
Within the realm of Gaussian states, we have proposed a
unified quantification approach that encompasses both
single-mode squeezing and multimode bipartite entangle-
ment through the lens of classical-nonclassical polarity. We
demonstrated that the sum of the single-mode and multi-
mode classical-nonclassical polarities is conserved under
linear optical transformations for arbitrary two-mode and
three-mode Gaussian states. These findings highlight a
quantitative conversion relation between different classical-
nonclassical features in multimode systems, enriching our
understanding of multimode entanglement phenomena
and sheds lights on the nonclassicality research of general
quantum states.
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032413 (2020).
[44] E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001

(2019).
[45] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys.

89, 041003 (2017).
[46] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.132.240201 for details,
which includes Refs. [47,48].

[47] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314
(2000).

[48] P. Van Loock and A. Furusawa, Phys. Rev. A 67, 052315
(2003).

[49] R. Simon, N. Mukunda, and B. Dutta, Phys. Rev. A 49,
1567 (1994).

[50] V. I. Arnol’d, Mathematical Methods of Classical Mechan-
ics, 2nd ed. (Springer-Verlag, New York, 1989), Vol. 60.

[51] A. Serafini, Quantum Continuous Variables: A Primer of
Theoretical Methods (CRC Press, Boca Raton, 2017).

[52] G. Adesso and F. Illuminati, New J. Phys. 8, 15 (2006).
[53] A. Serafini, F. Illuminati, and S. D. Siena, J. Phys. B 37, L21

(2003).
[54] M. O. Scully and M. S. Zubairy, Quantum Optics

(Cambridge University Press, Cambridge, England, 1997).
[55] A. Hertz and S. De Bievre, Phys. Rev. Lett. 124, 090402

(2020).

PHYSICAL REVIEW LETTERS 132, 240201 (2024)

240201-6

https://doi.org/10.1103/PhysRevA.85.022103
https://doi.org/10.1103/PhysRevA.85.022103
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1103/PhysRevLett.84.3482
https://doi.org/10.1103/PhysRevLett.84.3482
https://doi.org/10.1103/PhysRevA.61.042302
https://doi.org/10.1103/PhysRevA.61.042302
https://doi.org/10.1103/PhysRevLett.101.130501
https://doi.org/10.1103/PhysRevLett.101.130501
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevA.93.023810
https://doi.org/10.1103/PhysRevA.93.023810
https://doi.org/10.1103/PhysRevA.98.012114
https://doi.org/10.1103/PhysRevA.97.032329
https://doi.org/10.1103/PhysRevA.97.032329
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1103/PhysRevA.65.032323
https://doi.org/10.1103/PhysRevA.65.032323
https://doi.org/10.1038/ncomms2033
https://doi.org/10.1038/ncomms2033
https://doi.org/10.1103/PhysRevA.89.052302
https://doi.org/10.1103/PhysRevLett.116.080402
https://doi.org/10.1103/PhysRevLett.116.080402
https://doi.org/10.1103/PhysRevA.44.R2775
https://doi.org/10.1103/PhysRevLett.94.173602
https://doi.org/10.1103/PhysRevLett.94.173602
https://doi.org/10.1103/PhysRevLett.88.153601
https://doi.org/10.1103/PhysRevLett.88.153601
https://doi.org/10.1103/PhysRevA.86.052118
https://doi.org/10.1103/PhysRevA.86.052118
https://doi.org/10.1103/PhysRevA.102.043703
https://doi.org/10.1103/PhysRevA.102.043703
https://doi.org/10.1103/PhysRevLett.86.3658
https://doi.org/10.1103/PhysRevLett.86.3658
https://doi.org/10.1103/PhysRevA.70.022318
https://doi.org/10.1103/PhysRevA.70.022318
https://doi.org/10.1103/PhysRevLett.93.220504
https://doi.org/10.1103/PhysRevLett.93.220504
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevLett.119.190405
https://doi.org/10.1103/PhysRevLett.119.190405
https://doi.org/10.1103/PhysRevX.8.041038
https://doi.org/10.1103/PhysRevLett.122.040503
https://doi.org/10.1103/PhysRevLett.122.040503
https://doi.org/10.1103/PhysRevResearch.2.023400
https://doi.org/10.1103/PhysRevLett.91.107901
https://doi.org/10.1103/PhysRevLett.101.220403
https://doi.org/10.1103/PhysRevLett.101.220403
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1103/PhysRevLett.96.110402
https://doi.org/10.1103/PhysRevA.92.052328
https://doi.org/10.1103/PhysRevA.92.052328
https://doi.org/10.1103/PhysRevA.104.022433
https://doi.org/10.1103/PhysRevA.104.022433
https://doi.org/10.1038/srep26523
https://doi.org/10.1103/PhysRevA.79.023816
https://doi.org/10.1103/PhysRevA.79.023816
https://doi.org/10.1103/PhysRevA.102.032413
https://doi.org/10.1103/PhysRevA.102.032413
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.240201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.240201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.240201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.240201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.240201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.240201
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.240201
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRevA.67.052315
https://doi.org/10.1103/PhysRevA.67.052315
https://doi.org/10.1103/PhysRevA.49.1567
https://doi.org/10.1103/PhysRevA.49.1567
https://doi.org/10.1088/1367-2630/8/1/015
https://doi.org/10.1088/0953-4075/37/2/L02
https://doi.org/10.1088/0953-4075/37/2/L02
https://doi.org/10.1103/PhysRevLett.124.090402
https://doi.org/10.1103/PhysRevLett.124.090402


[56] K. C. Tan, T. Volkoff, H. Kwon, and H. Jeong, Phys. Rev.
Lett. 119, 190405 (2017).

[57] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33,
4033 (1986).

[58] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling,
and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

[59] G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. A 73,
032345 (2006).

[60] S. Fu, S. Luo, and Y. Zhang, J. Phys. B 53, 085501
(2020).

[61] W. Ge, K. Jacobs, Z. Eldredge, A. V. Gorshkov, and M.
Foss-Feig, Phys. Rev. Lett. 121, 043604 (2018).

PHYSICAL REVIEW LETTERS 132, 240201 (2024)

240201-7

https://doi.org/10.1103/PhysRevLett.119.190405
https://doi.org/10.1103/PhysRevLett.119.190405
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/PhysRevA.73.032345
https://doi.org/10.1103/PhysRevA.73.032345
https://doi.org/10.1088/1361-6455/ab746b
https://doi.org/10.1088/1361-6455/ab746b
https://doi.org/10.1103/PhysRevLett.121.043604

