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Altermagnetism has emerged as a third type of collinear magnetism. In contrast to standard ferromagnets
and antiferromagnets, altermagnets exhibit extra even-parity wave spin order parameters resulting in a spin
splitting of electronic bands in momentum space. In real space, sublattices of opposite spin polarization are
anisotropic and related by rotational symmetry. In the hitherto identified altermagnetic candidate materials,
the anisotropies arise from the local crystallographic symmetry. Here, we show that altermagnetism can
also form as an interaction-induced electronic instability in a lattice without the crystallographic sublattice
anisotropy. We provide a microscopic example of a two-orbital model showing that the coexistence of
staggered antiferromagnetic and orbital order can realize robust altermagnetism. We quantify the spin-
splitter conductivity as a key experimental observable and discuss material candidates for the interaction-
induced realization of altermagnetism.
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Introduction.—The interplay of competing orders from
strong electronic correlations gives rise to rich phase
diagrams of quantum materials, for example, nematic or
antiferromagnetic order in the vicinity of superconductivity
[1]. When different orders coexist, qualitatively new
behavior can emerge that is not present in the individual
phases. For example, superconductivity in materials with
long-range magnetism can realize unconventional finite
momentum pairing [2–5]. Here, we show that electron
correlations can give rise to a phase with coexisting
staggered orbital order (OO) and Néel antiferromagnetism
(AFM), which spontaneously realizes a d-wave altermag-
netic phase with spin-polarized electronic bands and a large
transverse spin conductivity.
Recently, altermagnetism has been delimited with the

help of spin symmetries as a third type of collinear
magnetism [6]. Similar to standard AFM, an altermagnet
displays long-range order with zero net magnetization, e.g.,
realized by the presence of two sublattices with opposite
spin alignment. However, in contrast to usual AFM, the
Néel vector is not sufficient for describing an altermagnet,
because it exhibits an extra even-parity wave order para-
meter [6–14]. The extra d, g, i-wave spin order takes in
momentum space a form of unconventional spin splitting of
the electronic band structure [6,8,9,12] which has recently
been confirmed experimentally in photoemission experi-
ments in MnTe [12,15]. In real space, altermagnets are
characterized by anisotropies of spin sublattices, which is
best explained with the example of a d-wave state on a
square lattice; see the left column in Fig. 1. With

crystallographic anisotropies, e.g., asymmetric ligands on
the bonds, the unit cell has two sites, and, as a result, in the
magnetic state a flip of all spins is not equivalent to a
translation or inversion operation between the spin

FIG. 1. Comparison of the established crystal potential-im-
printed altermagnetism (left column) and altermagnetism due to
spontaneous correlations (right column) on a square lattice. For
the former, the crystal structure provides a two-site unit cell
whose sublattices are related only by rotation but not by inversion
symmetry or translation. The symmetry of the lattice, typically
due to nonmagnetic ions (gray vertices), is imprinted on the
electronic density leading to anisotropic spin densities (red and
blue) in the magnetically ordered state (lower left). In contrast, for
spontaneous altermagnetism, the lattice is isotropic and the
crucial symmetry lowering happens spontaneously due to a
staggered orbital ordering (green).
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sublattices, but instead they are related by an additional
real-space rotation [6].
So far, research on altermagnets has concentrated on

systems where the crystal structure imprints an anisotropic
spin density and the two sublattices are globally inequi-
valent even in the nonmagnetic high-temperature phase
[6–10,13] as in the above example. Below the transition
temperature, it is then the crystal structure which modulates
the spin density into an anisotropic shape with opposite
spin channels related by crystal rotations or mirrors
(possibly nonsymmorphic). Although there is an increasing
number of materials of this type, metallic altermagnets are
currently rare, and it remains an open question whether
altermagnetism can be realized spontaneously via elec-
tronic correlations [16].
Here, we provide an affirmative answer and demon-

strate how altermagnetism can be realized as an OO
transition. We concentrate on a minimal two-orbital model
of transition-metal systems with directional dxz=yz orbitals.
Crucially, altermagnetism emerges as a spontaneous elec-
tronic instability in a model whose crystal structure has
globally equivalent sublattices; i.e., the lattice does not
exhibit the local crystallographic anisotropies. Instead, it is
the staggered ðπ; πÞ-OO coexisting with ðπ; πÞ-AFM (see
the right column in Fig. 1) which leads to the anisotropic
spin sublattices, which are again related by rotational
symmetry. We also show that our proposed mechanism
can generate a strong spin-splitter effect, i.e., a transverse
spin-polarized current with spin d-wave symmetry [17,18]
controlled by the OO.
The example of a d-wave altermagnet has been known

