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Continuous-state network spreading models provide critical numerical and analytic insights into
transmission processes in epidemiology, rumor propagation, knowledge dissemination, and many other
areas. Most of these models reflect only local features such as adjacency, degree, and transitivity, so can
exhibit substantial error in the presence of global correlations typical of empirical networks. Here, we
propose mitigating this limitation via a network property ideally suited to capturing spreading. This is the
network correlation dimension, which characterizes how the number of nodes within range of a source
typically scales with distance. Applying the approach to susceptible-infected-recovered processes leads to a
spreading model which, for a wide range of networks and epidemic parameters, can provide more accurate
predictions of the early stages of a spreading process than important established models of substantially
higher complexity. In addition, the proposed model leads to a basic reproduction number that provides
information about the final state not available from popular established models.
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From information on social networks [1,2] and knowledge
in organizations [3] to diseases across the globe [4,5], the
modern human experience is governed by spreading on
networks. Among our most important tools for understand-
ing spreading processes are continuous-state network
spreadingmodels [2–18], which capture discrete and random
spreading process using continuous deterministic variables
representing the expected outcomes over many realisations.
However, many of these models are limited by their reliance
on local features, such as degree [9], degree correlations [10],
transitivity [11], or adjacency [12–17], which can only
represent each node’s immediate neighborhood and reflect
just one or two of the immediately succeeding transmission
steps. They achieve excellent performance on graphs sat-
isfying the appropriate mixing assumptions, but may be
challenged by more realistic structures [19–22].
Spreading is a dynamical process which expands from

microscopic tomacroscopic structural scales. The spreading

process reflects structure on multiple scales, and spreading
models should do the same. Here we consider accommodat-
ing multiple scales via network dimension, which captures
structural self-similarity and in recent years has been
increasingly utilized to characterize specific aspects of
spreading processes [23–26] and to identify influential
disseminators [27,28]. Specifically, we consider network
correlation dimension, which uses a power-law model to
characterize how the number of nodes within range of a
source typically scales with distance and has been shown to
capture the structure of many empirical networks [29–31].
We formulate a model for susceptible-infected-recovered
(SIR) processes which depends on only three topological
parameters other than network size: mean degree, network
correlation dimension and a constant of proportionality. We
show that, compared with important established models of
substantially higher parametric complexity, for a wide range
of synthetic and empirical networks our model provides
better characterization of early spreading and leads to a basic
reproduction number which supplies additional information
about the final system state. Example code is available
in Ref. [32].
Dimensional spreading model.—We demonstrate the

capacity of network dimension to capture spreading by
considering an SIR process, forms of which have been
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used to model diverse phenomena [33] including, e.g.,
the spread of rumours [34], information [35], computer
viruses [36], and interest in stocks [37]. In each time step,
an infected node enters the recovered state with probability
γ ∈ ½0; 1�, while a susceptible node with an infected
neighbor enters the infected state with probability λ∈ ½0; 1�.
The dimensional spreading model for the number SðtÞ,

IðtÞ, and RðtÞ of susceptible, infected, and recovered nodes
at time t is defined by the difference equations

Sðtþ 1Þ ¼ SðtÞ − νðtÞ;
Iðtþ 1Þ ¼ IðtÞ þ νðtÞ − γIðtÞ; ð1Þ

together with the condition SðtÞ þ IðtÞ þ RðtÞ ¼ N, where
N is the size of the network. In Fig. 1 we illustrate the first
part of the proposed method to determine the number νðtÞ
of newly infected nodes. To estimate the network distance r
the infection has spread, we model the mean number of
nodes at network distance r as

uðrÞ ¼ αrD−1; 1 ≤ r ≤ rmax; ð2Þ

where D is network correlation dimension, α is a pro-
portionality factor, and rmax is the upper cutoff of
the considered dimension-based structural model (see
Supplemental Material [38], Sec. I). Assuming the affected
region, which comprises all infected and recovered nodes,
has spread to comprise a ball centered at the original
spreading source, the mean over all possible origins of its
size is I þ R ¼ 1þP

r
s¼1 αr

D−1. Approximating the sum
as an integral, we have

I þ R − 1 ¼
Z

rþ1
2

1
2

αsD−1 ds ¼ α

D

��
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2

�
D
−

1

2D

�

:

Inverting this equation yields the radius of the infected
region as

r ¼
�
D
α
ðI þ R − 1Þ þ 1

2D

�
1=D

−
1

2
; ð3Þ

which we will treat as a continuous-valued variable.
Knowing r, we can estimate the number of nodes exposed
to infection ν. These nodes must be at radius rþ 1 so, by
Eq. (2), an upper bound for the expected number of newly
infected nodes is ν̃ ¼ λαðrþ 1ÞD−1. We can then estimate
the number of newly infected nodes ν by multiplying ν̃ by
the fraction of nodes at radius rþ 1 which have an infected
neighbor. Writing a for the fraction of nodes at radius r
which are infected and b for the number of edges which a
node at radius rþ 1 typically shares with nodes in the
affected region, we therefore have

ν ¼ λα½1 − ð1 − aÞb�ðrþ 1ÞD−1; ð4Þ

where we have assumed perfect mixing between nodes at
radii r and rþ 1. The expected fraction a will lie some-
where between I=ðI þ RÞ [24] and min f1; I=uðrÞg. Using
the upper bound for a, which will be valid in the early
stages of spreading when λ is large compared with γ,
together with Eq. (2), gives

a ¼ min f1; I=ðαrD−1Þg: ð5Þ

To estimate bwe note that a node at radius rþ 1must have
at least one neighbor at radius r, and assume that other
edges are distributed randomly among nodes at radius
between r and rþ 2. With Eq. (2), this leads to

b¼ 1þ ðhki−1ÞuðrÞ
P

2
m¼0uðrþmÞ¼ 1þ hki−1

P
2
m¼0 ð1þ r−1mÞD−1 : ð6Þ

Basic reproduction number.—Having defined the
dimensional spreading model, next we determine its basic
reproduction number R0, which is used to predict whether
an infinitesimal level of infection will initially increase.
To resolve this quantity, we apply the continuous-time
approximation ðdI=dtÞ ≈ Iðtþ 1Þ − IðtÞ ¼ F − G, where
F ¼ νðtÞ is the rate at which infections arise and G ¼ γIðtÞ
is the rate at which they disappear. The next generation
matrix [39] method gives the basic reproduction number at
a disease-free equilibrium as

R0 ¼ ρ

�
∂F
∂I

∂G
∂I

−1
�

¼ 1

γ
ρ

�
∂ν

∂I

�

;

FIG. 1. Network geometry determines how a quantity spreads
from its source. Basis of proposed SIR dimensional spreading
model: The affected region (purple square) comprises all infected
(I) and recovered (R) nodes, and in a network of dimensionD has
volume 1þP

r
s¼1 αs

D−1, where α is a proportionality factor
and r is radius. All nodes exposed to infection are among the
αðrþ 1ÞD−1 susceptible (S) nodes (yellow ring) which neighbor
the boundary of the affected region.
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where ρð·Þ represents spectral radius. At a disease free
equilibrium, where I ¼ 0, by Eq. (4), (5), R0 ¼
ðλ=γÞbð1þ r−1ÞD−1. For r ¼ 0, this expression for R0

diverges. We instead consider r ¼ 1 where, by Eq. (6),

R0 ¼
λ

γ

�

1þ hki − 1

1þ 2D−1 þ 3D−1

�

2D−1; ð7Þ

which we note is independent of α. It is straightforward to
check directly that if R0 < 1 (R0 > 1) then an infinitesimal
level of infection will initially decrease (increase) (see
Supplemental Material [38], Sec. II).
Results and discussion.—Here we illustrate the ability of

our model to capture epidemic spreading processes on a
wide range of synthetic and empirical networks. To show
the advantages of our approach, we compare it with three
other continuous-state deterministic models also designed
to approximate the average over many realizations of a
stochastic process having discrete states. These three
benchmark models have been chosen to span a wide range
of complexities: homogeneous mean field (MF) is specified
by two state variables and one topological free parameter;
heterogeneous MF [9] is specified by 2jKj state variables
and ðjKj − 1Þ topological parameters, where K is the set of
observed node degrees; and probabilistic discrete Markov
chain (PDMC) is specified by 2N state variables and
hkiN=2 topological parameters (for details on these
models and some of the assumptions they employ, see
Supplemental Material [38], Sec. III, and Refs. [40,41]
therein). This range of complexities bounds comfortably
the complexity of the proposed dimensional spreading
system which, given N, is specified by two dynamical
state variables, I and R, and three intrinsic topological
properties, hki, D, and α.
Now we show that our model often provides a better

