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The prediction and realization of the quantum anomalous Hall effect are often intimately connected to
honeycomb lattices in which the sublattice degree of freedom plays a central role in the nontrivial topology.
Two-dimensional Wigner crystals, on the other hand, form triangular lattices without sublattice degrees of
freedom, resulting in a topologically trivial state. Here, we discuss the possibility of spontaneously formed
honeycomb-lattice crystals that exhibit the quantum anomalous Hall effect. Starting from a single-band
system with nontrivial quantum geometry, we derive the mean-field energy functional of a class of crystal
states and express it as a model of sublattice pseudospins in momentum space. We find that nontrivial
quantum geometry leads to extra terms in the pseudospin model that break an effective “time-reversal
symmetry” and favor a topologically nontrivial pseudospin texture. When the effects of these extra terms
dominate over the ferromagnetic exchange coupling between pseudospins, the anomalous Hall crystal state
becomes energetically favorable over the trivial Wigner crystal state.
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Introduction.—Topology and spontaneously broken
symmetry are two central themes of modern condensed
matter physics. One prototypical broken symmetry phase is
the Wigner crystal (WC) [1], a phase characterized by
spontaneously broken translational invariance and trivial
topology. In two dimensions (2D), semiclassical calcula-
tions in the low-density limit predict [2] that the lowest
energy configuration of electrons moving in a uniform
positive background and interacting via the conventional
Coulomb interaction is a triangular-lattice Wigner crystal.
Theoretical and experimental studies [3–14] over the past
few decades have established Wigner crystals as one of the
prototypical broken symmetry states of strongly interacting
electron systems.
The quantum anomalous Hall (QAH) insulator [15] is a

topologically nontrivial insulating state that exhibits a
quantized Hall conductance in the absence of an external
magnetic field. First predicted by Haldane in a honeycomb-
lattice model [16], it has been realized experimentally in
magnetic topological insulators [17–19] and more recently
in moiré superlattices [20–25] where the low-energy QAH
physics can often be understood via a mapping to the
Haldane model in a honeycomb superlattice [26–28].
The sublattice degree of freedom is crucial for the

nontrivial topology of QAH insulators in honeycomb
lattices. In fact, it has been shown [29–35] that when a
honeycomb-superlattice modulation is applied to a gapped
2D system with nontrivial band geometry, the lowest
miniband is topologically nontrivial under mild assump-
tions. Interaction-driven topological insulating states have
also been discussed in the context of honeycomb lattices

[36–39]. In these cases, translation invariance is explicitly
broken. The question of the circumstances under which a
spontaneously broken translation invariance may lead to a
topologically nontrivial QAH state remains open.
The coexistence of spontaneously broken translation

invariance and conventional (magnetic field induced)
quantum Hall effects was discussed in pioneering papers
by Halperin and co-workers [40,41]. This Letter was a
proof of principle, based on a model with specifically tuned
interactions. The possibility of a spontaneously formed
crystal phase that exhibits the QAH effect in zero applied
field, however, has apparently not been considered until
very recently. Following the discovery of integer and
fractional QAH effects in rhombohedral pentalayer gra-
phene aligned to a hexagonal boron nitride substrate
[23–25], mean-field calculations found [42–46] a robust
QAH insulator state at filling factor ν ¼ 1. The experi-
mental devices involved a moiré potential that explicitly
broke the translational invariance and the theoretical studies
therefore were based on models that also explicitly broke
translation invariance. Surprisingly, the QAH insulator
state was found theoretically to persist in the limit of
vanishing moiré potential, implying that a spontaneous
translational symmetry breaking could lead to an “anoma-
lous Hall crystal” (AHC) state.
In this Letter we investigate theoretically the circum-

stances under which a topologically nontrivial electron
crystal may occur. We use a simple yet general model based
a single band of electrons that we view as representing the
low-energy physics of a multiband system. The quantum
geometry appears in the Hamiltonian as form factors in the
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projection of Coulomb interactions onto the low-energy
band. We use this Hamiltonian to study the energetic
competition between WC and AHC states. Crucial to
our analysis is the observation that the WC and AHC
states have the same Bravais lattice but different sublattice
structures. This enables the construction of a sublattice
pseudospin representation of the physics that provides an
interpolation between the topologically trivial WC and
nontrivial AHC states. Combining analytic derivation of a
sublattice pseudospin model and numerical self-consistent
mean-field calculations, we find that AHCs are stabilized
by strong enough Berry curvature concentration at inter-
mediate interaction strengths, implying the phase diagram
shown in Fig. 1.
Model.—We consider a 2D electron system described by

a single band with arbitrary dispersion consistent with C6

symmetry and nontrivial quantum geometry described by
the Hamiltonian H ¼ Hkin þHint. The kinetic energy is