for some time [7,19] as the magnetic analog of d-wave
superconductivity [20]. In a long-wavelength momentum
space description, it can arise as a spin-triplet Pomeranchuk
instability of an interacting Fermi liquid; however, no
realistic candidates have been identified [16]. Here, we
show a realization of the d-wave altermagnetic state in a
microscopic lattice model of transitional metal systems
with nontrivial orbital degrees of freedom, which alludes
the real-space symmetry properties of altermagnetism. In
this context, it is interesting to note that the dichotomy
between a weak coupling momentum space instability
compared to a real-space OO instability is similar to the
case of Ising nematic order observed in parent compounds
of iron-based superconductors [21]. There, the breaking of
the lattice rotational symmetry can be understood as either a
Fermi surface-type instability [22] or a spontaneous OO
transition from local Hubbard-type interactions [23–25].
Both describe similar physics, but, while the former
approach concentrates on the universal aspects, the latter
takes into account microscopic details of a given material.
Similarly, we show that our microscopic real-space descrip-
tion highlights the role of orbital degrees of freedom for
realizing d-wave altermagnetism from the coexistence of
AFM and staggered OO, which allows us to identify a

number of possible material candidates such as perovskites,
square pnictides, and vanadates, which we discuss in the
outlook section.
Two-orbital model.—We concentrate on a minimal

model of interacting electrons on the square lattice. The
full Hamiltonian is given by H ¼ H0 þHJ þHV. The
kinetic part H0 consists of two orbitals of the dxz and dyz
type described by

H0 ¼
X

k;s

Ψ†
ks

�
εxðkÞ εxyðkÞ
εxyðkÞ εyðkÞ

�
Ψks ð1Þ

with

εxðkÞ ¼ −2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky; ð2Þ

εyðkÞ ¼ −2t2 cos kx − 2t1 cos ky − 4t3 cos kx cos ky; ð3Þ

εxyðkÞ ¼ −4t4 sin kx sin ky; ð4Þ

and the components Ψkαs ¼ 1=
ffiffiffiffi
N

p P
j e

ik·rjΨjαs of the
vector Ψk annihilate an electron with momentum k and
spin s in orbital α [26]. N is the number of sites and rj the
coordinate of the jth unit cell. For concreteness, we fix
t1 ¼ −t, t2 ¼ −1.75t, t3 ¼ −0.85t, and t4 ¼ −0.65t
throughout this work. The anisotropy of the orbitals is
imprinted in the hoppings; e.g., t1 quantifies dxz to dxz
hopping along the x direction and dyz to dyz hopping along
the y direction and t2 dxz (dyz) to dxz (dyz) hopping along
the y (x) direction. The remaining allowed overlaps are the
intraorbital next-nearest-neighbor term t3 and t4 as a phase-
changing interorbital next-nearest-neighbor hopping; see
Supplemental Material and Refs. [26,27] therein for a
visualization [28]. The model has been proposed previously
as a minimal model for iron pnictides [26] but can be
adapted to describe any transition-metal materials with
dominating dxz=dyz orbital contributions.
A natural choice for the interactions would be the local

form of the Coulomb repulsion in the Kanamori form [29]
including on-site Hubbard interactions and FM exchange
from Hund’s coupling, as well as interorbital density
repulsion and pair hopping [26,30,31]. However, the
precise value of the interactions is, in general, hard to
quantify, and longer-range components of the interaction
are neglected. Moreover, many different competing
phases can be induced by the interactions depending on
the precise form of the Fermi surface. To avoid compli-
cations from other competing states, and as a proof of
principle, we chose to concentrate on the following
effective interactions:

HJ ¼ J
X

hiji
Si · Sj and HV ¼ V

X

hiji
Nz

iN
z
j; ð5Þ
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withSνi ¼ Ψ†
i s