description of the initial period of epidemic spreading. For
this, we consider the time span 0 ≤ t ≤ tmax, where t ¼ 0 is
when a randomly chosen node is infected in an otherwise
susceptible population, and tmax is the final time for which
there still exist infected nodes and the dimension-based
structural model given by Eq. (2) can be used to estimate
the number of nodes at radius rþ 1. For each considered
network we take the true average state as the mean over 100
instances of the spreading process, each with a randomly
chosen initially infected node (for details on simulations
see Supplemental Material [38], Sec. IV).
To showcase the versatility of the dimensional spread-

ing model, in Fig. 2 we apply it across a selection of
networks spanning size from N ¼ 1152 to N ¼ 62917,
correlation dimension D ¼ 2.00 to D ¼ 6.35, and upper
cutoffs rmax covering the set f4; 6; 12; 49g (for details see
Supplemental Material [38], Table S1, and Refs. [42–48]
therein), using λ ¼ 0.1, γ ¼ 0.05. For each network we
track the time evolution of the fraction R=N of the
population which has passed through the complete

transmission cycle. Unsurprisingly, on a regular lattice,
our model provides best performance [Fig. 2(a)].
Encouragingly, the proposed model is also competitive
on a Barabàsi-Albert (BA) scale-free network [49] over
the relatively short time interval for which a dimension-
based structural model is predicted to be valid [Fig. 2(b)].
Similarly, the dimensional spreading model is the best
predictor of average system evolution on two empirical
networks of great relevance to disease transmission:
friendships within a high school, and a sexual contact
network [Figs. 2(c) and 2(d)]. Our model is also optimal
for a collaboration network, pertinent to the transmission
of knowledge [Fig. 2(e)], as well as a power grid germane
to the cascade of electrical failures [Fig. 2(f)]. In the
examples shown, heterogeneous MF and PDMC consis-
tently overestimate the initial rate of progress, while
homogeneous MF can either overestimate or under-
estimate. The dimensional spreading model can amelio-
rate these deviations, and over much of the time interval
is, among all predictions, either the tightest upper bound
or the closest lower bound to the true system average.
The proposed model often exhibits similar advantages for
the variables S, I (see Supplemental Material [38],
Fig. S2), for other choices of dynamical parameters
(see Supplemental Material [38], Fig. S3), for a range
of other empirical networks (Fig. S4, Table S1 in [38],
and Refs. [50–60] therein), and also in comparison to

(a) (b) (c)

(d) (e) (f)

FIG. 2. The dimensional spreading model better represents early
spreadingon a rangeof synthetic and empirical networks. Spreadof
infection on (a) Two-dimensional lattice; (b) BA scale-free net-
work; (c)Network of friendships between students in a high school;
(d) Sexual contact network; (e) Erdős collaboration network; and
(f) Power grid of the western United States. Curves represent the
true mean state (filled blue circles) and estimates from homo-
geneous mean field (purple dot-dashed), heterogeneous mean field
(red dotted), probabilistic discrete Markov chain (green dashed),
and dimensional spreading model (yellow solid).
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other established SIR spreading models (Fig. S5-S6;
Sec. V [38]).
For a more systematic comparison of continuous-state

models, next we consider a range of topological and
dynamical parameters and for each calculate the mean
Euclidean error in predictions of the time series
ðSðtÞ; IðtÞ; RðtÞÞ, 0 ≤ t ≤ tmax. In Fig. 3 we delineate the
circumstances in which each spreading model minimizes
error. The dimensional spreading model achieves optimal
predictions on one-dimensional small world networks
across a wide range of mean degree hki and random
rewiring rate p, especially for lower p when dimensional
structure is more distinct [Fig. 3(a)]. It also offers best
performance for regular lattices across a wide range of
lattice dimension and degree k [Fig. 3(b)]. For over half of
the considered combinations of network model parameters,
the proposed model even provides lowest error for scale-
free networks generated via preferential attachment across a
range of strengths of structural correlation controlled via an
“inclusivity” parameter [61] q such that q ¼ 1 is maximally
correlated and q ¼ ∞ corresponds to the minimally corre-
lated BA model [Fig. 3(c)]. Advantages become even
clearer if we neglect homogeneous MF and compare only
with the more complex methods heterogeneous MF and
PDMC: dimensional spreading is then optimal for 94% of
considered combinations of network model parameters