Hkin ¼
X
p

Epc
†
pcp; ð1Þ

where Ep is the band dispersion and cp (c†p) is the
annihilation (creation) operator of electrons with momen-
tum p. We view Ep as the lowest-lying band of a multiband
system and the momentum p runs over the large Brillouin
zone of the microscopic lattice describing this multiband
system. Because the physics of interest involves a low
density of electrons in this band, leading to a long-period
superlattice, we may treat the large Brillouin zone as
an infinite 2D momentum space. Interactions between

electrons are described by the Hamiltonian,

Hint ¼
1

2A

X
pp0q

VqΛpþq;pΛp0;p0þqc
†
pþqc

†
p0cp0þqcp; ð2Þ

where A is the area of the 2D system. Anticipating the
honeycomb-lattice structure of spontaneously formed crys-
tals, we require that both Ep and Vq preserve C6 rotational
symmetry. The quantum geometry is encoded in the form
factor Λp0;p ¼ hup0 jupi, where jupi is the periodic part of the
Bloch wave function of the projected band. C6 symmetry
imposes the constraint ΛC6p0;C6p ¼ Λp0;p. For a trivial band
with vanishing Berry curvature,Λp0;p ∈R by a proper gauge
choice. This implies an emergent C2T symmetry where T
is an effective “time-reversal” operator [47]. For a generic
band with nontrivial quantum geometry, Λp0;p is in general
complex and the effective time-reversal symmetry (TRS)
[48] is broken.
The Hartree-Fock potential defines a Bravais lattice

common to both the WC and AHC states, which are
distinguished by different sublattice structures. We may
view the triangular lattice WC as the state with one
sublattice of the AHC honeycomb occupied and the other
one empty. We are interested in the lowest-lying bands of
the long-period superlattice; these are defined in terms of
the original microscopic states via the sublattice basis a†k ¼P

g Akþgc
†
kþg and b†k ¼

P
g Bkþgc

†
kþg, where Ap; Bp are

momentum-space wave functions of the localized sublattice
orbitals and g sums over reciprocal lattice vectors of the
long-period superlattice whose lattice constant is deter-
mined by the electron density. To comply with the point-
group symmetries of the honeycomb lattice, each sublattice
basis state has TRS and C3 rotational symmetry around its
center, and the two sublattices are related by C2 rotation
around the hexagon center (see Supplemental Material [49]
for details). A general Hartree-Fock ground state is a
superposition of two sublattice basis states:

jΨi ¼
Y

k∈mBZ

�
cos

θk
2
a†k þ eiϕk sin

θk
2
b†k

�
j0i: ð3Þ

Here j0i is the vacuum state and k runs over the mini
Brillouin zone (mBZ) of the long-period superlattice. The
polar and azimuthal angles ðθk;ϕkÞ define a sublattice
pseudospin at each momentum site in the mBZ that can be
alternatively represented by a unit vector:

nk ¼ ðsin θk cosϕk; sin θk sinϕk; cos θkÞ: ð4Þ
In the language of sublattice pseudospins, triangular-lattice
WCs correspond to out-of-plane polarized states (e.g.,
θk ≈ 0) and honeycomb-lattice AHCs are states in which
the pseudospins form a skyrmion texture in the mBZ and the
net out-of-plane polarization vanishes. The pseudospin
texture and the precise forms of the sublattice basis states
are obtained by variationalminimization of energy hΨjHjΨi.