ν ⊗ 1Ψi the total spin at site i. The first term is
a usual AFM Heisenberg exchange, and the second term
with Nz

i ¼ Ψ†
i 1 ⊗ αzΨi ¼

P
sΨ

†
ixsΨixs −Ψ†

iysΨiys is an
Ising-type interaction between the nearest-neighbor on-site
relative orbital densities. We denote the Pauli matrix
(component ν) for the spin (orbital) subspace by sν (αν).
We then expect that HJ induces ðπ; πÞ-AFM and, crucially,
HV induces ðπ; πÞ-OO. Because of the absence of spin-orbit
coupling, ½H; Sνi � ¼ 0 and the spin remains a good quantum
number. Note, however, that this is not true for the orbital
character, because t4 couples the dxz and dyz orbitals.
Phase diagram.—Next, we study the full Hamiltonian in

a Hartree-Fock mean-field approximation. In our ansatz,
we focus on ðπ; πÞ instabilities and introduce two sub-
lattices λ ¼ A, B of even and odd sites. The fermions Ψkαλs
of the eight-component vector Ψk get the new quantum
number λ, and analogously to above λν is the Pauli-νmatrix
acting in the sublattice subspace. We can then define the
mean fields δm ¼ P

ið−1ÞihSzi i=N, i.e., the order param-
eter for the staggered AFM, and δn ¼ P

ið−1ÞihNz
i i=N, the

order parameter for staggered OO. Decoupling the
Hamiltonian in the charge channel, we find

HJ=16J ¼ −δm
X

k

Ψ†
ks

z ⊗ λz ⊗ 1Ψk þ 4Nδm2; ð6Þ

HV=16V ¼ −δn
X

k

Ψ†
k1 ⊗ λz ⊗ αzΨk þ 4Nδn2: ð7Þ

The resulting mean-field Hamiltonian H ¼P
k Ψ

†
khðkÞΨk þ E0 (see Supplemental Material [28]) is

a noninteracting Hamiltonian; hence, the 8 × 8 Bloch
Hamiltonian hðkÞ can be efficiently diagonalized for
each momentum to obtain the eigenenergies ϵmðkÞ
and the Bloch eigenstates jumðkÞi with band index m.
Note thatH is block diagonal in spin, but, in contrast to the
conventional AFM spin density mean-field solution [32],
the two blocks are explicitly spin dependent. We have
solved the mean-field equations self-consistently for
fixed filling n by iteration; i.e., we calculated δmi and
δni from Hðδmi−1; δni−1Þ until convergence, defined by
jδmi − δmi−1j, jδni − δni−1j < 10−3, was reached.
The resulting phase diagram features four different

metallic phases; see Figs. 2(a) and A3 in Supplemental
Material [28] for the order parameters. For dominating
Heisenberg exchange, i.e., J=t larger than roughly 0.25 and
small V, AFM order develops as expected. Conversely, for
dominating orbital repulsion between nearest-neighbor
sites, i.e., V=t larger than 0.5 and small J, OO develops.
The OO (AFM) phase is only weakly influenced by the
interaction with prefactor J (V). Crucially, we also find a
large coexistence regime (OOþ AFM). Importantly,
because of the staggered OO, the two sublattices of up
and down spins are connected only by a real-space rotation
taking dxz → dyz, but not by translation or inversion as is
the case in the pure AFM phase. The phase diagram is
qualitatively independent from the filling, apart from the
half filled, large, and low filled limits which is expected; see
Fig. A2 in Supplemental Material [28].
The spontaneous symmetry breaking in the OOþ AFM

phase has important consequences for the electronic

(a) (b) (c)

FIG. 2. Mean-field phase diagram and electronic structure of the model Hamiltonian. (a) Zero-temperature mean-field phase diagram
for filling n ¼ 5.7216. There is a trivial phase (white), a phase with ðπ; πÞ-antiferromagnetic order (AFM, light blue), a phase with a
ðπ; πÞ-orbital ordered state (OO, light green), and an altermagnetic phase where AFM and OO are present simultaneously (OOþ AFM,
ochre). For the values of the order parameters, see Fig. A3 in Supplemental Material [28]. (b) Representative Fermi surfaces of each
phase in the crystallographic Brillouin zone. The bands’ spin character hsz ⊗ 1 ⊗ 1i is indicated by color, with red (blue) [black]
denoting spin-up (spin-down) [spin-degenerate]. The magnetic Brillouin zone is indicated by gray dotted lines, and the dashed contours
in the lower left panel (trivial phase) indicate the additional part of the Fermi surface that is present when working in the magneticffiffiffi
2

p
×

ffiffiffi
2

p
unit cell. (c) The electronic band structure along high-symmetry directions in the OOþ AFM phase. The bands are both spin

