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The entrapment of bacteria near boundary surfaces is of biological and practical importance, yet the
underlying physics is not well understood. We demonstrate that it is crucial to include a commonly
neglected thermodynamic effect related to the spatial variation of hydrodynamic interactions, through a
model that provides analytic explanation of bacterial entrapment in two dimensionless parameters: α1 the
ratio of thermal energy to self-propulsion, and α2 an intrinsic shape factor. For α1 and α2 that match an
Escherichia coli at room temperature, our model quantitatively reproduces existing experimental
observations, including two key features that have not been previously resolved: The bacterial “nose-
down” configuration, and the anticorrelation between the pitch angle and the wobbling angle. Furthermore,
our model analytically predicts the existence of an entrapment zone in the parameter space defined
by fα1; α2g.
DOI: 10.1103/PhysRevLett.132.238302

Swimming microorganisms are constantly influenced by
the presence of boundary surfaces in their natural habitat,
giving rise to rich swimming behaviors [1,2]. One phe-
nomenon commonly known as surface entrapment attracts
particular interest, where the swimmer moves along near
the surface for a prolonged time [3]. Since its first discovery
in bull spermatozoa [4], such entrapment is widely
observed for a variety of microorganisms in both the
domain Bacteria (e.g., Escherichia coli [5]) and the domain
Eukaryota (e.g., Tetrahymena pyriformis [6]) in different
types of fluids [7], and around surfaces with different
properties [8]. In addition to its importance to many
biological processes such as fertilization [9,10] and biofilm
formation [11], such surface-swimmer interaction also
provides insight for the design of microfluidic structures
[12] and artificial microswimmers [13–15] for desired
transport properties. However, the underlying mechanism
is still poorly understood.
Using E. coli as an example where experimental data are

abundant, we provide a theoretic study explaining the
dynamics of flagellar bacteria near surfaces. In the early
time when bacterial accumulation near a plane was exper-
imentally observed [16], it is under debate if hydrodynamic
interactions are essential [17,18], as the observed surface
accumulation can also be explained by stochastic models
without hydrodynamic interactions [19]. Dynamical behav-
iors of trapped bacteria are then systematically studied
[3,5,7,20–22]. While it is shown that stochastic effects such
as rotational noise [23] or bacterial tumbling [24] are
significantly suppressed during the entrapment [25,26], a
recent experiment suggested that the near-field hydrody-
namic interaction plays the major role [27]. However,
two features among the many observations, i.e., the

“nose-down” configuration and the anticorrelation between
the pitch angle and the wobbling angle [5], become
distinguished due to their challenges to all existing theories.
Specifically, numerical simulations with full hydrodynamic
interactions for no-slip plane show a “nose-up” configu-
ration [28–30], and suggest a positive correlation between
the wobbling angle and the pitch angle [31]. We shall
demonstrate that a commonly neglected thermodynamic
effect is essential. When this crucial effect is incorporated,
even a simplified model of the hydrodynamic interactions
can quantitatively explain the two key features, as well as
other observed surface entrapment behaviors.
Problem formulation for nonwobbling bacteria.—For

simplicity, we first study a nonwobbling bacterial model
which allows an analytic solution. Swimming in a fluid of
viscosity μ above an infinitely large plane with no-slip
boundary at x ¼ 0, an E. coli bacterium is simplified as two
spheres, a body sphere with radius Rb and a tail sphere with
radius Rt, connected by a rigid rod that separates the two
centers by l [inset in Fig. 1(a)] [32]. The tail sphere is
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FIG. 1. (a) For a bacterium modeled as two spheres connected
by a rod (inset), its trajectory demonstrates surface entrapment.
(b) The temporal evolutions of d (black line) and θ (red line) show
a three-stage dynamics visualized by blue, yellow, and green
shaded areas, respectively.
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propelled by a phantom force Fact provided by the spinning
of flagella that is not treated explicitly. Each configuration
is fully determined by the surface distance d between
bacterial body and the plane, and pitch angle θ which is
positive for a “nose-down” configuration.
Since the characteristic size and speed are about 1 μm

and 10 μm= sec, respectively, in water the corresponding
Reynolds number is low (10−5) so that bacterial flows are
typically studied by the linear Stokes equation. At a time
resolution Δt ≈ 10−2 sec the system is in the overdamped
limit described by

