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Short-range repulsion governs the dynamics of matter from atoms to animals. Using theory, simulations,
and experiments, we find that an ensemble of repulsive particles spreads compactly with a sharp boundary,
in contrast to the diffusive spreading of Brownian particles. Starting from the pair interactions, at high
densities, the many-body dynamics follow nonlinear diffusion with a self-similar expansion, growing as
t1=4; At longer times, thermal motion dominates with the classic t1=2 expansion. A logarithmic growth
controlled by nearest-neighbor interactions connects the two self-similar regimes.
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Suspensions are everywhere—from the ink we (used to)
write with, the soy milk we drink, and the drugs we
consume to the very structure of most living systems.
Life builds on repulsive interactions in keeping micro-
scopic particles suspended. More often than not, the
particles are charged, and electrostatic interactions are
screened by the presence of ions in solution [1–3]. Such is
the case for charged proteins in a membrane [4,5], vesicles
in suspension [6,7], droplets in microfluidic devices [8],
water purification, plasma physics, and high charge-
density batteries [9–11]. In other cases, particles are not
strictly charged, yet are repelled by short-range forces, e.g.,
globular polymers, colloidal particles coated by a shell, or
vortex cores in type II superconductors [12–16].
Short-range repulsion is crucial for interactions spanning

a wide spectrum of sizes and dynamics. These include the
packing and flow of granular materials like sand [17]. It is
also used to describe biological systems, elucidating the
motion of bacterial colonies [18,19], the collective behavior
of insect swarms [20,21], or the coordinated movement of
vertebrates in herds, schools, and flocks [22], as well as for
human crowds [23–25]. Furthermore, short-range repulsion
is often utilized in modeling nonequilibrium many-body
systems [26–29], in information theory [30], and in swarm
robotics [31].
In what follows, we consider the expansion of a

suspension of particles with repulsive, short-range inter-
actions that dominate over thermal diffusion. We find that
when the interaction has a typical decay length, the
suspension expands compactly—the concentration van-
ishes identically outside a core of finite size. Compact
profiles are found in diverse physical systems, including
gas diffusion through porous medium [32,33], thin films
[34,35], and even in population dynamics [36]. A family of

compact solitons (called compactons) were found as sol-
utions to a generalization of the Korteweg–De Vrie (KdV)
equation [37]. These systems were modeled using a con-
tinuum, hydrodynamic description characterized by phe-
nomenological parameters. In this Letter, we show that the
expansion of a dense suspension of particles with short-
range repulsion follows two athermal regimes. The coarse-
grained description of the microscopic pair-potential leads
to a nonlinear diffusion equation with a compact solution.
We find under what conditions the continuum description
breaks down, leading to a second regime.
As we outline below, at high densities, the time evolution

and distribution of the density field nðr; tÞ, are determined
by a nonlinear diffusion equation, stemming from particle-
particle interactions, leading to a concentration-dependent
diffusion of the form [16,38]

∂n
∂t

¼ ∇ · ½ðD0 þ αnÞ∇n�; ð1Þ
whereD0 is the thermal diffusion coefficient and αn acts as
a density-dependent diffusion coefficient. Equation (1)
shows the relative significance of the thermal (D0) and
the athermal dynamics (αn). In our Letter we focus on the
distinct nature of the athermal regime. For thermal dif-
fusion, there is a Gaussian density profile while in the
athermal case, the density profile is parabolic and is strictly
zero beyond a maximal radius. Unlike classic diffusion
where the radius of a drop grows as

ffiffi
t

p
, a repulsion-

dominated drop grows as t1=4 (see Supplemental Material
[39], video). The transition between the two regimes is
dictated by nearest-neighbor interactions since particle
separation is larger than the characteristic repulsive dis-
tance. For the ubiquitous exponential or screened electro-
static interactions, the asymptotic limits of the time
evolution are given by
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RðtÞ ∝

