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Elucidating the physics of the single-orbital Hubbard model in its intermediate-coupling regime is a key
missing ingredient to our understanding of metal-insulator transitions in real materials. Using recent
nonperturbative many-body techniques that are able to interpolate between the spin-fluctuation-dominated
Slater regime at weak coupling and the Mott insulator at strong coupling, we obtain the momentum-
resolved spectral function in the intermediate regime and disentangle the effects of antiferromagnetic
fluctuations and local electronic correlations in the formation of an insulating state. This allows us to
identify the Slater and Heisenberg regimes in the phase diagram, which are separated by a crossover region
of competing spatial and local electronic correlations. We identify the crossover regime by investigating the
behavior of the local magnetic moment, shedding light on the formation of the insulating state at
intermediate couplings.
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Ever since the seminal works by Slater [1] and Mott [2],
correlation-induced metal-insulator transitions (MITs) in
transition metal compounds such as vanadates, titanates,
cuprates, or nickelates have intrigued the condensed matter
and materials science community. The Hubbard model, a
single-orbital lattice model describing the interplay of
kinetic energy and Coulomb interactions, is a minimal
model for such a MIT and has become the Drosophila of
the field. While in the limiting cases of one and infinite
spatial dimensions the exact solutions of the Hubbard
model are known, the nature of the MIT in finite dimen-
sions (and, in particular, in the important case of the model
on the d ¼ 2 square lattice) is still a subject of intense
debate. In the weak-coupling regime, the half filled
Hubbard model with nearest-neighbor hopping amplitudes
undergoes a Néel transition to an antiferromagnetic (AFM)
insulating state at a critical temperature TN . In this Slater
regime [1,3], the formation of the insulating state is driven
by Fermi surface (FS) nesting, enabling fluctuations
between FS points that are connected by the AFM wave
vector. In the opposite—strong-coupling—limit, strong
local Coulomb interaction localizes the electrons, inducing
a Mott insulating state [2,4] with Heisenberg-type magnetic
moments [5–9]. Upon decreasing temperature, at TN a Mott
insulator undergoes a paramagnetic-to-AFM transition,
which is no longer driven by the FS nesting, as the FS
is absent in the Mott phase. Close to the paramagnetic Mott
transition, the theoretical challenge consists of solving, at
least approximately, the quantum many-body problem in
the intermediate-coupling regime that cannot be reached by
perturbative expansions around the weak-coupling (band)

or strong-coupling (localized) limits. Moreover, in the
proximity of the phase transition, long correlation lengths
are expected, calling for techniques going beyond the local
picture of dynamical mean field theory (DMFT) [10]
methods.
Recent years have seen the development of a flurry of

attempts in this direction, including “cluster” methods,
where spatial (rather short-range) correlations are taken
into account within a cluster of lattice sites [11–19],
and “diagrammatic” methods, where nonlocal correlations
are treated via a diagrammatic expansion around DMFT
[20,21], such as GW þ DMFT [22–28], dual fermions
[29–34], dual bosons [35–41], the dynamical vertex
approximation [42–46], the triply irreducible local expan-
sion (TRILEX) [47–50], or the dual TRILEX (D-TRILEX)
[51–53] methods. In the weak-coupling regime, diagram-
matic Monte Carlo [54–58] studies of the Hubbard model
on the 2D square lattice [59–61] provide the numerically
exact solution, evidencing characteristic momentum-
selective effects stemming from AFM fluctuations as
expected in the Slater regime. In the intermediate-coupling
regime, however, and despite considerable progress in
recent years, there is still no complete picture of the physics
of even the single-orbital model at half filling.
In this Letter, we elucidate the spectral properties close to

and the nature of the Mott transition in the half filled
Hubbard model. We analyze corrections to the momentum-
resolved spectral functions from nonlocal fluctuations
taken into account beyond DMFT using D-TRILEX,
disentangling the contribution of AFM fluctuations and
local electronic correlations. We find the weak- and strong-
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coupling limits to be separated by a crossover regime that
starts when the local magnetic moment (LMM) is formed
and ends at the Mott transition. In this regime, spatial
fluctuations are important, but emergent LMMs herald
strong local electronic correlations in the Mott phase.
Increasing U enhances the value of the LMM and con-
comitantly reduces the momentum selectivity of spectral
features on the FS until it eventually disappears upon
entering the Mott phase. Our Letter bridges the weak- and
strong-coupling pictures of the MIT by providing a
complete analysis of the interplay of nesting, local moment
physics and Mott localization in the 2D Hubbard model.
We study the single-orbital half filled Hubbard