ξ · U ¼ FP þ FB; ð1Þ

where the resistance tensor ξ for any configuration is
fully determined by hydrodynamics, U≡ðub;ωb;ut;ωtÞT
is the translational/rotational velocity vector with indice
“b” (“t”) standing for body sphere (tail sphere), FP ≡
ðFb;Lb;Ft;LtÞT represents the nonhydrodynamic forces,
and FB represents stochastic forces.
At absolute-zero temperature, FB ¼ 0. Eq. (1) reduces to
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where u0 ≡ ðξFUtt Þ−1 · Fact. The system is fully determined
with two widely used conditions: (i) the free-swimming
condition, i.e.,Fb ¼ −Ft ≡ Feff andLb ¼ −Lt − ðrt − rbÞ ×
Ft ≡ −Leff þ Feff × ðrb − rtÞ and (ii) the rigid body con-
dition, i.e., ωb ¼ ωt ≡ ω0 and ut ¼ ub þ ω0 × ðrt − rbÞ.
Equation (2) is then solved for Feff, Leff , ω0, and ub, leading
to system evolution ΔR ¼ UΔt.
At finite temperature, FB ≠ 0. By integrating Eq. (1)

over Δt , a timescale much larger than the Brownian
timescale τB ∼ 10−6 sec yet still small that changes in
configurations are insignificant, we get two additional
terms in system evolution [33–35]:

ΔR ¼ UΔtþ kBT∇ · ξ−1ΔtþXðΔtÞ; ð3Þ

where XðΔtÞ is a random displacement characterized by
hXðΔtÞi ¼ 0 and hXðΔtÞXðΔtÞi ¼ 2kBTξ−1Δt.
For an entrapped E. coli, we have d=Rb ∼ 0.1 so small

that terms in ξ become large, in agreement with exper-
imental observation of suppressed XðΔtÞ [25] that we
choose to treat as negligible during entrapment. On the
other hand, while commonly neglected in previous numeri-
cal studies [28,29,31], the thermodynamic term kBT∇ · ξ−1

describes the spatial variations in diffusivity, and in the
d → 0 limit remains a finite constant independent of d.
Therefore, the evolution equation becomes ΔR ¼ U0Δt

with U0 ≡ ðu0b;ω0
b; u

0
t;ω0

tÞT ¼ Uþ kBT∇ · ξ−1, where U
satisfies Eq. (2) and the rigid body condition changes to
ω0

b ¼ ω0
t ≡ ω0 and u0t ¼ u0b þω0 × ðrt − rbÞ.

Numerical simulation.—For a typical E. coli in water at
room temperature, we estimate that kBT ≈ 4 × 10−21 Nm,
μ ≈ 10−3 Nsec =m2, jFactj ≈ 4 × 10−13 N, Rb ≈ 1 μm,
l ≈ 5 μm, and Rt ≈ 0.4 μm [36–38]. Using 1 μm and
1 sec as the unit of length and time respectively and setting
μ ¼ 1 for the unit of force, such a bacterium is charac-
terized by fl¼5;Rb¼1;Rt¼0.4; jFactj¼400;kBT¼4g. In
Fig. 1(a) we show its dynamics moving toward the plane,
simulated assuming only hydrodynamic interactions with-
out steric interactions. The key in this simulation is getting
ξ for each configuration, which is constructed following the
Stokesian dynamics simulation [35,39] in a two-step
procedure. Specifically, we first obtain the far-field mobil-
ity tensor throughM∞ ¼ M0 þ M̂. HereM0 is the analytic
far-field hydrodynamic interaction without plane [40], and
the plane contribution M̂ is analytically available through
the method of images [39]. In the second step, ξ is obtained
through ξ ¼ M−1