8><
>:

t1=4 n ≫ 1 & Pe ≫ 1

logðtÞ n < 1 & Pe ≫ 1

t1=2 Pe ≪ 1

; ð2Þ

where n ¼ ρ=ρc ¼ l2=L2 is the nondimensionalized den-
sity, ρ≡ 1=ðπL2Þ, with L being the typical distance
between particles, and ρc ≡ 1=ðπl2Þ, with l being the decay
length of the short-range repulsion. The transition from the
first to the second type of expansion occurs when L ¼ l.
The Péclet number (Pe), is the ratio between deterministic
forces and thermal forces [35]. Particles that are 10 μm or
more (commonly found in food, cosmetics, and printing
technologies) have negligible thermal diffusion and are
expected to follow the athermal dynamics (high Pe). More
generally, the magnitude of the deterministic force depends
on the mean interparticle distance, L. Dense suspensions
could be dominated by athermal dynamics even
if individual particles have thermal diffusion. For example,
from Eq. (1) in the dense limit, n ≫ 1, we can see that
D0 is negligible when αn ≫ D0. Similarly, this is true
when the mean distance between particles satisfies
L ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0l3=kbT

p
, where kB is Boltzmann constant, F0

is the magnitude of the force, and T is temperature. This
criterion for screened electrostatics can be alternatively
written as n ≫ kBT=2U0 (where F0l ¼ 2U0). Note that in
the overdamped dynamics discussed here, this limit is
independent of the size of the particle. Thus, even small
particles will show an athermal expansion at sufficiently
short times when sufficiently dense (see potential applica-
tions for nanoparticles in Supplemental Material [39]).
Equation (2) is the main result of this Letter, which is

structured as follows: first, we analytically derive the two
athermal regimes. Next, we compare analytic results with
simulations and experiments. We show that at high den-
sities (n ≫ 1), where interactions go beyond nearest
neighbors, discrete simulations are quantitatively consistent
with the approximate analytical solution (as well as
numerical integration of the mass conservation equation
in the Supplemental Material [39]); then we proceed to
show that in the semisparse limit, where the dynamics are
still athermal (Pe > 1) but dominated only by nearest
neighbor interactions (n ≤ 1) indeed the expansion follows
Eq. (2) as observed in both experiments of a charged
colloidal suspension and discrete simulations.
Governing equations.—We examine particles in the

overdamped limit, where inertia is negligible, and the
force, F and velocity v, are proportional through constant
mobility, v ¼ μF. The interaction can be due to any short-
ranged, isotropic, repulsive force—from the subatomic
Yukawa potential, through Pauli repulsion at the inter-
atomic scale, screened Coulomb potential in an ionic
solution, plasma, or even soft-core entropic repulsion in
colloidal suspensions [10,12,41–43]. Most of our results in
the dense regime are generic, and for simplicity, we
consider two-dimensional exponential interactions in the

main text, FðrÞ ¼ v0e−r=l=μ. The Supplemental Material
[39] has results for other forces. Our analysis does not
apply to strictly hard-core repulsion.
To build intuition, let us examine two particles and then

many. Two Brownian particles diffuse apart at a rate of
ffiffi
t

p
.

By contrast, two athermal, strictly repulsive particles
separate as ∼ logðtÞ since dr=dt ¼ 2v0e−r=l, where v0 is
the magnitude of the velocity given by v0 ¼ μF0. In an
ensemble of many repulsive particles, each particle moves
by the sum of the interaction from all particles. That is, the
velocity of particle i is given by

viðriÞ ¼ μ
X
j

F

�
rij
l

�
r̂ij ¼

X
j

v0e−rij=lr̂ij; ð3Þ

where rij ¼ ri − rj, rij ¼ jrijj, and r̂ij ¼ rij=rij. Discrete
simulations of Eq. (3) with the addition of a small
Brownian noise term ξ (with hξi ¼ 0 and hξ2i ≠ 0) show
that the radius of an ensemble of N repulsive particles
grows as h

ffiffiffiffiffiffi
R2

p
i ∼ t1=4 in the dense limit (n ≫ 1) and as

logðtÞ in the semisparse limit (n ≤ 1), see Fig. 1. Initially,
interparticle interactions dominate, Pe ∼ 4000, and thermal
diffusion is negligible. As the suspension spreads, and its
density decreases, interparticle interactions become weak.
When Pe < 1, Brownian motion dominates and the growth

