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Absorbing phase transitions (APTs) are widespread in nonequilibrium systems, spanning condensed
matter, epidemics, earthquakes, ecology, and chemical reactions. APTs feature an absorbing state in which
the system becomes entrapped, along with a transition, either continuous or discontinuous, to an active
state. Understanding which physical mechanisms determine the order of these transitions represents a
challenging open problem in nonequilibrium statistical mechanics. Here, by numerical simulations and
mean-field analysis, we show that a quasi-2D vibrofluidized granular system exhibits a novel form of APT.
The absorbing phase is observed in the horizontal dynamics below a critical packing fraction, and can be
continuous or discontinuous based on the emergent degree of synchronization in the vertical motion. Our
results provide a direct representation of a feasible experimental scenario, showcasing a surprising interplay
between dynamic phase transition and synchronization.
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In nonequilibrium statistical physics, an absorbing phase
transition (APT) happens when a system transitions from a
steady diffusive state to a static or periodic state with no
further evolution upon varying a control parameter. The
characteristics and universality class of these transitions
have been extensively discussed in the literature [1,2].
APTs have been observed in many different contexts, from
epidemiology [3] to sandpile models [4], from quantum
systems [5] to chemical reactions [6] and, since the
pioneering work by Pine et al. [7], particle systems have
become a major area of study for APTs. Specifically, APTs
have been observed in low Reynolds number reversible
suspensions [7–10], dense colloidal systems [11,12], emul-
sions [13,14], liquid crystals [15], glasses [16–18], jammed
systems [12,19], granular materials [20,21], and turbulent
systems [22]. In several of the cases mentioned above
[7–9,15,19,22], the transition occurs in a continuous
manner, and this behavior has been interpreted within
the framework of directed percolation [23] or conserved
directed percolation models, such as the Manna model
[24,25]. In many other situations [10,26,27], however, it
has been found that the transition is discontinuous, and it
has been argued that interactions, possibly arising from
hydrodynamics or elasticity, might be responsible for this
effect [28].
In this Letter, we investigate a simple vibrofluidized

granular model in which macroscopic spherical beads
confined within a quasi-2D cell undergo an APT from a
state in which they are locked in a vertical motion to a
diffusive and active state in the horizontal direction.

Interestingly, by adjusting parameters like the confinement
height or the vibration amplitude, we can induce either a
continuous or discontinuous transition. While previous
studies have identified systems exhibiting both types of
transitions [28–33], the underlying physical explanations
have often remained unclear. Here, we demonstrate that a
synchronization mechanism between grains in the vertical
direction provides a clear understanding of this dual
behavior within our system. Our observations are obtained
by simulations on both a realistic and a coarse-grained
model solved by molecular dynamics. The results are
rationalized using kinetic theory.
Realistic model.—Our first model consists of a vertically

vibrating granular system confined between two plates in a
quasi-2D geometry (see Fig. 1). The evolution is studied
using molecular dynamics simulations based on the dis-
crete element method (DEM) [34,35] using LAMMPS

[36,37]. This numerical approach is widely adopted to
model realistic setups in silico [38–41] utilizing precise
contact mechanics models [35,42,43] for the grain-grain
and grain-plate interactions (see Ref. [44] for additional
details). The simulation box has a square base of side L in
the x-y plane and height h with L ≫ h. Particles in the box
are confined in the z direction by two horizontal plates and
are subject to a constant gravity field g along z. Note that
the grain-plate interaction also includes tangential friction,
which is crucial for the phenomenon under study. In the x
and y directions, we impose periodic boundary conditions.
The box vibrates in the z direction following a sinusoidal
motion with frequency f and amplitude A and is filled with
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monodisperse spherical grains of spatial coordinates
fx; y; zg, translational velocities fvx; vy; vzg, rotational
velocities fωx;ωy;ωzg diameter σ, and mass m. The
physical parameters, which are fixed for all the DEM
simulations presented in this Letter, are σ ¼ 2.5 mm,
f ¼ 53 Hz, and m ¼ 6.54 × 10−5 kg. The number N of
simulated grains ranges from 103 to 2 × 104 depending on
the specific analysis. In the following, we will consider
lengths expressed in terms of grain diameter σ, times in
terms of inverse driving frequency 1=f, and masses in
terms of grain mass m. Thus, the energy unit is given
by mðσfÞ2 ¼ 1.15 × 10−6 J.
In this system, collisions with the upper and lower plates

inject kinetic energy along the z direction, but dissipate any
kinetic energy in the x-y plane due to tangential frictional
forces. Hence, an isolated particle with a finite velocity in
the x-y plane will slow down and eventually come to a
stop with respect to its horizontal motion, while continuing
to vertically bounce between the two vibrating plates.
However, collisions between grains allow for z-to-xy
energy conversion (see Fig. 1). The resulting dynamics
of a single grain follow two possible scenarios: It can either
experience a collision-free flight and lose all its horizontal
energy, or collide again gaining new horizontal energy.
APT and synchronization.—DEM simulations are ini-

tialized by placing N grains with random velocities in the
vibrating quasi-2D box. After a transient, the dynamics
reach a nonequilibrium steady state where particles bounce
between the confining plates. In this situation, particles are
either mobile or immobile in the x-y plane, depending on
the system parameters (see Video 1 in Supplemental
Material [44]). We characterize the granular horizontal
dynamics with the mean horizontal kinetic energy of the
grains:

T ¼ 1

T

Z
T

0

dt
m
2
hv2xðtÞ þ v2yðtÞi; ð1Þ

where h·i refers to the average over all the particles in an
instantaneous configuration, and T is the observation time.
This quantity is usually called granular temperature. In
Figs. 2(a) and 2(b), we show the steady-state value TSS of
the granular temperature as a function of the system’s two-
dimensional packing fraction ϕ ¼ πNσ2=4L2 for different
combinations of amplitude A and box height h. We make
two main observations. First, all the curves show an APT
between an absorbing state (TSS ¼ 0) below a critical
packing fraction ϕc and an active state (TSS > 0) above
ϕc (see Video 2 in Supplemental Material [44]). Second,
The APTs can be either continuous or discontinuous
depending on the specific combination of A and h.
The first observation can be explained as follows. At low

packing fractions (ϕ < ϕc), where collisions between
grains are rare, the tangential friction during grain-plate
collisions dissipates all the energy in the xy directions,
leading to dynamical arrest. At moderate packing fractions

FIG. 1. Numerical quasi-2D geometry used in realistic simu-
lations. A vertical displacement zpðtÞ is imposed on the box in
order to provide external energy to the system. Because of
tangential frictional forces, the grains lose horizontal energy
during collisions with the top and bottom walls. During non-
planar collisions between grains, the vertical energy gained from
the vibration of the plate is transferred to the xy components of
the velocities of the particles.

FIG. 2. Horizontal kinetic energy in the steady state as a
function of ϕ for h ¼ 1.88σ (a), h ¼ 1.63σ (b), and different
vibration amplitudes. (c) Synchronization map in the fA; hg
parameter space. We note that the degree of synchronization s
exhibits a nonmonotonic behavior as a function of both A and h.
Simulations are performed with N ¼ 103 grains.
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(ϕ > ϕc), where the grain-grain collision frequency is
higher, energy transfer from the z direction to the x-y
plane keeps the system at a finite horizontal kinetic energy.
The second observation requires a more detailed inves-
tigation. In Fig. 2(a), we show the behavior of TSS for
different amplitudes with a fixed h ¼ 1.88σ. Here we see
that, increasing A, the transition goes from discontinuous to
continuous and the critical packing fraction decreases. The
same analysis performed for h ¼ 1.63σ [Fig. 2(b)] shows
an opposite trend: Upon increasing A, we observe a change
from a continuous to a discontinuous transition and an
increase of the critical packing fraction. By comparing the
two sets of curves highlighted with larger symbols in both
panels, we also note that raising h at fixed amplitude
implies going from a continuous to a discontinuous
transition with an increase of ϕc for A ¼ 0.105σ, while
for A ¼ 0.121σ the opposite happens. We point out that,
regardless of the variation of A or h, passing from a second-
order-like to a first-order-like transition is always accom-
panied by an increase of ϕc. From this phenomenology, it is
clear that the effects of A and h on the APT cannot be
rationalized separately.
To explain this unexpected behavior, we examine the

vertical motion in the absorbing state (low ϕ) for different A
and h. Vertical trajectories reveal that, depending on the
choice of A and h, grains can be either in a synchronized or
in an asynchronized state (see also Video 3 in Supplemental
Material [44]). During the synchronized motion, vertical
trajectories of the grains are periodic, with all particles
showing the same period and phase after a short initial
synchronization time. Hence, at each instant t, they all have
the same zðtÞ and vzðtÞ. Asynchronous motion, on the
other hand, is observed in two different forms: Grains can
move aperiodically or periodically with the same period but
different phases. We point out that synchronization
phenomena have already been observed in vibrated
granular systems [51–56] and can be understood theoreti-
cally by means of simple dynamical models [57–59]. We
define the degree of synchronization of the system as
s ¼ limt0;t→∞ð1=tÞ

