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The hydrodynamic stresses created by active particles can destabilize orientational order present in the
system. This is manifested, for example, by the appearance of a bend instability in active nematics or in
quasi-two-dimensional living liquid crystals consisting of swimming bacteria in thin nematic films. Using
large-scale hydrodynamics simulations, we study a system consisting of spherical microswimmers within a
three-dimensional nematic liquid crystal. We observe a spontaneous chiral symmetry breaking, where the
uniform nematic state is kneaded into a continuously twisting state, corresponding to a helical director
configuration akin to a cholesteric liquid crystal. The transition arises from the hydrodynamic coupling
between the liquid crystalline elasticity and the swimmer flow fields, leading to a twist-bend instability of
the nematic order. It is observed for both pusher (extensile) and puller (contractile) swimmers. Further, we
show that the liquid crystal director and particle trajectories are connected: in the cholesteric state the
particle trajectories become helicoidal.
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Introduction.—Active materials consist of systems where
the individual building blocks convert energy into work
locally [1]. Examples of this are provided by bacterial fluids
[2], catalytic Janus colloids [3], or active microtubules [4] at
the micrometer length scale. One of the striking features
of these materials is the emergence of collective motion on
the scale considerably larger than the particles themselves,
such as spontaneous formation of polar flocks in active
colloids [5] or the emergence of bacterial turbulence [6].
An interesting subset of active materials is provided by
active nematic gels [7]. These consist of active units, force
dipoles, with overlaying orientational, nematic order.
Pioneering work showed, using linear stability analysis, that
the (active) force dipoles can destabilize their nematic order
via hydrodynamic instabilities [8–10].
Another example is provided by finite size micro-

swimmers moving in orientationally ordered fluids, where
the flow fields created by the swimmers interact with the
topology of the surrounding fluid. Typical experimental
examples include rodlike bacteria swimming in nematic
liquid crystals [11–17]. In the experiments, the bacteria is
observed to align along the nematic director [13,17], and the
directed motion can be used to, for example, transport cargo
[12]. Recent experiments have shown that the liquid crystal
(LC) topology can be used to control the swimmers [18–21],
such as trapping the particles with topological defects [18]
or using LC patterns to create bacterial jets [20], where
collective (hydrodynamic) effects play a key role.
The swimming bacteria stir the surrounding fluid which

can reorient the nearby nematic. In the simplest case of a
uniform nematic LC, experiments in thin, quasi two-
dimensional films have demonstrated an orientational
instability of the nematic order when bacterial activity is

increased [11]. The coupling between the (collective)
hydrodynamic effects created by the swimmers and the
liquid crystalline elasticity leads to a bend instability of the
LC director [11], similarly to what is predicted for extensile
active nematic gels [7,8] in two dimensions.
In this work, we open the third dimension and consider

microswimmer inclusions in a fully three-dimensional
nematic liquid crystal. By using hydrodynamic simulations
we study the (collective) dynamics of spherical squirmers
in the 3D sample. Our simulations reveal an instability of
the uniform nematic order, and a spontaneous formation of
a continuous twist is observed. At the steady state, the LC
director shows a constant twist along a unique axis, akin to
a cholesteric state in passive LCs, and the swimmer
trajectories become helicoidal. This spontaneous chiral
symmetry breaking arises from the coupling between the
swimmer flow fields and the nematic director. There is no
prescribed chirality in the system, and indeed, on average,
we observe the formation of right- and left-handed helices
at approximately equal probabilities. By evaluating the
elastic distortions, we show that the spontaneous formation
of the continuous twist can be understood in terms of a
hydrodynamic twist-bend instability in three dimensions.
Model.—We use a lattice Boltzmann (LB) method to

simulate the dynamics of microswimmers in liquid crystals
[22,23]. The nematic LC is modeled using a Landau–de
Gennes free energy whose density can be expressed as

FðQαβÞ ¼ A0

�
1 −

γ

3

�
Q2

αβ

2
−
γ

3
QαβQβγQγα

þ γ

4
ðQ2

αβÞ2 þ
K
2
ð∂βQαβÞ2: ð1Þ

PHYSICAL REVIEW LETTERS 132, 238301 (2024)

0031-9007=24=132(23)=238301(6) 238301-1 © 2024 American Physical Society

https://orcid.org/0009-0001-3325-2277
https://orcid.org/0000-0003-4108-9550
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.238301&domain=pdf&date_stamp=2024-06-03
https://doi.org/10.1103/PhysRevLett.132.238301
https://doi.org/10.1103/PhysRevLett.132.238301
https://doi.org/10.1103/PhysRevLett.132.238301
https://doi.org/10.1103/PhysRevLett.132.238301


