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Active solids such as cell collectives, colloidal clusters, and active metamaterials exhibit diverse
collective phenomena, ranging from rigid body motion to shape-changing mechanisms. The nonlinear
dynamics of such active materials remains, however, poorly understood when they host zero-energy
deformation modes and when noise is present. Here, we show that stress propagation in a model of active
solids induces the spontaneous actuation of multiple soft floppy modes, even without exciting vibrational
modes. By introducing an adiabatic approximation, we map the dynamics onto an effective Landau free
energy, predicting mode selection and the onset of collective dynamics. These results open new ways to
study and design living and robotic materials with multiple modes of locomotion and shape change.

DOI: 10.1103/PhysRevLett.132.238303

Polar active matter is composed of self-driven units that
convert energy into directed motion or forces. Aligning
interactions among the active units lead to large-scale
collective motion in various forms, from polar flocks of
birds [1,2], motile colloids [3], vibrated disks [4], interact-
ing robots [5–7], and vortex flows of fish [8], bacteria [9],
or colloids [10,11], to quote only a few. The large-scale
physics of these flows has been the topic of intensive
research and is well described by the so-called Toner-Tu
equations [12,13]. When the density of active units is large
because of confinement [14] or cohesion [15,16], the
structure of the assembly may remain frozen on long
timescales, and the system exhibits elastic rather than
viscous properties. When cohesive interactions are large
enough, as is the case for dense biofilms [17], keratocyte
swarms [18], or epithelial monolayers [19], active units can
be considered embedded in an elastic network, in a way
similar to artificially designed active elastic metamaterials
[20–23].
A natural starting point is then to analyze the dynamics

in terms of the vibrational modes of the elastic medium or
structure, with the zero modes corresponding to node
displacements that do not change any bond length [24].
It was shown that correlated noise generated by an active
matter bath can actuate a nontrivial zero mode while
suppressing harmonic modes to a degree dependent on
temporal correlations [21]. Self-propulsion is further able to
mobilize solid body motion [20] or a free-moving mecha-
nism even in a topologically complex case [21]. Notably,
observations on Placozoa phylum [25], a living active solid,
have revealed global rotation and translations under various
conditions. Finally, in the presence of a nonlinear feedback

of the elastic stress on the orientation of the active forces,
self-propulsion can also actuate a few selected harmonic
modes [22]. Yet the selection mechanism remains unclear.
More generally, in the presence of several actuatable
modes, whether trivially associated with solid body motion
or more complex mechanisms, several dynamics coexist in
phase space, and there is to date no general principle to
characterize their metastability.
In this Letter, we provide a general formalism to describe

the statistical evolution of collective motion, in the case
where several zero modes are present, as illustrated in
Fig. 1, using the hexbug elastic network [Fig. 1(a)],
introduced in [22]. When the network is pinned in the
center and the translational solid body motion is forbidden,
the only remaining zero mode is rotation [Fig. 1(b)]. The
dynamics breaks chiral symmetry by spontaneously select-
ing one direction of rotation, which eventually reverses in
the presence of noise. When the network is not pinned,
there are two translational and one rotational zero modes,
which also spontaneously break the continuous rotational,
XY model-like, and chiral, Ising-like, symmetries. Both
translational [Fig. 1(c)] and rotational motion [Fig. 1(d)] are
observed depending on the initial conditions. Transitions
between the two types of motion are observed numerically
[Fig. 1(e)]. The excitations associated with these broken
continuous symmetries are analogous to Goldstone modes
in condensed matter theories. Finally, Fig. 1(f) shows the
dynamics of a nontrivial active mechanism with two zero
modes: an ideal auxetic network [26–29] pinned at the
center that can freely rotate and contract.
When the timescales of the dynamics are much longer

than the elastic relaxation time, as is the case here, the
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harmonic modes of the solid are barely excited and the
network can be considered as rigid.We show first that in this
limit stress propagation is enough to induce collective
motion: At small enough noise, the symmetric phase is
spontaneously broken, and the evolution of the system
follows a specific path along the zero mode space. This
introduces a new timescale, which competes with the
timescale of reorientation of the active particles. We prove
that, within an adiabatic approximation, the dynamics is
governed by an effective Landau free energy, fromwhich the
mode selection and the metastability can be easily under-
stood. Our results pave the way toward active metamaterials
with multiple modes of actuation and locomotion [31].
We consider active systems described by the overdamped

dynamics of N self-aligning units, which were introdu-
ced independently in several contexts [4,14,15,18,22,32].
Written in nondimensional units (see SupplementalMaterial
[30], Sec. I, for details), the equations read