∞ þ ξb, with ξb the lubrication between
body sphere and the plane [41,42].
As illustrated by the temporal evolution of d and θ in

Fig. 1(b), our numerical results reproduce the experimen-
tally observed three-stage dynamics [5]: the initial
approach where d drops quickly with an almost constant
θ; the reorientation stage where tan θ decays exponentially
right after d becomes smaller than Rb (Fig. S1 in the
Supplemental Material [43]); and the steady swimming
stage where both ḋ and θ̇ gradually decay to zero character-
izing a stable entrapment. Such dynamics can also be
illustrated in the phase diagram defined by d and θ
[Fig. 2(a)], where steady swimming corresponds to a stable
fixed point with θ > 0 (a “nose-down” configuration), in
agreement with experimental observations.
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FIG. 2. (a) In the phase diagram defined by d and θ, bacterial
trajectory (green line) approaches to a stable fixed point (green
circle). (b) The parameter space defined by α1 and α2 can be
divided into three regions: region I (red) above the red line
α2 ¼ −ð2=15Þ ln α1, region II (green) between the red line and
blue line ð15=2Þα1α2 ¼ e−1 with α1 ≤ e−1, and the region out-
side. A typical E. coli at room temperature (yellow star) is in
region II. The inset in (b) shows x ln x versus x.
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Analytic solution.—To understand these results, we
simplify the problem with two ideal approximations.
Since l ≫ Rt, our first approximation assumes that the
tails are not hydrodynamically coupled with the body or the
plane so that body-tail coupling ξbt ¼ ξtb ¼ 0, and tail self-
term ξtt is a constant. Therefore, the only configurational
dependent term in ξ is ξbb, which is an analytical function of
single parameter d=Rb in the d → 0 limit [40]. Since d=Rb
is small during entrapment, our second approximation uses
this analytical ξbb function for all d of interest. These
two approximations lead to a simplified kBT∇ · ξ−1 with
only one nonzero component: A constant velocity v ¼
ðkBT=6πμR2

bÞx̂ for bacterial body moving away from the
plane (see the Supplemental Material, Sec. A [43]).
To obtain fixed points in the phase diagram defined by d

and θ, we insert ḋ ¼ θ̇ ¼ 0 into Eq. (2), which gives

ðξLUbb Þzyðu0b · ŷÞ ¼ ðξFUtt Þyyðu0b · ŷÞl sin θ ð4Þ

jFactj sin θ ¼ ðξFUbb Þxxðv · x̂Þ ð5Þ

Here Eq. (4) is equivalent to the fifth equation in [27],
which characterizes the torque balance on the body sphere
in ẑ, between the boundary-induced torque due to bacterial
body translation u0b · ŷ along the plane (lhs) and the torque
arising from the friction against bacterial tail translation
(rhs). Equation (5) characterizes the force balance on the
body sphere in x̂, between self-propulsion (lhs) and the
thermodynamic effect we introduced (rhs). The coefficients
are available from lubrication theory as ðξLUbb Þzy¼−6πμR2

b

ð2=15Þlnðd=RbÞ, ðξFUtt Þyy ¼ 6πμRt, ðξFUbb Þxx ¼ 6πμR2
b=d.