FIG. 1. Schematic phase diagram in the plane of interaction
strength rs and Berry curvature concentration γ showing regions
of Fermi liquid, conventional Wigner crystal, and anomalous Hall
crystal phases. The precise definitions of rs and γ are provided in
a later part of the paper. r�s ≈ 30 is the critical interaction strength
for the Wigner crystallization phase transition in systems with
trivial quantum geometry [3,4]. Our theory focuses on the
transition between two crystal phases (solid line); melting of
crystals is not explicitly considered in our theory and the dashed
line is speculation based on the Lindemann criterion.
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The Chern number of the ground state jΨi is given by the
winding of nk:

C ¼
Z
mBZ

d2k
4π

nk · ð∂kxnk × ∂kynkÞ: ð5Þ

The WC state has C ¼ 0 and the AHC state has C ¼ �1
depending on the pseudospin texture.
Pseudospin order.—To compare the energy of states

with different sublattice pseudospin order, we calculate the
energy expectation value of a generic state of the form
given in Eq. (3). Up to a constant energy independent of
pseudospin texture, the mean-field (MF) energy functional
takes the form [53,54]

EMF½θ;ϕ�≡ hΨjHjΨi ¼ −
X
k

hk · nk −
1

2

X
αβ

X
kk0

Jαβkk0n
α
kn

β
k0 ;

ð6Þ
where the α, β indices run over Cartesian coordinates
x, y, z. The problem is thus transformed into an effective
spin model in momentum space: hk is an effective Zeeman
field that acts on sublattice pseudospins, and Jαβkk0 ¼ Jβαk0k are
coupling coefficients between pseudospins at different
momentum sites. While the full expressions of hk and
Jαβkk0 are lengthy (see Supplemental Material [49]), the
symmetry analysis and physical arguments given below
make their qualitative features clear.
The pseudospin Zeeman field has contributions from both

the bare kinetic energy and the interactions; physically, the
interaction contribution to hk arises from the Hartree-Fock
potential produced by the average electron distribution.
Because the average charge density is honeycomb shaped,
the mean-field potential is C6 symmetric. Analogous to
graphene,whenTRS is preserved, allhk are in plane (h

z
k ¼ 0)

and form vortices of opposite chirality around the Dirac
pointsK and K0. See Supplemental Material [49] for a proof

by symmetry analysis and Figs. 2(a) and 2(b) for graphical
representations.
In addition to pseudospin Zeeman fields, interactions

also give rise to coupling between pseudospins. In the limit
of small jk − k0j ≪ a−1, where a is the superlattice con-
stant, the dominant coupling coefficients are

Jxxkk0 ≈ Jyykk0 ≈ Jzzkk0 ≈
1

2A
Vk0−k; ð7Þ

which represent Heisenberg ferromagnetic coupling
between pseudospins. Next-order expansion suggests that
out-of-plane coupling Jzz is slightly stronger than in-plane
coupling Jxx; Jyy. Since the pseudospin texture that follows
hk (i.e., nk ¼ hk=jhkj) is singular around the Dirac points
and leads to high exchange energy cost, spontaneous
breaking of sublattice symmetry occurs when interactions
get strong. Thus, in the strong-interaction limit (large-rs
limit in Fig. 1), all electrons are polarized to one of the
sublattices, forming a triangular-lattice WC.
A similar mean-field theory study has been carried out in

the context of graphene [53,54], where an explicit trans-
lational symmetry breaking occurs due to the periodic
lattice potential of graphene. Our case differs from these
previous works in two important ways. Because of the
absence of explicit translational symmetry breaking, the
graphenelike state in the weak-interaction limit where
kinetic energy dominates is likely an artifact of the
sublattice basis construction and the true ground state is
a Fermi liquid. More importantly, in the presence of
nontrivial quantum geometry, we find that spontaneous
breaking of translational symmetry leads to a topologically
nontrivial honeycomb-lattice state—the AHC state—in a
range of intermediate interaction strength.
Effects of quantum geometry.—TRS combined with C2

rotational symmetry guarantees invariance of energy with
respect to sublattice inversion nzk → −nzk and therefore
vanishing of hz, Jzx, and Jzy. When TRS is broken by