model [62]: Ĥ ¼ t
P

hjj0i;σ c
†
jσcj0σ þ U

P
i nj↑nj↓, on a

2D square lattice with dispersion ϵk ¼ 2tðcos kx þ
cos kyÞ and the on-site Coulomb interaction U. We use
the half bandwidth as our unit of energy, i.e., t ¼ 0.25.

Here, cð†Þσ is the annihilation (creation) operator for an
electron with spin σ ∈ f↑;↓g and njσ ¼ c†jσcjσ .
We solve the problem using the D-TRILEX approach

[51–53] that allows for a self-consistent treatment of the
local correlations and spatial charge and spin fluctuations
of arbitrary range in different lattice geometries [63–70].
This method performs a diagrammatic expansion on the
basis of a generic interacting reference system [34], e.g., a
DMFT impurity problem as used in this Letter. This
expansion is performed in terms of new fermionic and
bosonic variables that are dual to the original electronic
degrees of freedom. In this way, D-TRILEX becomes
perturbative around the exact weak- and strong-coupling
limits.
The momentum-resolved spectral function Aðk;ωÞ ¼

−ð1=πÞImGðk;EÞ and its momentum-integrated (local)
counterpart ρðωÞ ¼ P

k Aðk;ωÞ are obtained by perform-
ing analytical continuation for the Matsubara electronic

Green’s function Gðk; νÞ using the maximum entropy
method implemented in the ANA_CONT package [71].
The spin susceptibility in D-TRILEX is given by a
Bethe-Salpeter equation (BSE) [53] which, in the single-
band case, reduces to the Dyson equation. The D-TRILEX
calculations are performed in the normal (non-symmetry-
broken) phase. In this case the formation of the ordered
phase is captured by the divergence of the corresponding
susceptibility when the “leading eigenvalue” λ of the BSE
approaches 1. We will use the value of λ as a proxy for
AFM fluctuations. To determine the role of nonlocal
electronic correlations we compare the D-TRILEX results
to the paramagnetic DMFT solution of the problem (given
in Supplemental Material [72]).
Figure 1 displays the k-resolved spectral function along

a high-symmetry path in the Brillouin zone and its local
counterpart in the high- (top row) and low-temperature
(bottom row) regimes for three values of the interaction. At
the high temperature, with increasing interaction strength—
from left to right—the system evolves from a weakly
correlated metal, with a spectral function resulting from the
noninteracting one by mere temperature broadening, to a
Mott insulator, where the Mott gap results from a splitting
of the spectral features into upper and lower Hubbard
bands, separated by the Hubbard interaction ∼U, as
expected. In spite of the gap being well visible in the
momentum-resolved spectral function, in the local spectral
function, the strong thermal fluctuations at this temperature
lead merely to a minimum of the spectral weight at the
Fermi energy (EF), rather than vanishing spectral weight (a
similar result was observed in [75]). Results for these same
parameters within DMFT are plotted in Supplemental
Material [72]. The comparison of the D-TRILEX and
DMFT results allows for a direct assessment of the role
of nonlocal electronic correlations. As expected, at high
temperatures, differences between D-TRILEX and DMFT

FIG. 1. Momentum-resolved spectral function of the Hubbard model at half filling, at T ¼ 0.14 (upper row) and T ¼ 0.06 (lower row)
within D-TRILEX, at U ¼ 1.2 (left), U ¼ 1.6 (middle), and U ¼ 2.4 (right), along the k path Γ − X −M − Γ with Γ ¼ ð0; 0Þ,
X ¼ ðπ; 0Þ, and M ¼ ðπ; πÞ. The far right column displays the corresponding local spectral functions obtained for U ¼ 1.2 (purple),
U ¼ 1.6 (green), and U ¼ 2.4 (orange).
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spectra are minor. Nonlocal magnetic fluctuations are
negligible in this regime, as also confirmed by the spin
leading eigenvalue being significantly smaller than λ ¼ 1
(typically here λ < 0.5). In this regime, the MIT is thus
driven by purely local Mott physics and DMFT is sufficient
for addressing the problem.
The picture changes radically when cooling down. While