For u0b · ŷ ≠ 0, Eqs. (4) and (5) can be further reduced in
terms of two dimensionless parameters α1 ≡ kBT=jFactjRb

and α2 ≡ Rtl=R2
b:

d
Rb

ln
d
Rb

¼ −
15α1α2

2
ð6Þ

ln
d
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¼ −
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2
ð7Þ

with prefactor 15=2 arising from translation-rotation cou-
pling ðξLUbb Þzy.
Dictated by Eqs. (6) and (7), two curves become

important in the parameter space defined by α1 and α2.
The first curve, ð15=2Þα1α2 ¼ e−1 [blue line in Fig. 2(b)],
arises from the fact that ðd=RbÞ lnðd=RbÞ ≥ −e−1 for d > 0

where equality happens at d=Rb ¼ e−1 [Fig. 2(b) inset].
Thus, fixed points (fd1; θ1g and fd2; θ2g) only exist
when 0≥−ð15=2Þα1α2≥−e−1, with 0 ≤ d1=Rb ≤ e−1 ≤
d2=Rb ≤ 1. The second curve, α2 ¼ −ð2=15Þ ln α1 [red
line in Fig. 2(b)], is obtained by assuming sin θ ¼ 1, the
largest possible value for sin θ. Our analysis shows that (See
Sec. C in the Supplemental Material), for parameter choice

fα1; α2g above the red line in Fig. 2(b) (region I), only a
saddle point fd2; θ2g with d2=Rb > e−1 exists. For param-
eter choice fα1; α2g between the red line and blue line with
α1 ≤ e−1 in Fig. 2(b) (region II), both fixed points exist,
where fd1; θ1g with d1=Rb < e−1 is always stable, while
fd2; θ2g with d2=Rb > e−1 is always a saddle point. No
fixed point exists for fα1; α2g outside region I and II. Since
physically observed entrapment is associated only with a
stable fixed point, region II defines the entrapment zone:
No entrapment can be observed for fα1; α2g outside
the zone.
For a typical E. coli at room temperature, we have

fl ¼ 5; Rb ¼ 1; Rt ¼ 0.4; jFactj ¼ 400; kBT ¼ 4g, leading
to fα1 ¼ 0.01; α2 ¼ 2g that falls in the entrapment zone
[Fig. 2(b)]. For this set of fα1; α2g, we predict the stable
fixed point at d� ¼ 0.05 μm from Eq. (6) and then θ� ¼ 12°
from Eq. (7). This is within the experimentally observed
range for d between 0.03 μm and 0.25 μm [21], and in
agreement with the observation of θ with a mean of 10° [5].
Furthermore, our simulations for bacteria with various
shapes (0.3 ≤ Rt ≤ 0.5, 5 ≤ l ≤ 9) are in good agree-
ment with Eqs. (6) and (7) as illustrated by Fig. S5(a)
and Fig. S5(b) in the Supplemental Material. In contrast,
with α1 ¼ 0 (neglecting the thermodynamic effect), a
bacterium of any shape falls in region I [Fig. 2(b)], where
only a “nose-up” saddle point exists that is irrelevant to the
experimentally observed bacterial entrapment (Sec. E in the
Supplemental Material [43]).
Bacterial wobbling.—For the nonwobbling bacterial

model above, the body-tail connection is treated as rigid
without considering the self-spinning of either the bacterial
body or the flagellar bundle, i.e., ωb ¼ ωt ¼ ω0. In the real
world, the self-spinning of the two parts, ω0

b and ω0
t ,

respectively, are generally not collinear [Fig. 3(a)]. For free-
swimming bacteria the nonzero angle γ formed by the two
vectors leads to a center of mass rotation ω0 generally not
aligned with its translation and therefore, bacterial wob-
bling. To account for the wobbling, we generalize the
nonwobbling bacterial model by explicit consideration of
ω0

b and ω0
t , and replace the rigid connection by a universal

joint through relation R3
bjω0

bj cos γ ¼ R3
t jω0

t j [38,44] where
jω0

t j ¼ 100 Hz fixed to match the experiments [36]
(Supplemental Material [43], Sec. D). The overall rotations
for bacterial body and flagellar bundle are ωb ¼ ω0

b þ ω0

and ωt ¼ ω0
t þω0, respectively.