R t0þt
t0 dt0jheiθjðt0Þij, where θj is the effec-

tive phase of particle j [44]. Measuring s as a function
of A and h we obtain the synchronization map shown in
Fig. 2(c). Here we can see that the degree of synchroniza-
tion is determined by the interplay between shaking
amplitude and box height in a nontrivial way. In particular,
upon varying either A or h, it is possible to see the system
transition from synchronized to asynchronized and back
without changing any other parameters. Based on the
synchronization of isolated particles, we can look at the
horizontal motion from a new point of view. To this aim, we
highlight in Fig. 2(c) the path in fA; hg that is followed in
Figs. 2(a) and 2(b). We can conclude that, for the xy
motion, vertical synchronization leads to discontinuous
transitions, while vertical asynchronization leads to con-
tinuous ones. A first qualitative insight into the role of

synchronization comes from the fact that it can affect
the energy gain in a grain-grain collision. Indeed, two
synchronized particles will collide while being at the same
height (in-plane collisions), and hence experience a less
efficient z-to-xy energy transfer with respect to what
happens when grains collide not being at the same height
(off-plane collisions). Hence, vertical synchronization of
the particles can severely reduce the injection of horizontal
kinetic energy into the system promoting the transition to
the absorbing state.
Summarizing, the observed phenomenology is attribut-

able to the interplay between two distinct transitions: one
between absorbing and active states in the xy motion, and
the other between synchronized and asynchronized states in
the z dynamics.
Coarse-grained model.—In order to reduce the com-

plexity of this phenomenology to its essential ingredients,
we introduce a simplified 2D coarse-grained model that
incorporates the three primary mechanisms derived from
the analysis of the realistic model: energy injection at
collision, slowdown of the velocity during the “free flight,”
and synchronization.
We build our model by taking inspiration from the one

proposed in Ref. [60] which describes well, at the coarse-
grained level, a quasi-2D vibrated granular gas without
synchronization and damping. The beads are modeled by
identical hard disks in 2D of mass m and diameter σ
undergoing active collisions characterized by a dissipative
coefficient of restitution α and a velocity injection Δij

between particles i and j which accounts for the z to xy
energy transfer of the DEMmodel. This is expressed by the
collision rule:

v0i ¼ vi þ
1þ α

2
ðvij · σ̂ijÞσ̂ij þ Δijσ̂ij;

v0j ¼ vj −
1þ α

2
ðvij · σ̂ijÞσ̂ij − Δijσ̂ij; ð2Þ

where 0 ≤ α ≤ 1 is the coefficient of restitution, Δij > 0 is
the velocity injection, v0i the postcollision velocity of
particle i, vi its precollision velocity, and vij and σ̂ij are,
respectively, the relative velocity between particles i and j
and the unit vector joining them. The Δ imitates the energy
transfer from vertical component to horizontal found in the
realistic model. A viscous drag during the free flight is
introduced to reflect the dissipative collisions with the
plates in the realistic model:

dvi
dt

¼ −γvi: ð3Þ

Up tonow,ourmodel is similar to theone introducedbyLei
and Ni to study an active hyperuniform liquid in Ref. [61].
The final ingredient of the model is synchronization,

which is introduced explicitly through a history-dependent
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Δij and a synchronization time τs:

Δij ¼
�Δ > 0 if δti < τs or δtj < τs;

0 otherwise;
ð4Þ

with δti the time since the last collision of particle i. The
idea is that synchronization arises on timescale τs [44] that
is in competition with the typical collision time between
particles. Synchronized particles will experience purely
dissipative collisions. In particular, the limit τs → ∞
corresponds to a system where no synchronization takes
place. A summary of the differences between the coarse-
grained model and the realistic model is given in Ref. [44].
We perform event-driven simulations [62] of this model.

Results are presented in Fig. 3. The behavior observed with
the realistic model is recovered: When the synchronization
time is finite a discontinuous transition is observed. In
contrast, similar to the behavior found in Ref. [61], a
continuous transition is found (see inset) when τs → ∞. We
also observed that, in the first case, the system reaches an
absorbing state due to dissipative collisions, while in the
second case it is reached because of the viscous drag. We
confirmed the nature of both transitions with a finite size
analysis [44].
Theory.—Following the approach presented in Ref. [60],

the temperature change of the system, assuming homo-
geneity, is only determined by the energy injection and
dissipation following the relation

∂T
∂t

¼ Gðϕ; TÞ ¼ ωðϕ; TÞ
2

hE0 − Eicoll − 2γT; ð5Þ

where Gðϕ; TÞ represents the rate of energy change due to
collisions and drag, ωðϕ; TÞ is the frequency of collision,

and h…icoll is an average over collisions [63] defined in
Ref. [44]. The energy change E0 − E contains dissipative
terms due to α and an energy injection term due to Δ as
given explicitly in Ref. [44].
An exact calculation of the collisional average in Eq. (5)

is challenging due to the cumbersome form of Δij [Eq. (4)];
however, we can make a reasonable estimate by assuming
that the history-dependent Δij can be replaced by an
effective one: Δ̄. We propose