FIG. 1. Simulation of 4000 particles starting from a dense
random distribution. At early times, the Péclet number is ∼4000,
and the dynamics are in the athermal regime. Each particle
interacts with many others, and we see the R ∼ t1=4 scaling
predicted by the self-similar solution. At intermediate times, each
particle interacts only with its nearest neighbors, and there is a
transition to the semisparse limit with a logarithmic dependence
on time. At long times, when the Péclet number is smaller than 1,
the dynamics are governed by Brownian motion with the
characteristic t1=2 scaling, and the behavior is no longer compact,
as can be seen from snapshots at the bottom.
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is of t1=2. In the rest of the work we take ξ ¼ 0 and focus on
the athermal limit.
Analytic results in the dense limit.—In the dense limit,

n ≫ 1, we follow [16,38,44,45] in coarse graining the
velocity to derive a diffusion equation. The procedure is
analogous to a Fokker-Planck expansion with a mean-field
closure. We start with the mass conservation equation for
the number of particles ð∂n=∂tÞ þ∇ · ðnvÞ ¼ 0, where
ρ½rðtÞ� ¼ P

i δ½rðtÞ − riðtÞ�. We turn to find the coarse-
grained velocity, v½rðtÞ�. Since the interactions are purely
repulsive, the velocity field is of the form vðrÞ ¼ vðrÞr̂. In
the limit of a continuous density of particles, Eq. (3)
becomes

vðXÞ ¼ μρc

Z
V
nðYÞ X − Y

jX − YjF
�jX − Yj

l

�
ddY; ð4Þ

where d is the dimension, and V the volume of the drop.
Combined with the mass conservation, the two equations
can be solved numerically without approximations, as done
in the Supplemental Material [39].
For particles away from the edge of the suspension,

jR − Xj ≫ l, we can extend the integration boundaries to the
entire space and perform a multipole expansion of Eq. (4)
in the density, giving the Taylor series, nðXþ lsÞ≈
nðXÞ þ ls ·∇nðXÞ þ � � �, wherewe have changed variables
to a normalized distance s ¼ ðY −XÞ=l. In 2D polar
coordinates s ¼ sŝ ¼ sðcos θ; sin θÞ, X ¼ r0ðcosϕ; sinϕÞ,
with θ;ϕ∈ ½0; 2πÞ and s; r0 > 0. By symmetry, the first term
of the moment expansion vanishes after integration in
Eq. (4). The remaining leading term in the velocity is the
concentration gradient,

vðXÞ≈−
lμ
π
∇nðXÞ ·

Z
ŝ ŝdΩ

Z
sdFðsÞds¼−α

∂n
∂r

r̂; ð5Þ

where dΩ signifies angular integration. In both screened
Coulomb and exponential repulsion in two dimensions
α ¼ 2v0l (values for other cases in two and three dimensions
are given in the Supplemental Material [39]).
The full nonlinear diffusion equation [Eq. (1)] is found

when plugging Eq. (5) in the mass conservation equation,
giving an effective diffusion coefficient that linearly
increases with density,D ¼ αnðrÞ. In 2D polar coordinates,

∂n
∂t

−
α

r
∂

∂r

�
rn

∂n
∂r

�
¼ 0: ð6Þ

This equation is identical to the effective porous media
equation [32], but derived from the microscopic details
of the pair interaction. Self-similar solutions are given
by dimensional analysis of Eq. (6) (here we follow
Refs. [34,35]): We start by assuming a solution of the
form n ¼ AtγfðBr=tβÞ ¼ AtγfðηÞ. We can further link γ
and β by demanding that the total number of particles N is

independent of time, giving γ ¼ −2β. Placing n in Eq. (6),
we find β ¼ 1

4
, and B2 ¼ ð1=8AαÞ. The equation for

the self-similarity function is 2f þ ηf0 ¼ −ð1=2ηÞðd=dηÞ
ðηff0Þ, whose solution is parabolic, such that the concen-
tration is

n ¼ Affiffi
t

p ð1 − η2Þ ¼ Affiffi
t

p
�
1 − B2

r2ffiffi
t

p
�
: ð7Þ

Finally, the prefactor A is determined from the total number
of particles, giving A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3N=ð8πρcαÞ
p