With this generalization, we numerically study the
dynamics of wobbling bacteria near a plane, where each
configuration is now determined by d and two distinct pitch
angles, θb and θt [Fig. 3(a)]. For illustration purposes, in
Fig. 3 we highlight the self-spinning by drawing an
ellipsoid and a helix in place of the body sphere and tail
sphere used in our actual simulations. Our results show that
bacteria can be trapped in clockwise circular trajectories
when viewed from above [Fig. 3(b)]. For a typical
bacterium (l ¼ 5, Rb ¼ 1, Rt ¼ 0.4) with γ ¼ 30° at room

PHYSICAL REVIEW LETTERS 132, 238302 (2024)

238302-3



temperature, in Fig. 3(c) we show the temporal evolution of
d, θb, and θt. During the entrapment stage, all these three
variables are periodically oscillating with the same fre-
quency, where d and θb are almost in phase while θt has
nearly an opposite phase [Fig. 3(c)]. In the inset, we show the
bacterial configurations at t1 (t2) with smallest (largest) θb
denoted as θmin (θmax). The experimentally recorded average
pitch angle θ̄ and wobbling angle θw [5] can be obtained
through θ̄≡ ðθmax þ θminÞ=2 and θw ≡ ðθmax − θminÞ=2.
Similarly, we define d̄≡ ðdmax þ dminÞ=2.
A variety of bacteria characterized by fl; Rb; Rt; γg are

then simulated at room temperature, where for γ we
sampled 20°, 30°, and 40°, and for each of the other three
parameters we limit the variations to at most 20% from the
corresponding value of a typical E. coli. The scatter plot of
all fθ̄; θwg obtained from the entrapment stage show an
anticorrelation spreading broadly along the θ̄ ¼ θw direc-
tion [Fig. 4(a)], in quantitative agreement with previous
experiment (Fig. 4 in [5]).

Interesting results emerge when sorting out our data by γ.
For each specific γ we observe an anticorrelation with a
much narrower spread, which is regulated by α2 in a
quantitatively similar fashion. Specifically, for each γ we
plot θ̄ (θw) as a function of α2, normalized by θ̄WT (θWT

w )
obtained from a typical bacterium with that particular γ.
Our data from three distinct γ collapse, indicating the
existence of two master curves for θ̄=θ̄WT and θw=θWT

w
respectively [Fig. 4(b)].
The results above can be explained by Eqs. (6) and (7),

which are still valid for wobbling bacteria if we replace
fd; θg in the equations by fd̄; θ̄g observed in the data
(Fig. S5 in the Supplemental Material [43]). Since we are in
the parameter range in which changes in ln ðd̄=RbÞ are less
significant than changes in d̄=Rb, for an estimate we neglect
changes in ln ðd̄=RbÞ, which leads to d̄=Rb ∼ α1α2 accord-
ing to Eq. (6) and sin θ̄ ≈ θ̄ ∼ α−12 according to Eq. (7).
This estimate correctly captures the positive (negative)
correlation between d̄=Rb (θ̄) and α2, in qualitative agree-
ment with numerical fit of our data that d̄=Rb ∼ α1.82
[Fig. S6(a)], ln ðd̄=RbÞ ∼ α−0.62 [Fig. S6(b)], and θ̄ ∼ α−1.72

[Fig. 4(b)]. As it is experimentally established that wob-
bling can be significantly suppressed by nearby boundaries
[38,45], the positive correlation between d̄=Rb and α2 leads
to a positive correlation between θw and α2, and thus the
anticorrelation between θ̄ and θw.
Beyond the “nose-down” configuration and the anticor-

relation between θ̄ and θw, our numerical results are also in
quantitative agreement with other experimental observa-
tions (Sec. D2 in the Supplemental Material [43]), includ-
ing the clockwise direction of circular trajectories [7,16];
the range of the observed radii of the circles (denoted as Rc)
[7,20], and the range of d̄ [21]; positive correlations
between Rc and d [21], Rc and α1 [22], and Rc and α2
[3]; and an anticorrelation between θ̄ and d̄ [3].
Discussion.—In this study we ignore stochastic effects