ẋi ¼ n̂i þ Fi; ð1Þ

θ̇i ¼
1

πr
ðn̂⊥i · FiÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πθ=πr

p
ξi; ð2Þ

withxi, respectively, n̂i ¼ ðcos θi; sin θiÞ, the position and the
polarization unit vector of active unit i. Fi is the net external
force on unit i. The dimensionless self-alignment length
πr ¼ la=l0 is the ratio between the self-alignment length la
and the characteristic agent-agent distance l0. The dimen-
sionless noise coefficient corresponds to πθ ¼ Dθla=v0, with
v0 the speed of a free agent and Dθ the angular diffusion
coefficient. We define ξi as a delta-correlated Gaussian white
noise process. The self-aligning torque, on the right-hand side
ofEq. (2), emerges fromnonsymmetric dissipative forceswith
respect to n̂i, when it is misaligned with ẋi [32]. It was shown
to be the key ingredient for the onset of collective motion in
active disks [4] and collective actuation in active elastic
networks [22].
One can show (see Supplemental Material [30], Sec. I)

that the network can be safely considered rigid provided

le

la
≪

1

k
ω2
q; ∀ q∈ f1…; 2Ng ð3Þ

where le is the amplitude of the typical displacement of the
nodes resulting from the active forces and ω2

q are the
nonzero eigenvalues of the dynamical matrix [24]. As such,
the bound for activation of the elastic modes depends on
only the geometry of the structure. In the following, we
shall perform all simulations with parameters such that the
rigid approximation holds.
We start by simulating three systems with a single zero

mode (Fig. 2): (i) a crystalline triangular lattice with
periodic boundary conditions (PBCs), (ii) a triangular
lattice pinned at its center, and (iii) an ideal auxetic network
pinned at its center, illustrated in Figs. 2(a), 2(e), and 2(i),
respectively. All of them exhibit collective motion along
their single zero mode at small noise. The triangular lattice
with PBCs translates uniformly, with a nonzero magnitude
of the global polarization P ¼ ð1=NÞPi n̂i [Fig. 2(b)]. The
network pinned at the center freely rotates, with an angular
speed ϕ̇, that randomly switches from counterclockwise to
clockwise rotation [Fig. 2(f)]. The auxetic network freely
compresses with a finite auxetic angular speed γ̇ [Fig. 2(j)].
In all cases, collective motion emerges from a spontaneous
symmetry breaking of the disordered phase, when πθ <
1=2 [Figs. 2(c), 2(g), and 2(k)].
The situation becomes more interesting when the net-

work of interest has more than one zero mode; see Fig. 3.
An active network free of PBCs has both translational and
rotational zero modes. The simulations reveal that, at low
πθ, the collective dynamics switches between pure trans-
lations and pure rotation [Fig. 3(a)]. As the rotational state
is characterized by a vortexlike defect in the polarity field,
these transitions amount to the spontaneous formation
or annihilation of defects under the influence of noise.
Boundary conditions are determinant, allowing changes in
the net topological charge (free), fixing defect localization
(pinned), or forbidding their creation (periodic). The case
of an auxetic network that is also free to rotate is even more

(b)

(f)

(d)

(a)

(c)

(e)