. Note that the
concentration of particles is strictly zero beyond
Br ¼ t1=4, meaning that the drop is compact. A similar
calculation in 3D leads to n ¼ At−3=5fðBr=t1=5Þ.
Analytic results in the semisparse limit.—When the

average distance between particles is larger than the decay
length of the repulsive force l we can assume only nearest
neighbors contribute to the interaction, and the discrete
nature of the suspension cannot be ignored. In such cases,
we cannot use Eq. (5) to find the density as a function of
time. However, we can still approximate the radius of the
drop as it spreads by considering the velocity of particles at
the edge. Because of the repulsive interactions, the arrange-
ment of particles is roughly hexagonal as verified in the
simulations. We can assume a particle at the edge of the
drop has three equally spaced nearest neighbors. As a result
of the isotropic nature of the interactions we can consider
any particle. We take the particle positioned at r ¼ Rx̂,
which moves with velocity vðRx̂Þ ¼ f½dRðtÞ�=dtgx̂ ¼
2v0e

−R
ffiffiffiffiffiffiffi
π=N

p
=lx̂, where R

ffiffiffiffiffiffiffiffiffi
π=N

p
is the average distance

between particles in the ensemble. The approximate radius
is simply found by integrating the velocity

RðtÞ ¼
ffiffiffiffi
N
π

r
l logðt=t0 þ cÞ; ð8Þ

with t0 ¼
ffiffiffiffiffiffiffiffiffi
N=π

p
l=2v0 and c ¼ expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0π=l

2N
p

Þ, where
R0 is the initial radius. We next demonstrate the validity of
this result in simulations and experiments of a suspension
of charge-stabilized colloids in deionized water.
Discrete simulation in the dense limit.—We ran simu-

lations of 10 000 particles with short-ranged exponential
repulsion. We start from a random configuration in a circle
of size R, ensuring that n ≫ 1, and let the system evolve
over time using a 5th order Runge-Kutta scheme. As the
drop evolves, it spreads, such that R ¼ RðtÞ. We find the
local density of particles by using Voronoi tessellation and
calculating the area of each cell, Ai

cell [46]. The density is
given by ρðrÞ ¼ 1=Ai

cell and nðrÞ ¼ ρ=ρc. The upper left
panel in Fig. 2 shows overlayed snapshots from the
simulation at different times. Figure 2(b) shows the radius
of the drop as a function of time. After a short transient, the
radius follows the expected power law of R ∝ t1=4. The
density profile as a function of the radius of the drop r at
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different times, is presented in Fig. 2(c). And lastly, the
bottom right panel shows the rescaled density

ffiffi
t

p
n versus

r2=
ffiffi
t

p
in the dense regime. Note how all the curves collapse

to a single straight line according to the scaling of Eq. (7).
Experiments of the expansion of a colloidal suspension

in the semisparse limit.—We tested experimentally the
expansion of a colloidal suspension. Our findings indicate
that despite the presence of thermal motion of the individ-
uals, the collective dynamics adhere to an athermal com-
pact expansion. To achieve this, we used optical tweezers to
concentrate the particles, following which we turned off the
light and monitored the spreading of the colloidal drop (see
Fig. 3). Most commonly, optical tweezers have the laser
light first enter the objective rear lens, coming to a tight
focus at the imaging plane [47]. This creates a strong yet
small trap that can typically host a single colloidal particle
(∼1 μm). To make a trap that can corral many particles,
we built a custom optical setup by using a nearly collimated
laser beam that first passes through the sample, and
only then enters the objective through the collecting lens
[48–50] (see Supplemental Material for further details
[39]). We used d ¼ 3 μm carboxyl-functionalized colloidal
particles suspended in deionized water with no added salts.