XðΔtÞ and bacterial tumbling. At a cost of making trapped
bacteria incapable of escaping, this simplification helps us
identify entrapment as a fixed point and highlight the
importance of the thermodynamic effect kBT∇ · ξ−1. An
estimate of XðΔtÞ near the fixed point shows that it only
becomes important at timescales much larger than the
entrapment process (Sec. F in the Supplemental Material
[43]), and eventually leads to bacterial escape that is out of
the scope of the current work.
For the entrapment stage, the self-propulsion for the “nose-

down” configuration needs to be balanced by a cell-
plane repulsion. At room temperature and d ≈ 0.1 μm, a
thermodynamic repulsion arises naturally, and explains all
existing observations with even a simplified model that
considers the bacterial body (flagellar bundle) as a sphere
with the size equal to its hydrodynamic radius. For future
experiments to verify if other mechanisms such as steric
interactions also contribute, ourmodel provides the following

(a)

(c)

(b)

FIG. 3. (a) Our model of a wobbling bacterium. (b) Bacterial
trajectory near a plane. (c) The temporal evolutions of d (solid
black), θb (solid red), and θt (dash red). Blue (green) bar indicates
time t1 (t2) when θb is smallest (largest) during entrapment, with
the corresponding configurations shown in the inset using actual
θb and θt, and exaggerated d.

2

(a) (b)

FIG. 4. Simulation data with γ ¼ 20° (triangles), γ ¼ 30°
(crosses), and γ ¼ 40° (circles) yield the scatter plot fθ̄; θwg
(green) in (a), normalized θ̄ (red) and θw (blue) as functions of α2
in (b). Results from [5] are shown as gray dots in (a).
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predictions: (i) The entrapped configuration fd; θg
is dictated by α1 ≡ kBT=jFactjRb and α2 ≡ Rtl=R2

b, through
Eqs. (6) and (7). Extra care is needed for studies at different
temperatures, as self-propulsion can triple with a slight
increase of kBT from 20 °C to 40 °C [22]. (ii) About the
flagellar bundle, the orientation θt has an opposite phasewith
respect to d and θb; and the variation in γ is the main factor
underlying the broad spread of fθ̄; θwg data along the θ̄ ¼ θw
direction. (iii) There exists an entrapment zone within the
range of 0 < α1 < e−1 and α2 > 2=15.
Three implications follow from (iii). First, entrapment is

a special feature for active systems, and no entrapment is
allowed for passive systems (zero activity and thus
α1 ¼ ∞) at any temperature. Second, entrapment is not
available for swimmers with α2 ≡ Rtl=R2

b < 2=15, which
provides a guideline for controlling biological and engi-
neering active swimmers near surfaces. Third, while entrap-
ment only exists at low temperatures that satisfy
α1 ≡ kBT=jFactjRb < e−1, at the lowest temperature, i.e.,
the absolute zero, the stable fixed point no longer exists:
according to Eq. (6), d needs to be zero, which is singular
that no θ can satisfy Eq. (7). This explains why negligence
of kBT∇ · ξ−1 in previous studies, which is equivalent to
setting the temperature to zero, cannot reproduce the
entrapment correctly. Instead, a finite temperature is essen-
tial for achieving the physical entrapment.

We thank X. Cheng, L. S. Luo, M. Stynes, Y. L. Wu,
J. H. Yuan, and H. P. Zhang for helpful discussions. This
work is supported by NSFC No. 11974038 and
No. U2230402. We also acknowledge the computational
support from the Beijing Computational Science Research
Center.

*xinliang@csrc.ac.cn
[1] V. Kantsler, J. Dunkel, M. Polin, and R. E. Goldstein, Proc.