FIG. 2. Pseudospin Zeeman field hk in units of the kinetic energy scale Ekin. The arrows represent the in-plane components ðhxk; hykÞ,
scaled down by a factor of 40 and plotted on the axis scale, and the colors represent the out-of-plane component hzk. The green hexagon
shows the mBZ boundary. Panel (a) shows the kinetic energy part and panels (b) and (c) show the Hartree-Fock part at γ ¼ 0 and
γ ¼ 0.4, respectively. Other parameters used in the calculations include localization length l ¼ 0.25, interaction strength rs ¼ 20, and
winding number N ¼ 3.
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nontrivial form factors, all coefficients are generically
nonzero. A nonzero hz explicitly gaps out the Dirac cones
at K and K0. In addition, Jzx; Jzy couplings together with
the in-plane components of pseudospins nx, ny effectively
generate another out-of-plane Zeeman field. C2 symmetry
implies that the z component of the net effective Zeeman
field is opposite at two Dirac points. The pseudospin
texture that is aligned with the effective Zeeman field thus
forms a topologically nontrivial skyrmion texture in the
mBZ. If nzK ¼ þ1 and nzK0 ¼ −1, the Chern number is
C ¼ þ1; the opposite case nzK ¼ −1, nzK0 ¼ þ1 leads to
C ¼ −1. The locally smooth pseudospin texture also
implies lower exchange energy cost and higher stability
against sublattice-polarized states. Overall, TRS breaking
makes the topologically nontrivial AHC state more
favorable.
To make the analysis quantitative, we now provide an

explicit example where the AHC is stabilized for sufficient
TRS breaking. We assume quadratic dispersion Ep ¼
ℏ2p2=2m and gate-screened Coulomb interaction
Vq ¼ ð2πe2=qÞ tanhðqd=2Þ, where d is the distance to
gate. In terms of lattice constant a (an input parameter
determined by electron density), the kinetic energy scale is
Ekin ¼ ℏ2=2ma2 and the interaction energy scale is
Eint ¼ e2=a. Below we express all lengths in units of a
and energies in units of Ekin, and introduce the rs parameter
by πðrsℏ2=me2Þ2 ¼ ffiffiffi

3
p

a2=2. In this language, Eint ¼
rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π=

ffiffiffi
3

pq
. Since d is a constant length independent of

a, d=a ∝ 1=rs. In our calculations we take d=a ¼
50=rs [55].
The sublattice basis states in the variational wave

function (3) are constructed by solving the problem of
an electron moving in a honeycomb-lattice potential in the
plane-wave basis and Wannierizing the lowest two bands
(see Supplemental Material [49] for details). The potential

strength controls the localization length l of the constructed
basis states.
To model a band with nontrivial quantum geometry, we

take theBlochwave function jupi as a two-component spinor
in the basis of internal microscopic orbitals. Partly motivated
by recent work on rhombohedral multilayer graphene
[42–46], we take jupi ¼ ½cosðαp=2Þ; eiβp sinðαp=2Þ�, where
αp ¼ arctanðγjpjÞ and βp ¼ N argðpx þ ipyÞ. Here N ∈Zþ
is thewinding number and emulates the number of graphene
layers, while γ ≥ 0 describes the concentration of Berry
curvature near the origin. Since momentum is measured in
units of the long-period superlattice constant, when γ ∼ 1
Berry curvature is concentrated on the scale of the mBZ.
We use N ¼ 3 for our calculations below unless otherwise
stated, althoughqualitatively similar results are alsoobserved
for other winding numbers, as shown in the Supplemental
Material [49].
Figure 2 shows the pseudospin Zeeman fields hk

computed with a pair of sublattice basis states with
localization length l ¼ 0.25. The kinetic energy part hkink
[Fig. 2(a)] is independent of form factors. C6 symmetry
dictates that it is all in plane and forms vortices of opposite
chirality around K ¼ ð2π= ffiffiffi

3
p

; 2π=3Þ and K0 ¼ −K. When
the form factor is trivial (γ ¼ 0), the Hartree-Fock (HF) part
hHFk [Fig. 2(b)] forms a similar in-plane pattern as the
kinetic part. As γ increases and breaks TRS, hHFk gains an
out-of-plane component that is opposite at K and K0. See
Fig. 2(c) for the case of γ ¼ 0.4.
In the mean-field picture, coupling between pseudospins

generates an effective Zeeman field heff;αk ¼ P
β;k0 J

αβ
kk0n

β
k0

that depends on the pseudospin texture. To see how Jzx and
Jzy couplings lead to a topologically nontrivial state, we
consider the in-plane pseudospin texture that follows the
kinetic Zeeman field nkink ¼ hkink =jhkink j [Fig. 3(a)] and
calculate the out-of-plane Zeeman field it generates in
the mBZ:

FIG. 3. (a) Pseudospin texture that follows the kinetic energy part of Zeeman field nkink ¼ hkink =jhkink j. (b) Effective out-of-plane
Zeeman field generated by the pseudospins in (a) at γ ¼ 0.4. (c) Effective out-of-plane Zeeman field at K point as a function of γ. The
blue curve represents the Hartree-Fock part of Zeeman field hHF;zK , and the orange and green curves respectively represent the effective
field generated by nkink and the one generated by the sublattice-polarized state nAk ¼ ð0; 0; 1Þ. Other parameters used in the calculations
include l ¼ 0.25, rs ¼ 20, and N ¼ 3.
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heff;zk ¼
X
k0
ðJzxkk0nkin;xk0 þ Jzykk0n

kin;y
k0 Þ≡ ðJ · nkinÞzk: ð8Þ

As shown in Fig. 3(b), the effective field is an odd function
of k. Comparison between Figs. 2(c) and 3(b) shows that
hHF and J · nkin have opposite effects on the sublattice
polarization at K and K0 points and thus push toward
opposite AHC states [56]; hHF alone leads to a C ¼ −1
state while J · nkin favors C ¼ þ1. Because ðJ · nkinÞz has
much larger amplitude than hHF;z, we expect that the overall
energetically favorable state has C ¼ þ1.
In Fig. 3(c) we plot the z component of hHF and J · nkin

fields at K as a function of γ. We find that the amplitude of
both fields monotonically increases with γ, with the latter
always several times larger than the former. In the same
figure we also plot another quantity that measures the out-
of-plane ferromagnetic coupling strength:

ðJ · nAÞzK ≡X
k

JzzKk: ð9Þ
Physically this is the effective out-of-plane Zeeman field atK
produced by the A-sublattice polarized state nAk ¼ ð0; 0; 1Þ.
We find that the ferromagnetic coupling strength is signifi-
cantly reduced as γ increases from 0 to 1. Weakening of
ferromagnetic coupling increases the energy of sublattice-
polarized states and further stabilizes the AHC state that is
favored by the effective pseudospin Zeeman fields.
Phase diagram.—To find the mean-field ground state

of the system, we project the system Hamiltonian onto

the two-sublattice subspace and perform self-consistent
Hartree-Fock calculations. The sublattice projection intro-
duces an extra variational parameter l that has the physical
meaning of a localization length for charge localized about a
particular honeycomb-lattice site and that needs to be
optimized. For given rs and γ, we find the self-consistent
solutions at each l. Then we compare solutions at different l
and identify the one with lowest energy as the mean-field
ground state whose pseudospin texture determines the
sublattice structure and topology.
Figures 4(a) and 4(b) show the pseudospin textures of

ground states at two different values of γ, corresponding
respectively to a trivial WC state and a C ¼ 1 AHC state.
The charge density profiles in Figs. 4(c) and 4(d) make it
clear that the WC state forms a triangular lattice while the
AHC state forms a honeycomb lattice. Figure 4(e) shows
the phase diagram in ðrs; γÞ parameter space, where the
color scale represents the localization length of the ground
state. While the WC state is always the ground state when
the form factor is trivial, a first-order transition to the AHC
state occurs as γ increases. The critical value of γ increases
with rs.
Our sublattice-projected theory by construction does not

consider melting of crystals into translationally invariant
liquid phases. A useful approximate melting criterion is
provided by the Lindemann criterion [57–60], which in our
context states that melting occurs when the localization
length l (in units of lattice constant a) reaches a critical

FIG. 4. (a),(b) Sublattice pseudospin textures of the ground states at rs ¼ 20 and (a) γ ¼ 0.3, (b) γ ¼ 0.4. The winding number is
N ¼ 3 for (a)–(e). (c),(d) Charge density distribution of the states in (a) and (b). (e) Phase diagram as a function of rs and γ. The color
scale represents the localization length l of the ground state, and the black curve separates the trivial Wigner crystal (WC) and C ¼ 1
anomalous Hall crystal (AHC) states. (f) The critical value of γ for different winding numbers N at rs ¼ 20.
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value. The color scale in Fig. 4(e) shows that the locali-
zation length of both WC and AHC states decreases with
rs. Although the precise critical value of l is unknown for
the AHC state, since the phase boundary moves toward
large rs and small l as γ increases, we expect that at large γ
the AHC state is stabilized as an intermediate phase
between the WC and Fermi liquid phases. Following the
contour line in Fig. 4(e) that starts from the critical r�s ≈ 30
at γ ¼ 0 [3,4], we obtain the schematic phase diagram
in Fig. 1.
Discussion.—In this Letter we used a simple model to