polarized [upper panel, coloring as in (b)] and orbital polarized (lower panel). Dark green (light green) coloring indicates dxz (dyz) orbital
character h1 ⊗ 1 ⊗ αzi and black degeneracy. A π=2 rotation, which maps the ð0; 0Þ − ð0; πÞ path onto the ð0; 0Þ − ðπ; 0Þ path, also
maps oppositely spin- and orbital-polarized bands onto each other.
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structure. Figures 2(b) and 2(c) show that only in the
coexistence OOþ AFM phase is the spin degeneracy of the
bands removed, as is evidenced by a spin-split Fermi
surface (red for spin up and blue for spin down). As
expected for the altermagnetic phase, the spin-polarized
bands are related by π=2 rotations in momentum space. As
an interesting side note, we also find that, within our two-
orbital-only model, the bands are also perfectly orbital
polarized as shown in the lower panel in Fig. 2(c).

Spin conductivity.—Next, we study the unique exper-
imental signatures of the OOþ AFM coexistence phase.
One of the key features of d-wave altermagnets is the
appearance of a longitudinal spin conductivity without
magnetization and a spin-splitter effect [17]. The aniso-
tropic spin-polarized Fermi surfaces respond to electric
fields by generating characteristic spin currents; see
Fig. 2(b). When the field is applied in the [100] direction
(x direction), the spin-up polarized Fermi surface contrib-
utes stronger to transport than the spin-down polarized
Fermi surface. As a result, the spin-polarized currents j↑
and j↓ per Fermi surface are unequal aligned, and there is a
net spin-polarized current in the direction of the elec-
tric field.
To quantify the spin current strength, we evaluate the

conductivity along the crystal axis, given in its most general
form by the Kubo formula [17]

σbcðOaÞ ¼ −
eπ
N

X

k;n;m

Anðk;ωÞhunðkÞjJbðOa; kÞjumðkÞi

× Amðk;ωÞhumðkÞjvcðkÞjunðkÞi: ð8Þ

Here, Anðk;ωÞ ¼ −ð1=πÞðΓ=½ω − ϵnðkÞ�2 þ Γ2Þ is the
band-resolved spectral function with a positive infinitesi-
mal broadening Γ, vc ¼ ∂hðkÞ=∂kc is the velocity operator,
and JbðOaÞ ¼ 1

2
fOa; vbg is the current operator. The

summation extends over all eight bands n, m and all
momenta k of the magnetic Brillouin zone. Equation (8)
captures charge σ0 ¼ σð1Þ, spin σz ¼ σðszÞ, and orbital
conductivity σðLzÞ by adapting the current operator to
Jbð1Þ ¼ vb, JbðszÞ ¼ sz ⊗ 1 ⊗ 1vb, or JbðLzÞ ¼ 1

2
f1 ⊗

1 ⊗ Lz; vbg, respectively. We show the magnitude of the
respective spin-conductivity tensor element σzxx in Fig. 3(c).
The transversal component σzxy ¼ 0 vanishes.
An electric field applied in the [110] direction induces

nonparallel spin currents enclosing the spin-splitter angle α;
see Figs. 3(a) and 3(b). The spin-splitter angle tanðα=2Þ ¼
jσzxx=σ0xxj quantifies the strength of spin transport compared
to standard charge transport and takes its theoretical
maximal value of 90° for strongly anisotropic elongated
Fermi pockets. As shown in Fig. 3(d), we find a maximal
spin-splitter angle αmax ¼ 70.3° around J ¼ V ≈ t for the
Fermi surface shown in Fig. 3(a).
Crucially, σz and α are nonzero only in the altermagnetic

phase as evidenced by the spin-split Fermi surface. They
take the maximum values in the bulk of the OOþ AFM
phase where V ≈ J. This shows that for large spin splitting
it is more relevant that δm and δn are of the same size than
their individual magnitudes. Unexpectedly, the spin con-
ductivity σz peaks closely to the AFM phase transition
throughout the entire phase diagram; see Fig. A2 in
Supplemental Material [28].
The spin conductivity Eq. (8) is a direct result of the

altermagnetic spin splitting. We can alternatively quantify

(a)

(c)

(d)

(e)

(b)