Natl. Acad. Sci. U.S.A. 110, 1187 (2013).
[2] M. Contino, E. Lushi, I. Tuval, V. Kantsler, and M. Polin,

Phys. Rev. Lett. 115, 258102 (2015).
[3] R. Di Leonardo, D. Dell’Arciprete, L. Angelani, and V.

Iebba, Phys. Rev. Lett. 106, 038101 (2011).
[4] Rothschild, Nature (London) 198, 1221 (1963).
[5] S. Bianchi, F. Saglimbeni, and R. Di Leonardo, Phys. Rev.

X 7, 011010 (2017).
[6] T. Ohmura, Y. Nishigami, A. Taniguchi, S. Nonaka, J.

Manabe, T. Ishikawa, and M. Ichikawa, Proc. Natl. Acad.
Sci. U.S.A. 115, 3231 (2018).

[7] D. Cao, M. Dvoriashyna, S. Liu, E. Lauga, and Y. L. Wu,
Proc. Natl. Acad. Sci. U.S.A. 119, e2212078119 (2022).

[8] A. Poddar, A. Bandopadhyay, and S. Chakraborty, J. Fluid
Mech. 894, A11 (2020).

[9] C. K. Tung and S. S. Suarez, Cells 10, 1297 (2021).
[10] M. R. Raveshi, M. S. A. Halim, S. N. Agnihotri, M. K.

O’Bryan, A. Neild, and R. Nosrati, Nat. Commun. 12,
3446 (2021).

[11] C. D. Nadell, K. Drescher, and K. R. Foster, Nat. Rev.
Microbiol. 14, 589 (2016).

[12] A. Dehkharghani, N. Waisbord, J. Dunkel, and J. S. Guasto,
Proc. Natl. Acad. Sci. U.S.A. 116, 11119 (2019).

[13] J. Simmchen, J. Katuri, W. E. Uspal, M. N. Popescu, M.
Tasinkevych, and S. Sánchez, Nat. Commun. 7, 10598
(2016).

[14] C. Liu, C. Zhou, W. Wang, and H. P. Zhang, Phys. Rev. Lett.
117, 198001 (2016).

[15] S. Ketzetzi, J. de Graaf, R. P. Doherty, and D. J. Kraft, Phys.
Rev. Lett. 124, 048002 (2020).

[16] P. D. Frymier, R. M. Ford, H. C. Berg, and P. T. Cummings,
Proc. Natl. Acad. Sci. U.S.A. 92, 6195 (1995).

[17] A. P. Berke, L. Turner, H. C. Berg, and E. Lauga, Phys. Rev.
Lett. 101, 038102 (2008).

[18] S. E. Spagnolie and E. Lauga, J. Fluid Mech. 700, 105
(2012).

[19] G. Li and J. X. Tang, Phys. Rev. Lett. 103, 078101
(2009).

[20] E. Lauga, W. R. DiLuzio, G. M. Whitesides, and H. A.
Stone, Biophys. J. 90, 400 (2006).

[21] G. L. Li, L. K. Tam, and J. X. Tang, Proc. Natl. Acad. Sci.
U.S.A. 105, 18335 (2008).

[22] K. Maeda, Y. Imae, J. I. Shioi, and F. Oosawa, J. Bacteriol.
127, 1039 (1976).

[23] K. Schaar, A. Zöttl, and H. Stark, Phys. Rev. Lett. 115,
038101 (2015).

[24] G. Junot, T. Darnige, A. Lindner, V. A. Martinez, J. Arlt, A.
Dawson, W. C. K. Poon, H. Auradou, and E. Clément, Phys.
Rev. Lett. 128, 248101 (2022).

[25] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and
R. E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 108, 10940
(2011).

[26] M. Molaei, M. Berry, R. Stocker, and J. Sheng, Phys. Rev.
Lett. 113, 068103 (2014).

[27] O. Sipos, K. Nagy, R. Di Leonardo, and P. Galajda, Phys.
Rev. Lett. 114, 258104 (2015).
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