demonstrate the possibility of spontaneous crystallization
of 2D electron systems into a topologically nontrivial state.
Our sublattice pseudospin picture qualitatively explains the
physical origin of the AHC states proposed by recent
theoretical work [42–46], but goes beyond the context of
multilayer graphene. Our theory shows that the most
essential ingredient for AHCs is a nontrivial form factor
Λp0;p with Berry curvature concentrated on the scale of the
superlattice mBZ that breaks the effective TRS and favors a
topologically nontrivial sublattice pseudospin texture.
Nontrivial form factors also weaken the ferromagnetic
exchange coupling that favors sublattice-polarized states
and thus further stabilizes the AHC state.
An interesting open question is the optimal form of Λp0;p

for the realization of AHCs. Our calculations at different
winding numbers N show that the AHC area in the phase
diagram does not monotonically increase with the Berry
flux in the first mBZ. Figure 4(f) shows the critical value of
γ for the transition fromWC to AHC states atN ¼ 3, 4, 5, 6
with fixed rs ¼ 20. At N ¼ 1, 2, and 7, the WC state
remains the ground state up to very large γ. Analytic
progress on the h and J coefficients (see expressions in
Supplemental Material [49]) or analogous studies using the
controlled quantum geometry of ideal bands [61–63] can
shed light on this nonmonotonic behavior and help identify
the optimal form of Λp0;p as well as promising material
candidates for the realization of AHCs.
Since all electrons in the WC state are well localized, the

WC state is well described by the Slater determinant (3) and
its total energy is largely independent of the specific form
of sublattice basis orbitals we use as long as it has the
correct localization length. For the AHC state, on the other
hand, it is less clear whether the ansatz (3) and the
sublattice basis construction provide an accurate descrip-
tion; if not, our calculations overestimate the energy of
AHCs. Therefore, the critical γ in our results should be
regarded as an upper bound for the realistic value. More
sophisticated computational techniques such as quantum
Monte Carlo methods are required to obtain a more
accurate phase diagram.
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Science 367, 900 (2020).

[23] T. Han, Z. Lu, G. Scuri, J. Sung, J. Wang, T. Han, K.
Watanabe, T. Taniguchi, H. Park, and L. Ju, Correlated
insulator and Chern insulators in pentalayer rhombohedral
stacked graphene, Nat. Nanotechnol. 19, 181 (2024).

[24] Z. Lu, T. Han, Y. Yao, A. P. Reddy, J. Yang, J. Seo, K.
Watanabe, T. Taniguchi, L. Fu, and L. Ju, Fractional
quantum anomalous Hall effect in multilayer graphene,
Nature (London) 626, 759 (2024).

[25] T. Han, Z. Lu, Y. Yao, J. Yang, J. Seo, C. Yoon, K.
Watanabe, T. Taniguchi, L. Fu, F. Zhang et al., Large
quantum anomalous Hall effect in spin-orbit proximitized
rhombohedral graphene, Science 384, 647 (2024).

[26] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald,
Topological insulators in twisted transition metal dichalco-
genide homobilayers, Phys. Rev. Lett. 122, 086402 (2019).

[27] T. Devakul, V. Crépel, Y. Zhang, and L. Fu, Magic in twisted
transition metal dichalcogenide bilayers, Nat. Commun. 12,
6730 (2021).

[28] V. Crépel and L. Fu, Anomalous Hall metal and fractional
Chern insulator in twisted transition metal dichalcogenides,
Phys. Rev. B 107, L201109 (2023).

[29] Y. Zeng, T. M. R. Wolf, C. Huang, N. Wei, S. A. A.
Ghorashi, A. H. MacDonald, and J. Cano, Gate-tunable
topological phases in superlattice modulated bilayer gra-
phene, Phys. Rev. B 109, 195406 (2024).

[30] T. Tan, A. P. Reddy, L. Fu, and T. Devakul, Designing
topology and fractionalization in narrow gap semiconductor
films via electrostatic engineering, arXiv:2402.03085.

[31] Y. Su, H. Li, C. Zhang, K. Sun, and S.-Z. Lin, Massive dirac
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