The Debye screening length is expected to be between
λD ≈ 0.2–0.6 μm [51–53]. Using DLVO theory we estimate
that when separated by a single radius, two charge-
stabilized spherical particles with a screened-Coulomb
interaction experience a repulsive potential of more than
100kBT (see Supplemental Material [39]).
When the laser is turned on, particles are softly attracted

into the region of a higher optical field, collecting approx-
imately N ≈ 6000 particles [see Fig. 3(a)]. Particles are
packed at an effective area fraction of 0.9. Note that despite
being in a high filling fraction, the expansion is expected to
follow the semisparse limit described in Eq. (2) since l≲ d
and it is above the diffusive limit. Once the beam is turned
off, the suspension starts to spread. During the initial
minutes of spreading (∼12 min), the suspension remains
compact with a sharp boundary (see supporting movie
in [39]). The velocity of the edge of the drop is initially
U ∼ 4 μm=s, giving a Péclet number of Pe ∼ 100, such that
the dynamics are indeed governed by interparticle forces.
The velocity decreases with density and towards the end of
the experiment Pe ∼ 1, where the contribution of thermal
diffusion becomes significant. We measure the size of the
drop in the compact expansion regime by thresholding the
movie (Fig. 3) and extracting the radius of the drop at
each frame. We find that as predicted by Eq. (2), the
suspension expands logarithmically. By fitting the plot to a
logarithm, we can approximate the number of particles
(

ffiffiffiffiffiffiffiffiffi
N=π

p
l ≈ 26 μm). We find N ≈ 5900 with l ¼ 0.6 μm,

consistent with visual approximations.
Discrete simulation in the semisparse limit.—Running

simulations of 10 000 particles with exponential repulsion
(or screened Coulomb repulsion in the Supplemental
Material [39]) in the semisparse limit, results in a

(a) (b)

(c) (d)

FIG. 2. Results from a simulation of 10 000 athermal particles
with exponentially repulsive interactions. We start from a high
density and track the particles as they spread. (a) Snapshots of
the simulations at different times (t ¼ 0; 5 × 103; 2 × 104; 3.5×
104; 5 × 104). (b) Radius as a function of time showing the t1=4

scaling (in blue) in the dense limit, and as logðtÞ (green) in the
semisparse limit. Inset shows the same data in a semi-log plot to
better visualize the logarithmic regime. (c) Density as a function
of radius in the dense limit for different times. The color goes
from bright to dark as time progresses. (d) Rescaled density

ffiffi
t

p
n

as a function of r2=
ffiffi
t

p
showing all the curves collapse to a single

line as predicted by Eq. (7).

(a)

(b) (c)

FIG. 3. Experimental results. (a) Snapshots of a dense suspen-
sion with N ≈ 3000 particles show a compact expansion, with
particles spreading due to screened electrostatic repulsion.
Scalebar 100 μm. (b) Overlapping figures with a color threshold
(c) drop radius as a function of time. The radius shows a
logarithmic dependence (green dashed line) as predicted by
the theory for a semisparse suspension.
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logarithmic growth of the drop’s radius as a function
of time. Figure 2 shows a transition from R ∼ t1=4 at
early times, as predicted by the self-similar solution, toffiffiffiffiffiffiffiffiffi
N=π

p
l logðtÞ as predicted in the semisparse limit, Eq. (8).

Even though the analytic arguments made rough assump-
tions, namely, taking the average distance between particles
as a measure of spacing, the coefficient of the logarithm
is correctly predicted. In our case l ¼ 0.005 givingffiffiffiffiffiffiffiffiffi
N=π

p
l ¼ 0.28.

In this Letter, we identified and characterized the
athermal compact expansion of a repulsive suspension.
We presented an analytical theory that captures the micro-
scopic origin of the compact expansion and verified its
different limits in both simulations and experiments. We
identified two regimes where a collection of repulsive
particles exhibits subdiffusive dynamics. (i) A dense regime
where interactions go beyond nearest neighbors, the
radius expands as a power law in time (R ∝ t1=4), and
the density profile is self-similar. (ii) A semisparse regime
where interactions are dominated by nearest-neighbor
interactions. For exponential of screened electrostatics,
the radius spreads logarithmically with time (R ∝ log t).
The crossover between the two regimes occurs when the
distance between particles becomes smaller than the decay
length of the repulsive potential. Particles also interact
hydrodynamically through the surrounding fluid, but the
flow field is expected to be modest given that the
suspension is near a solid boundary [54], and is charged
[55]. Our analysis applies to cases where interparticle
interactions dominate over diffusion. These are applicable
in both inherently athermal ensembles, such as granular
matter and large organisms, but also for dense microscopic
ensembles, as can be found throughout biology, and may
serve to guide the design and synthesis of engineered
colloidal matter.
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