FIG. 1. Active rigid body motion and active mechanisms.
(a) Enlargement of the experimental active elastic lattice intro-
duced in [22], with self-propelling units—hexbugs—trapped in
3D-printed annuli, connected by springs in a triangular lattice.
(b) Experimental rotational dynamics observed under central
pinning. Scale bar, 10 cm. (c),(d) Experimental translational
and rotational dynamics observed for a free structure. Scale bar,
20 cm. (e) Alternating translational and rotation dynamics ob-
tained numerically for the same free structure. (f) A rotational-
auxetic regime observed numerically for a nonpinned auxetic
square system (see the text, Fig. 3, and Movie S1 [30]). Trajecto-
ries are color coded from blue to red by increasing time.
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complex. As we shall see, this is because the rotational
mode depends on the distance of the particles to the center,
which changes while the system evolves along the auxetic
mode. The visual inspection of the auxetic and rotation
rates as a function of time for different values of πθ
indicates that in the limit of vanishing noise, ϕ̇ remains
constant, and γ̇ fluctuates periodically. Increasing the noise,
transitions between two states with different ϕ̇ signs can be
achieved, and even larger noise values lead to a state where
such transitions occur constantly [Fig. 3(d)].
We now come to the theoretical analysis of the above

observations. For a rigid network, the bond elongations are
null. Imposing such distance-preserving condition to
Eq. (1), one finds after some algebra (see Supplemental
Material [30], Sec. II)

Fi ¼ −n̂i þ
X
q∈F

hφqjn̂iφq
i ; ð4Þ

where φq
i is the vector associated with particle i in the qth

eigenmode of the dynamical matrix of the elastic network
and F is the set of zero modes. Note that self-stress states,
i.e., stress configurations in the null space of the equilib-
rium matrix [24], do not contribute to this net force and,
thus, do not influence the behavior of the system. Then,
replacing the force in Eqs. (1) and (2),

ẋi ¼
X
q∈F

hφqjn̂iφq
i and θ̇i ¼ −

1

πr

∂V
∂θi

þ
ffiffiffiffiffiffiffi
2πθ
πr

s
ξi; ð5Þ

with V ¼ − 1
2

P
q∈Fhφqjn̂i2. The stochastic dynamics is

then described by the time-dependent probability density
Qðx1;…; xN ; θ1;…; θN ; tÞ, which evolves according to the
Fokker-Planck equation:

∂Q
∂t

¼ 1

πr

∂

∂θi

�
∂V
∂θi

Qþ πθ
∂Q
∂θi

�
− ∇xiðhφqjn̂iφq

i QÞ ð6Þ

with implicit summation on the indices. The evolution of
the M zero modes can be described with a set of angles,
distances, or more general coordinates, which we denote
α ¼ fαmgMm¼1. To make further progress, we proceed to an
adiabatic approximation, assuming that the dynamics of the
zero modes is much slower than that of the orientation of
the active units, which is expected to hold in the πr ≪ 1
regime. At zeroth order, this approximation amounts to
considering that the probability density function Q is
different from zero only for combinations of xi which
preserve the same zero modes. In such a case, the Fokker-
Planck equation for the reduced density probability func-
tion Q ¼ R

∞
−∞ Qdx1…dxN admits a steady state solution

given by the Gibbs measure:

Q ¼ expð−βVÞ
Z

ð7Þ

with β ¼ 1=πθ and Z ¼ R
π
−π e

−βVdθ1…dθN .
Collective motion is achieved when the normalized

projections of the polarity vectors over the zero modes;

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 2. Second-order transitions to solid body motion and mechanisms for one-mode systems. Simulations consider πr ¼ 0.001
unless specified. (a) Periodic boundary condition (translation-only) network. (b)–(d) consider a 100 × 100 translating system. (b) Global
polarization magnitude kPk time series; πθ ¼ 0.4. (c) Phase diagram μP vs πθ as a function of noise. (S) for simulations, (T) for
theoretical predictions. (d) Landau free energy as a function of μx and μy; left: πθ ¼ 0.1; right: πθ ¼ 0.6. (e) A two-layer hexagonal ring
with the definition of the rotational angle ϕ. (f)–(h) consider a nine-layer hexagonal ring system. (f) Angular velocity ϕ̇ time series;
πθ ¼ 0.4. (g) Phase diagram μϕ vs πθ (left) and μϕ vs πr, when πθ ¼ 0 (right). (h) Landau free energy as a function of μϕ; blue:
πθ ¼ 0.25; orange: πθ ¼ 0.6. (i) A one-layer auxetic system with the definition of the auxetic angle γ. (j)–(l) consider an eight-layer
auxetic system. (j) Auxetic angular velocity γ̇ time series; πθ ¼ 0.4. (k) Phase diagram μγ vs πθ (left) and μγ vs πr, when πθ ¼ 0 (right).
(l) Landau free energy as a function of μγ . Blue: πθ ¼ 0.25; orange: πθ ¼ 0.6.
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namely, the order parameters μq ¼ hðPi φ
q
i · n̂iÞi=