within DMFT temperature-induced changes of the spectral
function are minor and amount to a mere reduction of the
width of the different spectral features, D-TRILEX unravels
strongly temperature-dependent changes in the spectra. At
the largest interaction studied, vanishing spectral weight at
the Fermi level confirms the opening of the Mott gap, both
in DMFT and D-TRILEX. Nevertheless, even at this
relatively strong interactions, qualitative differences are
observed between the purely local picture of DMFTand the
D-TRILEX result. The differences in the local spectral
functions can be traced back to the differences in the
k-resolved ones (see bottom row in Fig. 1). We observe, in
particular, an overestimation of the widths of the Hubbard
bands within DMFT, while D-TRILEX displays sharper
excitations. Furthermore, within D-TRILEX, a “mirroring”
phenomenon of the electronic dispersion with respect to
zero energy sets in. Such a mirroring results from the
proximity of the system to an ordered AFM state. Indeed,
band backfoldings are a trivial effect occurring when the
unit cell is doubled by some kind of ordering, e.g., of AFM
nature. Here, they appear in a nontrivial way, from AFM
fluctuations in the paramagnetic phase. Remarkably, within
D-TRILEX, the mirroring of the bands is obtained purely
diagrammatically, as calculations are performed using a
single-site reference problem without any doubling of the
unit cell. The strong AFM fluctuations are encoded in the
nonlocal parts of the self-energy. We rationalize this
behavior in Supplemental Material [72]. The mirroring
of the bands is noticeable already at U ¼ 1.2 (bottom left
panel in Fig. 1) when the fluctuations are already relatively
strong (λ ¼ 0.89) and is well pronounced at U ¼ 1.6
(middle panel), when the leading eigenvalue of magnetic
fluctuations approaches unity (λ ¼ 0.94). Further increase
of the interaction to U ¼ 2.4 results in the Mott transition,
and the mirrored dispersion transforms into the two
Hubbard bands (right panel).
The spectral functions close to EF reveal characteristic

k-dependent features. Already at U ¼ 1.2 (bottom left
panel) we observe a depletion of the spectral weight around
the antinodal [AN ¼ X ¼ ðπ; 0Þ] point, while the nodal
[N ¼ ðπ=2; π=2Þ] point remains unaffected. In the local
spectral function, the reduction of the spectral weight at the
AN point results in a minimum at the Fermi level. When
increasing the interaction strength to U ¼ 1.6, the quasi-
particle (QP) peak at EF completely disappears at the AN
point, but remains at the N point. This is a well-known
effect of AFM fluctuations in the formation of an insulating
state, which implies that the gap in the spectral function

first opens at the AN point (middle panel at the bottom
row), then propagates along the FS, and finally opens at the
N point. Comparison of the momentum-resolved spectral
functions from D-TRILEX, displayed in the bottom row of
Fig. 1, is suggestive of an interpretation of the spectral
function in the intermediate-coupling regime as a super-
position of (mirrored) high-energy Hubbard bands and a
low-energy QP band split by AFM fluctuations.
Inspection of the local spectral functions for the two

lowest interaction values in the light of the k-resolved
spectra, calls for an important caveat: obviously, from the
depletion of the local spectral weight at the Fermi level, one
cannot establish insulating behavior of the system. Indeed,
in the presence of nonlocal correlations, the local spectral
function is no longer the appropriate quantity to look at,
since a metallic regime with a momentum-selectively-
gapped Fermi surface may not be distinguished from a
thermally broadened insulator.
The observed momentum-selective disappearance of the

quasiparticle peak at EF along the FS suggests to revisit the
phase diagram and study the spectral function at the AN
and N points separately. In Fig. 2, we regroup different
pieces of information: The dark red line corresponds to the
ðT;UÞ values for which the spin susceptibility at wave
vector q ¼ ðπ; πÞ diverges, indicating the Néel transition to
the AFM (quasi)ordered state at lower T. Concomitantly, in
the spectral function, at the N point, the QP peak at EF is
lost, and a gap opens. The dark blue line depicts the