The Greek indices denote Cartesian coordinates, and
summation over repeated indices is implied. Q is a
symmetric and traceless order parameter tensor, A0 is a
free energy scale, γ is a temperaturelike control parameter
giving a order-disorder transition at γ ∼ 2.7, and K is an
elastic constant.
The evolution of Q is given by the hydrodynamic

Beris-Edwards equation [24]

ð∂t þ uν∂νÞQαβ − Sαβ ¼ ΓHαβ; ð2Þ

where the first part describes the advection by velocity u
and Sαβ describes the possible rotation or stretching ofQ by
the flow [24]. Γ is the rotational diffusion constant, and the
molecular field is given by

Hαβ ¼ −δF=δQαβ þ ðδαβ=3ÞTrðδF=δQαβÞ: ð3Þ

To simulate the dynamics of the swimmers, we use a
squirmer model [25]. The tangential (slip) velocity profile
at the particle surface is given by [26]

uðθÞ ¼ B1 sinðθÞ þ
1

2
B2 sinð2θÞ; ð4Þ

where B1 and B2 are constant, giving the strength of the
source and force dipoles, respectively, and θ is the polar
angle with respect to the particle axis [27]. The source
dipole sets the particle swimming speed u0 ¼ 2

3
B1, and the

ratio β ¼ ðB2=B1Þ is the squirmer parameter. In the LB
method a no-slip boundary condition can be achieved by
employing a bounce back on links method [28,29], which
needs to be modified for a moving surface [30]. These local
rules can include additional terms, such as a surface slip
velocity [Eq. (4)] leading to LB simulations of squirming
motion [31,32].
The fluid velocity obeys the continuity equation, and

the Navier-Stokes equation, which is coupled to the LC via
a stress tensor [33]. We employ a 3D lattice Boltzmann
algorithm to solve the equations of motion using the
Ludwig code [23].
Simulation parameters.—We consider both pushers

(β < 0) and pullers (β > 0). We fix the B1 ¼ 0.0015,
giving the particle velocity u0≡ 2

3
B1¼10−3 in lattice units

(LU), but vary the force dipole strength B2 such that
β∈ ½−5;þ5�. We fix the fluid viscosity η ¼ 0.167 and
the swimmer radius R ¼ 6 in LU. To model the nematic
liquid crystal we use A0¼0.1, γ¼3.0, K¼0.005, ξ¼0.7,
Γ¼0.3, and a rotational viscosity γ1¼½2ð3s=2Þ2=Γ�¼5=3,
where s is the scalar order parameter of the nematic. The
physics of our system is governed by the Reynolds (Re) and
Ericksen (Er) numbers, which give the ratio of inertial and
viscous forces, as well as the ratio of viscous and elastic
forces, respectively. Using the parameters above, we
recover Re≡ ðu0R=ηÞ ≈ 0.036 and Er≡ ðγ1u0R=KÞ ≈ 2.

All the simulations were carried in a rectangular simulation
box 21R × 21R × 21R, with periodic boundary conditions
throughout.
Results.—To study the collective dynamics of micro-

swimmers in a three-dimensional nematic liquid crystal, we
initialized the system in a uniform nematic state with the n̂
along the x axis [Fig. 1(a)]. The microswimmers were
randomly distributed and oriented, while their volume
fraction ϕ ¼ ½ðN4=3πR3Þ=LxLyLZ�, and the strength of
the force dipole B2 and thus β were varied. For a low ϕ and
a low jβj the system remains in a uniform nematic state,
and pushers (pullers) have linear trajectories parallel
(perpendicular) to the nematic director n̂ [Fig. 1(a)] in
agreement with the simulations of isolated swimmers [22].
When the global activity is increased, either by increasing ϕ
or the magnitude of β, the uniform nematic becomes

FIG. 1. (a)–(c) Examples of observed states in microswimmer
nematic LC composites. (a) At low volume fraction the system
is uniform nematic, and pushers (pullers) swim along
(perpendicular) to the nematic director n̂. (b) When the activity
of the system is increased, the uniform nematic becomes
unstable, and a continuously twisting state is observed. The n̂
has a continuous twist along a unique axis (x axis in this case).
(c) At high activities, the spatial variations of n̂ become three-
dimensional leading to the formation of topological defects.
(d) Examples of the unwrapped particle trajectories in the helical
state, in the plane along (left) and perpendicular (right) to the
helical axis, for pushers (blue lines) and pullers (brown lines),
corresponding to ϕ ≈ 0.01 and β ¼ �3.5, respectively. The
dashed lines correspond to a theoretical argument (see text for
details). The black scale bar on the left corresponds to the system
size L ≈ 21R, and the pink on the right to 6R. The data in
(a)–(c) correspond to β ≈ −2.0; − 2.0; − 4.5 and ϕ ≈ 0.01,
0.02, 0.02; the background is color coded according to jnyj,
and the nematic director is schematically shown by purple lines.
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unstable, and the spontaneous formation of a cholesteric
twist is observed [Fig. 1(b)]. At the steady state the n̂
twist continuously around a unique axis, and the particle
trajectories become helicoidal [Fig. 1(d)]. Finally, the
system loses the cholesteric order at higher activities.
The director field variations lack a clear spatial symmetry,
and the particle dynamics become chaotic [Fig. 1(c)], as
shown in the Supplemental Material [34].
Initially, the nematic director n̂ is along the x axis