FIG. 3. Nonrelativistic spin-polarized currents in the OOþ
AFM altermagnetic phase. (a) The spin-split Fermi surface in the
altermagnetic phase leads to a finite spin conductivity σðszÞ ¼ σz,
because the spin-polarized Fermi surfaces respond with different
currents j↑; j↓ to an external electric field E. The shown Fermi
surface has the maximal spin-splitter angle. (b) The spin-splitter
angle α is the angle between the spin currents. Color plots of the
longitudinal component of the spin conductivity σzxx ¼ −σzyy (c),
the spin-splitter angle α (d) (αmax indicated by star), and the
directed spin density of states ρzx ¼ −ρzy (e). The dashed lines
indicate the phase boundaries as extracted in Fig. 2(a).
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the latter by studying a simpler more intuitive quantity, the
spin density of states weighted with the Fermi velocity

ρzb ¼
1

N

X

k;n

AnðkÞj∂bϵnðkÞjhunðkÞjsz ⊗ 1 ⊗ 1junðkÞi: ð9Þ

It is numerically cheaper to compute and behaves analo-
gously to the spin conductivity; see Fig. 3(e). Although the
spin density of states weighted with the Fermi velocity is
not a direct physical observable, it can be used as a simple
measure to quantify spin splitting for metallic altermagnets.
Deep in the AFMþ OO phase, the bands are also

strongly orbital polarized [see Fig. 2(d)], resembling the
spin character. Therefore, one might expect that our
findings for the spin conductivity carry over to the orbital
conductivity σðLzÞ. In order to evaluate σðLzÞ, we identify
x (y) with the atomic orbitals dxz (dyz) and from Eq. (8) use
the orbital current operator JbðLzÞ ¼ 1

2
f1 ⊗ 1 ⊗ αy; vbg. It

turns out that the orbital conductivity vanishes exactly:
σðLzÞ ¼ 0. The reason is that the bands are orbital
polarized, but only the superpositions dxz � idyz are eigen-
states of the angular momentum operator Lz. This is an
artifact of our minimal two-orbital model, and in the future
it will be interesting to explore the orbital conductivity
taking into account the full d-orbital manifold of states.
Discussion and outlook.—We have shown that the

spontaneous lattice symmetry breaking from OO in con-
junction with basic Néel AFM can give rise to an alter-
magnetic phase with strongly spin-polarized bands. In
contrast to existing proposals to look for altermagnets in
materials with local crystallographic sublattice aniso-
tropies [8], our proposed mechanism of interaction-induced
OO considerably broadens the range of material candidates.
Staggered OO has been experimentally observed on the
surface of CeCoIn5 [33] or famously in the perovskite-type
transition-metal oxides like LaMnO3 [34–36]. Another
promising material platform are Fe-based square lattices.
In fact, recently it was shown that checkerboard AFM order
in FeSe subjected to an electric field can generate an
altermagnetic state [37], and the same could be achieved by
the presence of staggered OO.
A challenge is that most materials with staggered OO,

e.g., C type, display spin ordering of a different type, e.g.,
G-type AFM or FM [38]. In fact, the tendency of staggered
OO to show FM is in accordance with the well-known
Goodenough-Kanamori rules [39], but in certain cases
these phenomenological rules may be violated [40–42].
Perhaps the most promising candidate materials in this
context are cubic vanadates [43] which have been shown to
display staggered OO coexisting with AFMs [44,45]. The
precise form of the OO pattern appears even tunable via
thin film strain engineering [46], which opens the possibil-
ity for realizing the required coexistence patterns for
an altermagnetic phase. Hence, in the future, it will be

important to explore microscopic scenarios for realistic
material platforms.
Beyond the strong coupling analysis, it would also be

worthwhile to start with a weak-coupling theory and
microscopic interaction parameters to analyze when the
AFM and OO susceptibilities of the metallic phase diverge
simultaneously. In that context, we note that our coexist-
ence phase of AFM and OO has already been discussed
as a potential instability of more generic models [e.g., see
Fig. 2(f) in Ref. [47] ], but a systematic study how to
stabilize these is missing. Similarly, studies of the dynami-
cal response functions in the coexistence regime will be
important for making contact to scattering experiments.
In conclusion, we have shown how electronic correla-

tions can lead to the spontaneous formation of altermag-
netic phases due to OO. As this considerably broadens the
range of candidate materials, we hope that our work is a
stepping stone for realizing new altermagnets.

Code and data related to this paper are available on
Zenodo [48] from the authors upon reasonable request.
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