FIG. 2. Low-temperature phase diagram of the 2D Hubbard
model within D-TRILEX. The different lines have been deter-
mined as follows: Divergence of the spin susceptibility at q ¼
ðπ; πÞ (dark red line); sign change of the slope of the self-energy
at the AN point (light blue curve); gap opening in the spectral
function at the AN point (dark blue curve); sign change of the
slope of the self-energy at the N point (light red curve); formation
of nonzero local magnetic moment (green curve). The purple line
corresponds to the simultaneous disappearance of the quasipar-
ticle peak at EF for both N and AN points, identified with the
paramagnetic (PM) Mott transition. The black curve is the
equivalent result from single-site DMFT calculations.
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formation of a minimum at EF in the spectral function at the
AN point, which—as seen above—occurs at larger temper-
atures than at the N point. Interestingly, the AN curve (dark
blue line) has a domelike shape mimicking the form of the
Néel phase boundary. At U ≃ 2.8 the AN and N curves
coincide, and the disappearance of the quasiparticle peak at
EF is not momentum selective anymore in the regime of
large interactions U ≳ 2.8. Remarkably, the form of the
dark blue curve suggests that at certain values of T by
increasing the interaction strength U one can move the
system from the regime where part of the FS is gapped
(blue area in Fig. 2) to a metallic regime (white area
between the dark blue and purple curves), where QPs are
restored along the entire FS. An example is given in Fig. 3.
Increasing the interaction even more results in a simul-

taneous disappearance of the QP peak at EF and in the
formation of the gap at both AN and N points [Fig. 3(d)],
which is depicted in Fig. 2 by the purple line. In the low-
temperature regime, the purple curve goes toward larger
values ofU upon decreasing temperature, until it eventually
merges with the AN (dark blue) and N (dark red) lines.
Remarkably, this simultaneous opening of the gap along the
FS is non-momentum-selective and is thus governed by
local electronic correlations. For this reason, we identify the
purple curve with the Mott transition. Thus, in the regime of
weak-to-intermediate interactions, AFM fluctuations
highly affect the behavior of the system, introducing
momentum selectivity between the N and AN points,
which results in the momentum-selective disappearance
of the quasiparticle peak along the FS. This behavior is
consistent with a Slater-like scenario for the MIT. On the
contrary, at strong interactions, local electronic correlations
dominate.

Interestingly, when taking into account nonlocal corre-
lations, the paramagnetic Mott transition is actually realized
at slightly larger values of U than in single-site DMFT (see
black and purple curves in Fig. 2). This is in contrast to
results obtained within cluster DMFT methods [17,19],
which find a reduction of Uc for the Mott transition
compared to single-site DMFT. This result, however,
was obtained in these studies by analyzing either the local
spectral function, the double occupancy, or the self-energy.
These quantities embody a combined effect of temperature,
magnetic fluctuations, and local correlations, and separat-
ing them is not a trivial task. Here we disentangle these two
mechanisms and associate the Mott transition to an effect
driven by the local correlations. An increase of Uc was also
discussed using TRILEX [48], based, however, on an
analysis of the local spectral function at the Fermi energy,
which—for the reasons explained above—is not a good
quantity for determining the MIT.
How does the system interpolate between the two

regimes of dominant spatial and local electronic correla-
tions? The first signature of the crossover between the two
regimes is the decrease of the N-AN dichotomy at U ≳ 1.5,
which manifests itself in a decrease of the difference
between the critical temperatures for the disappearance
of the quasiparticle peak at EF at the AN and N points (dark
blue and red lines in Fig. 2). This means that the local
electronic correlations start to take over the spatial ones
well before the system undergoes the Mott transition.
Also plotted in Fig. 2 are the critical values (T, U) at