[Fig. 1(a)]. At the onset of the instability, a continuous twist
is observed to develop along this axis. The twist has well-
defined handedness and spans the whole system [Fig. 1(b)].
However, there is no inherent chirality in the system.
Indeed, in the different ensembles, we observed the for-
mation of both left- and right-handed twists equally (see,
e.g., Fig. 3).
At the steady state, the n̂ is well fitted with a helical

configuration [Fig. 2(a)]: nx ¼ cos α, ny ¼ sin α cosðqxÞ,
and nz ¼ � sin α sinðqxÞ where � corresponds to left- and
right-handed twists, α is the tilt angle with respect to the x
axis, and q is an inverse pitch length q ¼ 2π=p. The q is
observed to be nearly constant in the helical state for
both pushers and pullers, and the pitch length p matches
the simulation box length [p ≈ L ≈ 21R; dashed line in
Fig. 2(b)]. The tilt angle α is observed to increase upon
increasing the strength of the force dipoles, with the
tendency being slightly more pronounced for pushers than
pullers [open and closed blue circles in Fig. 2(b)].
The particle trajectories and director orientation are

connected, and the particle trajectories become helicoidal
in the helical state [Fig. 1(d)]. The pitch length of the
particle trajectories is approximately given by the pitch
length of the LC [Figs. 1(b) and 1(d)]. At the steady,
the pushers swim on average along and the pullers
perpendicular to the local n̂, leading to a radius of curvature

of the helical trajectory rt ≈ tanðαÞ=q and rt ≈ 1=½q tanðαÞ�
for pushers and pullers, respectively. Using the data
[ϕ ≈ 1% and β ≈�3.5 in Fig. 2(b)] these give rt ≈ 7R
and rt ≈ 1.6R which agree reasonably with the simulations
[dashed and solid lines in the right panel of Fig. 1(d)].
In passive achiral nematics, chiral symmetry breaking

has been observed to occur due to externally imposed
flow and confinement effects [36–44]. Here, the sponta-
neous formation of the helical states arises from the
coupling between the swimmer flow fields and the nematic
director n̂. The vorticity ω of the squirmer flow field vðrÞ
gives rise to a torque on an isolated spherical swimmer in
nematic liquid crystals [22]. In living liquid crystal thin
films [11,19], a flow instability was shown to arise from the
competition between the active (hydrodynamic) torques
and elastic aligning torques. We assume a similar mecha-
nism here.
The transition point between the nematic and helical

states depends both on the particle volume fraction ϕ
and the strength of the force dipole jB2j (Fig. 3). To
phenomenologically relate these quantities to an activity ζ
at the continuum limit, we consider the vorticity ω of
the squirmer flow field in isotropic fluid vðrÞ [45] at a
distance r from another swimmer ω ¼ ∇ × vðrÞ ¼
−3=2 sin 2θB2=r3 beξ, where beξ is a unit vector along the
azimuthal direction. When the density of the particles
is uniform, at low ϕ the average distance l between the
particles follows l ∼ ϕ−1=3. Using these we can approxi-
mate ζ ∼ B2ϕ. When all the other material parameters are
unchanged, the instability occurs at a (constant) critical
value ζ�. This gives ϕ� ∼ B−1

2 for the critical volume
fraction, which is in agreement with the predictions for

FIG. 2. (a) An example of the LC director components nx, ny,
and nz along x axis in the helical state. The data can be fitted by
director n̂ corresponding to a cholesteric with x as the helical
axis: nx ¼ sin α, ny ¼ sin α cosðqxÞ, and nz ¼ sin α sinðqxÞ,
where α is a tilt angle and q ¼ 2π=p is an inverse pitch length.
(The data correspond to β ¼ −3.5 and ϕ ¼ 0.01). (b) The inverse
pitch length q and tilt angle α measured from the simulations as a
function of the squirmer parameter β at a volume fraction
ϕ ≈ 1%. The horizontal dashed line marks q ≈ 2π=L, where L
is the simulation box length.