ffiffiffiffi
N

p
are

Oð1Þ. In the thermodynamic limit, and considering the case
of extended zero modes, such as translations, rotations, or
auxetic modes [28], we find that the mode selection is
governed by the minimum of the Landau free energy:

f½μ;α� ¼
X
q∈F

μ2q
2
−

1

βN

X
i

log
�
I0ðβDiÞ

�
; ð8Þ

where I0 is the modified Bessel function of the first
kind and

Di ¼
�
N
X

q;l∈F
μqμlðφq

i ðαÞ · φl
iðαÞÞ

�
1=2 ð9Þ

couples the different zero modes. Finally, having found the
order parameters for a particular system configuration α,
we can evolve every αm as α̇m ¼ Lmðα; μÞ, where Lm is a
structure-dependent operator.
Using the above formulation, we can prove that, within

the adiabatic approximation, for any system with extended
zero modes, there is a continuous phase transition from a
disordered phase to some form of collective motion, taking
place at πcθ ¼ 1=2. This description, valid only in the large
N limit, can be extended to small N in terms of simple
integrals and higher-order corrections as powers of πr can
also be found (see Supplemental Material [30], Secs. IV
and VI).
The simplest scenario corresponds to pure translational

motion. If no other zero mode is allowed, as is the case for
an unpinned lattice with PBCs, the zeroth-order solution

[Eq. (7)] is exact, because the translational modes are
position independent. The order parameter is μP ¼
ðμx; μyÞ ¼ hð1=NÞPi n̂ii. The angular potential reads V ¼
−ð1=2NÞPi;j cosðθi − θjÞ and, therefore, exactly maps
onto the 2D mean-field XY model. The minima of the
corresponding free energy shown in Fig. 2(d) for two noise
amplitudes perfectly captures the transition. In the thermo-
dynamic limit, a phase transition at πθ ¼ 1=2 with the
mean-field critical exponents is obtained (see Supplemental
Material [30], Sec. IV). Remarkably, the mean-field behav-
ior does not arise from an uncontrolled approximation:
True long-range order emerges from systemwide stress
propagation, resulting from rigidity (see Movie S2 [30]).
In the purely rotational, or auxetic cases, the adiabatic

approximation is not exact, because the associated zero
modes depend on the instantaneous structure prescribed by
ϕ, the rotational angle, and γ, the compression angle [see
Figs. 2(e) and 2(i)]. However, in the presence of a single
zero mode, an adequate choice of reference frame removes
this dependence. Here also we find a perfect agreement
between the simulation data [Figs. 2(g) and 2(k)] and the
order parameters μϕ and μγ extracted from the minimization
of the free energy shown in Figs. 2(h) and 2(l) (see
Supplemental Material [30], Secs. VI and VII). The
dependence of these so-defined order parameters on πr,
when πθ ¼ 0, is also perfectly captured [see Figs. 2(g) and
2(k) and Supplemental Material [30], Secs. VI and VII].
Two-mode settings lead to more intricate dynamics and

complex energy landscapes. First, we will consider a
translational-rotational system that has a Landau free
energy that is independent of the structure parameter, an

(a)

(b)

(c)

(d) (e) (f)