which the behavior of the self-energy at the AN (light blue)
and N (light red line) points changes from metallic Fermi-
liquid-like to incoherent and eventually gapped behavior.
The self-energies themselves are plotted in Supplemental
Material [72]. In the weak-coupling regime, the dark and
light red curves coincide with the disappearance of the QP
peak at the N point. However, at U > 1 and T ≃ 0.38 the
light red curve exhibits a turn toward a smaller value of
interactions once the temperature increases. A similar
behavior is observed for the light blue curve, which starts
deviating from the dark blue curve at a similar temperature
T ≃ 0.38. Such a trend has also been detected in the
diagrammatic Monte Carlo study [58,76] in the same
regime of weak-to-intermediate correlations.
For this regime of increasing interactions, the low-

frequency behavior of the self-energy is obviously no
longer a good proxy for the behavior of the system, where
local correlations take over. For the same reason, the quasi-
particle weight is not well defined anymore. In Fig. 2, the
formation of the local magnetic moment, calculated follow-
ing Ref. [77], is depicted by the green line. In the weak-
coupling regime it lies on top of the Néel phase boundary
(dark red curve), which is consistent with a Slater mecha-
nism of the Néel transition in this regime. Remarkably, the
LMM curve starts deviating from the Néel phase boundary
at U ¼ 1.0, exactly when the light red line departs from the

FIG. 3. Spectral function at the AN (red) and N (blue) points
at T ¼ 0.062 for U ¼ 1.0 (a), U ¼ 1.4 (b), U ¼ 2.0 (c), and
U ¼ 2.6 (d). For increasing U, the QP peak at EF disappears first
at the AN point, but is restored at larger values of U. Finally, the
spectra are gapped at both points.
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dark red line. This means that at U > 1.0 the MIT is no
longer determined solely by magnetic fluctuations of
itinerant electrons accounted for by the self-energy,
as the LMM also starts contributing to the formation of
the insulating state. The formation of the LMM also
reduces the momentum selectivity in the disappearance
of the quasiparticle peak at the EF. Indeed, we find that the
LMM curve crosses the AN line at U ≃ 1.4 right before the
N-AN dichotomy starts being suppressed. This effect can
be explained by the fact that the LMM and spatial collective
electronic fluctuations are formed by the same electrons.
Upon increasing the interaction, more electrons are
involved in the formation of the LMM, and thus less
electrons remain for the fluctuations. Eventually, when
reaching the critical value, the LMM completely screens
the fluctuations and the system enters the Mott insulator
regime. The formation of the LMM therefore indicates the
beginning of the crossover regime separating the weak-
coupling Slater part of the phase diagram from the strong-
coupling Heisenberg one. The values of the LMM, given in
Supplemental Material [72], suggest that the end of the
crossover regime occurs upon reaching the critical value of
the LMM effectively when the system undergoes the Mott
transition.
In conclusion, we have studied the T-U phase diagram of

the half filled single-orbital Hubbard model on a square
lattice. Analyzing the behavior of the momentum-resolved
spectral function, we disentangle the contribution of AFM
fluctuations and local electronic correlations to the for-
mation of a depletion of spectral weight at the Fermi
energy, connecting the weak- and strong-coupling limits.
These two limits are separated by a crossover regime that
starts when the local magnetic moment is formed and ends
at the Mott transition. In this regime, spatial fluctuations are
still notable, but the presence of a LMM indicates the
emergence of strong local electronic correlations in the
system. We identify the weak-coupling region that precedes
the crossover with a Slater regime. There, the MIT is
solely governed by AFM fluctuations, which results in a
momentum-selective formation of the EF minimum with a
pronounced N-AN dichotomy increasing upon increasing
interaction. In the intermediate-coupling (crossover)
regime, increasing U enhances the value of the LMM
and thus reduces the N-AN dichotomy that eventually
disappears upon entering the Mott phase. Finally, the Mott
phase can be associated with the Heisenberg regime of local
magnetic moments. Indeed, we have found that the Mott
transition occurs when the LMM reaches a critical value.
The simultaneous disappearance of the quasiparticle peak
along the Fermi surface at the Mott transition additionally
illustrates the governing role of local electronic correlations
for the physics of the system. As expected, in the
Heisenberg regime, the Néel transition is driven by a
decrease in temperature, which separates the Mott phase
into paramagnetic and AFM states. This Letter bridges

between the weak- and strong-coupling pictures of the 2D
Hubbard model on the square lattice at half filling by
disentangling the interplay among the different underlying
mechanisms.
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