FIG. 3. Steady state phase diagram for the microswimmer-
nematic composite material, as a function of the Ericksen number
Er ¼ ½ðγ1jB2jRÞ=K� and the swimmer volume fraction ϕ. The
blue spheres correspond to uniform nematic states. The crosses
show where the helical states were observed. The purple (yellow)
crosses mark the right- (left-) handed helices. The green dia-
monds correspond to chaotic states. The critical swimmer volume
fraction ϕ� marking the transition between the nematic and
helical states is fitted by ϕ� ∼ jB2j−1 (see text for details).
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confined 2D living liquid crystals [19], and fits the
simulation data remarkably well (white lines in Fig. 3).
The onset of the helical state is observed to happen at
moderate Ericksen numbers and span to low swimmer
concentrations Er ∼ 10 and ϕ ∼ 1%, corresponding to
experimentally relevant values [11,15].
The system is achiral, and we observe an equal amount

of left- and right-handed states (given by yellow and purple
crosses in Fig. 3). This suggests that the chiral symmetry
breaking arises from an hydrodynamic instability. In two-
dimensional extensile active nematics [8] and in thin-film
living liquid crystals [11], a bend instability has been
observed to be dominant. Our results suggest that the
dominant instability is replaced by a twist when the third
dimension is opened. Indeed, linear stability analysis has
predicted a twist-bend mode to be most unstable in three-
dimensional extensile active gels [46,47], and a sponta-
neous mirror symmetry breaking in the defect dynamics
of active nematic gels have been observed both in simu-
lations [48] and in experiments [49]. Very recently a
spontaneous flow transition with a well-defined chirality
has been predicted in homeotropically confined active
nematics [50].
In our system, the equilibrium state of the liquid crystal

is a uniform nematic. The swimmer flow fields can perturb
this and create (local) deformations, which are penalized by
the elastic cost of these distortions. To analyze the different
deformations in the system, we calculated the amount of
twist, bend, and splay [34,51] across nematic, helical, and
chaotic states (Fig. 4). In the nematic state, the system has
uniform order, and any deformations are small and local-
ized near the particles (small jβj values in Fig. 4). At the
onset of the instability, we observe a sudden increase of the
distortions. The twist distortions are approximately twice
larger than the bend, and 4 times that of splay, for both
pushers and pullers (top and bottom panels in Fig. 4,
respectively). The chaotic state is marked by the emergence
of topological defects [Figs. 4(b) and 4(d)], as shown in the
Supplemental Material [34]. The splay distortion is also
observed to grow, while the bend and twist deformations
remain dominant [large jβj values in Figs. 4(b) and 4(d)].
The sudden growth of twist and bend distortions at the

transition between the uniform nematic and helical states
[Figs. 4(a) and 4(c)], suggests the dominance of the twist-
bend mode, in agreement with the linear stability analysis
of three-dimensional extensile active nematics [46]. The
absence of splay instability for pullers, which has been
predicted for contractile active nematics [8], can be under-
stood in terms of the swimming direction of the particles.
At the steady state, the pullers swim perpendicular to the
(local) nematic director [22]. The perpendicular alignment
of an inward (contractile) force dipole with respect to the
LC director, corresponds approximately to a parallel align-
ment of an outward (extensile) force dipole aligned along
n̂. Thus the flow instability for both spherical pusher and

puller swimmers can be expected to be the same, which
agrees with our observations (upper and lower panels in
Fig. 4, respectively).
Conclusions.—Using hydrodynamic simulations, we

have studied the collective dynamics of microswimmers
in nematic liquid crystal. We observe a spontaneous chiral
symmetry breaking, where the uniform nematic order
becomes unstable and formation of a continuous twist
along a unique axis is observed. The particle dynamics
follows the LC order, and in the cholesteric state the
swimmer trajectories become helical.
There is no inherent chirality in the system. At the steady

state, an equal amount of of left- and right-handed helices
are observed. The chiral states arise from a hydrodynamic
instability, originating from the coupling between the
swimmer flow fields and the liquid crystalline elasticity.
By evaluating the distortions in the system, we demonstrate
that the dominant mode is a twist-bend instability. This
agrees with predictions from a linear stability analysis of
three-dimensional extensile active nematics [46]. Our
predictions could be tested experimentally by opening
the third dimension in the experiments of quasi-2D living
LCs [11], where the Ericksen number Er ∼ 10 and
ϕ ∼ 0.2%, are commensurate with the parameters consid-
ered in our simulations. In these experiments, the lateral

FIG. 4. The bend B (blue circles), splay S (green dots), and
twist T (yellow triangles) distortions as well as the defect
concentration (red diamonds) measured from the simulations
for ϕ ≈ 0.01 and ϕ ≈ 0.04 in the left and right panel, respectively,
as a function of the squirmer parameter β. The dashed vertical
pink (orange) lines mark the transition between nematic and
helical (helical and chaotic) states.
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size of the system is a lot larger than the predicted
periodicity p ∼ 21R ∼ 140 μm, which should allow the
helical state to occur. The predictions for pullers could
be realized by considering, for example, Chlamydomonas
which is a near spherical microswimmer with a far-field
flow corresponding to a puller force dipole [52].
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