FIG. 3. Two-mode system phenomenology: switching between modes of actuation. (a) Time series of the magnitude of the global
polarization P (blue) and of the angular velocity ϕ̇ (red) for a two-ring nonpinned triangular lattice; left to right: πθ ¼ 0.10, 0.35;
πr ¼ 0.1. (b) Phase diagram μP and μϕ vs πθ of a 30-ring nonpinned triangular lattice. (c) Landau free energy for a nonpinned two-ring
triangular lattice as a function of μϕ and μx; from left to right: πθ ¼ 0.10, 0.35. (d)–(f) consider an eight-layer rotational-auxetic network.
(d) Time series of the auxetic angular velocity γ̇ (blue) and rotational angular velocity ϕ̇ (red); from top to bottom: πθ ¼ 0.001, 0.006,
0.014. (e) Phase diagram γ̇ (top) and ϕ̇ (bottom) vs πθ. The theoretical values are the time average of each solution obtained from
following the free energy minima as γ varies. Inset: enlargement of the ϕ̇ ≠ 0 region. (f) Landau free energy as it varies with γ
(γ ¼ 0.2þ nπ=2, with n ¼ 0, 1, 2, 3); πθ ¼ 0.001, and the evolution time step Δt ¼ 0.01.
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exception due to the structure-invariant nature of the
translational modes. The order parameters are the ones
defined for the pure translation and rotational case. The free
energy, however, displays a richer behavior, when
πθ < πcθ ¼ 1=2: The space isotropy for translation and
the chiral symmetry for rotation are simultaneously broken
[see Fig. 3(b) and Movie S3 [30] ]. Interestingly, the
translational solution is always the global minimum [see
Fig. 3(c) and Supplemental Material [30], Sec. VIII], and
mixed translational and rotational states are not steady state
solutions. The mean-field nature of the system leads to
minima that are separated by an energy barrier proportional
to N.
Finally, considering a network where the two zero modes

are the rotation and the auxetic one allows us to demon-
strate the efficiency of our approach while stressing its
limitations. Our prescription eliminates the dependence on
ϕ and defines the two order parameters μA and μB as
functions of hϕ̇i, hγ̇i, and γ (see Supplemental Material
[30], Sec. IX). Depending on the value of πθ, the free
energy has four local minima, two, or just one, i.e., the
disordered solution. As shown in Fig. 3(f), these minima
move in phase space as γ evolves. For a given set πθ, πr, we
can follow the evolution of each different solution from the
adiabatic prescription α̇m ¼ Lmðα; μÞ (see Supplemental
Material [30], Sec. IX). This adiabatic evolution converges
to a well-defined phase diagram [see Fig. 3(e)] that
remarkably displays two transitions, the aforementioned
one at πcθ ¼ 1=2, where the auxetic contraction is activated,
and a second one at much smaller values, πθ ≈ 0.02, where
rotation is activated. Numerical simulations of the auxetic-
rotation systems show good agreement in most of the phase
diagram, except in the region below the onset of rotational
dynamics [see the inset in Fig. 3(e)], where the system
evolves following two minima that are separated by a low,
vanishing for large N, energy barrier. An appropriate
numerical procedure to follow the evolution of the structure
should solve this discrepancy.
In this Letter, we have studied the dynamics of active

solid body motion and mechanism folding through a
general theoretical framework in the rigid limit. Our
formalism allows for the design and tuning of a wide
range of materials where elastic deformations are negli-
gible, with the interaction between different modes giving
rise to rich, complex dynamics. Future work will restore
elasticity, in particular, elucidating whether long-range
order is preserved for different system sizes and spring
constants. In opposition to the rigid case, where stresses can
propagate infinitely far and instantaneously, overcoming
the Mermin-Wagner theorem with elastic interactions is not
trivial. Numerical studies on a related model seem to
suggest that stiff enough systems display collective motion
independently of the system size [25], and, in such a case,
corrections beyond mean field could be calculated.
Furthermore, we will explore structures with multiple

shape-changing modes [33] and settings with various active
solids or environmental obstacles and consider our dynami-
cal system outside the πr ≪ 1 limit, potentially capturing
other effects such as the geometry-controlled selection of
particular translation directions [5]. This nonadiabatic
regime, and a coarse-grained description of our order
parameters to properly deal with inhomogeneities in our
system beyond mean field, could be suited to further study
the formation and dynamics of defects in the polarity field.
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