Δ̄ðϕ; T; τsÞ≡ Δ̄ij ¼ Δð1 − e−2ωðϕ;TÞτsÞ; ð6Þ

where the term in parentheses is the probability that at least
one of the two particles involved in the collision has
collided at a time smaller than τs in the past, assuming
uncorrelated particles and Poissonian collisions [64].
Finally, we simplify the averages over collisions includ-

ing a Δij by doing the following approximation when
calculating the average hΔijgðvi; vjÞicoll ≃ Δ̄hgðvi; vjÞicoll
with gðvi; vjÞ an arbitrary function. This approximation
essentially neglects any correlations between particle
velocities and their synchronization state. Note that this
approximation becomes exact in the limit τs → ∞ since
Δij ¼ Δ, a constant, in this case.
Assuming molecular chaos and a Gaussian velocity

distribution, Eq. (5) reduces to [44]

Gðϕ; TÞ ¼ ωðϕ; TÞ
2

½mΔ̄2 þ αΔ̄
ffiffiffiffiffiffiffiffiffiffi
πmT

p
−Tð1 − α2Þ� − 2γT:

ð7Þ

The steady-state temperature of the system is given by the
root of Eq. (7).
In the limit τs → ∞ and by assuming Enskog’s fre-

quency of collision for ωðϕ; TÞ [44], a nontrivial zero of
Eq. (7) can be found exactly and leads to the following
steady-state temperature:

TSS ¼
�
ϵþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ 4mΔ2ð1 − α2Þ

p
2ð1 − α2Þ

�2

ð8Þ

with ϵ ¼ αΔ
ffiffiffiffiffiffiffi
πm

p
− 4γ=ω̃ and ω̃ ¼ ð½8ϕχðϕÞ�=σ ffiffiffiffiffiffiffi

πm
p Þ

where χ is the Enskog factor taken to be the radial pair
distribution function at contact of an equilibrium system at
the same density. The result of Eq. (8) is shown in Fig. 3
(τ̂=τs ¼ 0) and compared against the simulations. While the
high-temperature regime is very well predicted by the
theory, it does not predict a transition at all, as seen in
the inset, since the steady-state temperature reaches 0 only
at ϕ ¼ 0. This is caused by the fact that our frequency of
collision is equal to an equilibrium one as a result of our
assumptions of molecular chaos and a Gaussian velocity
distribution. These assumptions only hold as long as the
mean free time is small compared to 1=γ. Indeed, we can

FIG. 3. Comparison between the theory and simulations. Effect
of synchronization over the nature of transition and the critical
packing fraction: N ¼ 20 000, τ̂Δ=σ ¼ 0.025, α ¼ 0.95, and
τ̂γ ¼ 0.01. The inset is a semilog window of the small density
behavior of the theory and simulation for the case without
synchronization. The dashed vertical line represents the critical
packing fraction predicted from the mean free path argument.
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show that below a packing fraction ϕc, the system must
come to a rest. At this ϕc, the temperature should vanish,
and hence the exiting velocity of a particle after a collision
must be equal to Δwhich allows it to travel a distance Δ=γ.
By equating this distance with the mean free path [61]
lðϕÞ, we obtain an equation for ϕc: lðϕcÞ ¼ Δ=γ. In the
inset of Fig. 3, we plot a vertical line corresponding to this
value, which agrees well with the transition packing
fraction observed in our simulations in the absence of
synchronization.
We now turn our attention to the theory at finite τs. When

the synchronization time is finite, we can no longer solve
Eq. (7) analytically. Hence, we compute the steady-state
temperature TSS by numerically finding the root of Eq. (7).
The theory correctly predicts a discontinuous transition at
finite τs and is in good qualitative agreement with the
simulation results. Better results are hindered by the
approximation done in Eq. (6) and by the hypothesis of
homogeneity. Overall, our kinetic theory clarifies that the
physical mechanism underlying the occurrence of discon-
tinuous APTs is the weakening of energy transfer at
collisions caused by synchronization.
Conclusion.—Summarizing, we have explored both

numerically and theoretically a vibrated granular system
confined in a quasi-2D geometry that exhibits both a
continuous and a discontinuous absorbing phase transition,
and we have demonstrated that the character of this
transition is intricately linked to a synchronization mecha-
nism occurring due to the confinement and hence the
dominant dissipation mechanism. Our work presents an
interesting effect of synchronization on APTs that allows us
to reconcile the two different types of phase transitions
observed in nonequilibrium phenomena. Indeed, by adjust-
ing the driving parameters, we have demonstrated the
ability to shift the order of the transition from continuous
to discontinuous. Our model draws inspiration from a setup
for vibrated granular matter which has been extensively
investigated [52,53,60,65–71], and can be readily imple-
mented in future experimental studies of this phenomenon.
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