(see Supplemental Material [38], Fig. S7). On a range of
synthetic and empirical networks the dimensional spread-
ing model is frequently the best performer across a range of
values of epidemic parameters, though not for large γ or
small λ [Figs. 3(d)–3(h)]. This restriction suggests limi-
tations in the factor a given by Eq. (5), because the small λ
and large γ regime is when this term would be most
relevant. When the ratio λ=γ is not too small, the reduction
in error arising from using the dimensional spreading
model is often substantial (see Supplemental Material [38],
Fig. S8), and the model frequently offers similar advantages
for other values of the epidemic spreading parameters (see
Supplemental Material [38], Fig. S9).
Finally, we demonstrate how the proposed basic repro-

duction number R0 derived from the dimensional spreading
model provides insights about final system state not
available from other spreading models. By Eq. (7),
R0 > λ=γ, and to make possible R0 ≤ 1 we now employ
λ ¼ 0.1, γ ¼ 0.2. Once again we consider a range of model
parameters, but now for each we determine the average
final affected ratio R̃ð∞Þ ¼ ð1=NÞlimt→∞RðtÞ. In Fig. 4 we
compare R̃ð∞Þ with level sets of R0 based on each
considered continuous-state model. As hki, p and lattice
dimension vary, R̃ð∞Þ changes, but R0 calculated using the
established homogeneous MF, heterogeneous MF and
PDMC methods remains almost constant [Figs. 4(a)

(a)

(e)

(f) (g) (h)

(b) (c) (d)

FIG. 3. The dimensional spreading model leads to lower error than other models across a range of topological and dynamical
conditions. Conditions under which each continuous-state model leads to the lowest error in the early spreading stage: homogeneous
mean field (black), heterogeneous mean field (dark gray), probabilistic discrete Markov chain (light gray), and dimensional spreading
(white). Variation of optimal model with (a) Rewiring rate p and mean degree hki on a small world network with lattice dimension one;
(b) Lattice dimension and degree k on a regular lattice; (c) Inclusivity q and mean degree hki on scale-free networks generated via
preferential attachment; and rate of infection λ and rate of recovery γ on (d) Two-dimensional lattice; (e) BA scale-free network (53% of
points are white, i.e., the dimensional spreading model is optimal for 53% of the considered combinations of parameters); (f) The high
school friendship network Friendship II; (g) Erdős collaboration network; and (h) Power grid of the western United States.
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and 4(b)]. In contrast, R0 determined from our dimensional
spreading model varies meaningfully with topological
properties, and its level sets often approximate the level
sets of R̃ð∞Þ. The dimensional spreading model holds
similar advantages for epidemic spreading parameters more
conducive to spreading (see Supplemental Material [38],
Fig. S10) and for the considered scale-free network model
(see Ref. [38], Fig. S11). However, regardless of the
continuous-state model from which it derived, the basic
reproduction numberR0 ∝ γ=λ exhibits the same trends in λ
and γ [Figs. 4(c) and 4(d)]; for additional networks see
Fig. S12 [38]).
Conclusion.—The global structural correlations typical

of real networks lead to systematic errors in important
continuous-state models for epidemic spreading. We illus-
trated how these limitations can be mitigated by taking SIR
as an example, although the general approach should also
apply to other processes. We proposed a spreading model
which depends on topology only through mean degree,
network correlation dimension and a constant of propor-
tionality. Relative to established models which are of
substantially higher complexity but do not exploit network
dimension, our model can predict early stages of the
spreading process more accurately and implies a basic
reproduction number providing additional information
about final system state.
The model’s advantage arises from leverage of a global

property which can more meaningfully characterize spread-
ing than the local properties on which many established
spreading models rely. However, the demonstrated good
performance is a nontrivial finding, even for perfect lattices.
Our dimensional model relies on representing a system
having many state variables with just two scalars, the
number infected and number recovered. Given our parsi-
mony with state variables and topological parameters, it is
not surprising that the match is imperfect for some net-
works and sets of epidemic parameters. Nonetheless, the

high performance of this simple model across a wide range
of dynamical and topological conditions demonstrates the
value of including in spreading models global properties
such as dimension.
It would be valuable to apply the dimensional spreading

approach to other important spreading processes, such as
those separately representing vaccinated, detected and
exposed states [5,62], and to other classes of networks,
including directed [63], multilayer [64], temporal [65], or
perhaps signed [66] networks. In addition, because not all
networks have clear dimensional structure, it would be
useful to extend it to alternative descriptions for the scaling
of network distance [67,68].
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