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Geometric fluctuations of the density mode in a fractional quantum Hall (FQH) state can give rise to a
nematic FQH phase, a topological state with a spontaneously broken rotational symmetry. While experiments
on FQH states in the second Landau level have reported signatures of putative FQH nematics in anisotropic
transport, a realistic model for this state has been lacking. We show that the standard model of particles in the
lowest Landau level interacting via the Coulomb potential realizes the FQH nematic transition, which is
reached by a progressive reduction of the strength of the shortest-range Haldane pseudopotential. Using exact
diagonalization and variational wave functions, we demonstrate that the FQH nematic transition occurs when
the system’s neutral gap closes in the long-wavelength limit while the charge gap remains open. We confirm
the symmetry-breaking nature of the transition by demonstrating the existence of a “circular moat” potential
in the manifold of states with broken rotational symmetry, while its geometric character is revealed through
the strong fluctuations of the nematic susceptibility and Hall viscosity.
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Introduction.—Nematicity in the fractional quantum
Hall (FQH) effect provides an intriguing link between
the notions of topology and spontaneous symmetry break-
ing [1]. The FQH nematic (FQHN) phase [2–4] has a finite
charge gap that leads to a quantized plateau in the Hall
resistance, reminiscent of incompressible FQH fluids [5].
However, while the latter are also gapped to neutral
excitations, such as a pair of fundamental quasielectron
and quasihole, the neutral gap in the FQHN phase is
expected to vanish as a consequence of the spontaneous
breaking of continuous rotational symmetry. Symmetry
breaking occurs in many QH systems with the prominent
examples being skyrmions [6–9] and charge-density-wave
(CDW) phases, such as stripes, bubbles, and Wigner
crystals [10–25]. Unlike these, the FQHN maintains trans-
lation invariance but only breaks rotational symmetry about
the z axis perpendicular to the two-dimensional electron
gas (2DEG) [26]. The breaking of a continuous symmetry
distinguishes the FQHN from other examples of discrete
nematics [27,28] in multivalley materials [29–31], frus-
trated magnets [32], and moiré superlattices [33–35].

A general mechanism believed to give rise to a FQHN
from a proximate incompressible FQH state is the softening
of the magnetoroton mode in the long-wavelength
limit [3,4], Fig. 1. The magnetoroton mode is a collective
density wave excitation [36–38] that occurs in many FQH
states, including the Laughlin [39] and Moore-Read [40]
states. At long wavelengths, the mode is described by the
Girvin, MacDonald, and Platzman (GMP) ansatz [41,42].
Unlike the topological properties of FQH states, such as the

FIG. 1. Schematic of the phase diagram and the FQHN transition
for bosons, driven by varying the shortest-range potential from its
Coulomb value by δV0. In the nematic phase, the charge gap
remains open, while the neutral gap has closed due to the presence
of a Goldstone mode associated with the spontaneous breaking
of continuous rotation symmetry. Upon further softening of the
shortest-range repulsion, the system becomes fully gapless, e.g., by
also breaking translation symmetry (CDW).
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Hall conductance, the long-wavelength limit of the GMP
mode has a geometric character: in an effective field theory,
it behaves as a quadrupole that can be described by a
quantum metric [43–50].
Experiments in the second LL with tilted magnetic

fields [51] and hydrostatic pressure [52,53] have observed
anisotropic resistance that was attributed to nematicity.
These experiments indeed suggest that nematic order can
be proximate to incompressible FQH states or even coexist
with them. In addition, a Raman scattering experiment at
filling factors ν ¼ 5=2 and 7=2 has provided evidence of an
interplay between nematicity and electron pairing [54].
A major challenge in bridging the gap between these
experimental observations and effective theories of
FQHNs has been the lack of a microscopic model. Early
work [55] introduced a class of variational Laughlin-like
wave functions that break the continuous rotational sym-
metry. More recently, Ref. [56] proposed a toy model
exhibiting some signatures of the FQHN. For a similar class
of short-range interacting models, Ref. [57] formulated
conditions for the quadrupole excitation to become gapless.
However, the identification of FQHNs in realistic models
has been lacking.
In this Letter, we consider a quintessential model of the

FQH effect—Coulomb interaction projected to the lowest
LL (LLL) [58–60]. Contrary to the general belief that the
softening of the shortest range component of the Coulomb
interaction results in a destruction of the FQH liquid and
direct transition to a CDW, we argue that this model realizes
the scenario of the FQHN transition as shown in Fig. 1.
Using exact diagonalization (ED), we demonstrate the
hallmarks of the FQHN in this model: the GMP mode
goes soft at long wavelengths and the neutral gap closes,
while the charge gap remains open. Furthermore, we
demonstrate the symmetry-breaking nature of the transition
and show that the nematic susceptibility and the Hall
viscosity both diverge in its vicinity. The results of exact
numerics are supported by estimates of the gaps in larger
systems using the GMP ansatz and composite fermion (CF)
theory [61]. Below we present illustrative results for the
Laughlin state of bosons at filling factor νb ¼ 1=2, which is
relevant for recent experiments in cold atom setups [62].
However, in the Supplemental Material [63], we demon-
strate that our results equally apply to the ν ¼ 1=3 Laughlin
state of electrons.
Model.—We consider a standard model for the FQH

effect where N electrons, interacting pairwise via the
Coulomb potential, are confined to a spherical surface [86],
with a Dirac monopole at the center, emanating a radial
magnetic flux of strength 2Qhc=e. The radius of the
sphere is R ¼ ffiffiffiffi

Q
p

lB, where lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the mag-

netic length. The Hamiltonian is translation and rotation
invariant, which implies that the total orbital angular
momentum L and its z component M are good quantum
numbers. The magnitude of the planar wave vector k is

given by k ¼ L=R. The rotational invariance of the inter-
action implies that it can be expressed in terms of Haldane
pseudopotentials fVmg, where m ¼ 0; 1; 2; 3;… is the
relative angular momentum of any pair of particles [58,86].
Hence, m is constrained by the statistics of the particles:
for bosons, only even pseudopotentials V0, V2, V4, etc.,
are relevant.
We will consider the filling factor νb ¼ 1=2 for bosons,

at which the Laughlin state [39] is realized if we set the
magnetic monopole flux to 2Q ¼ 2N − S, with S ¼ 2
denoting the Wen-Zee shift [87]. Starting from the
Coulomb interaction, we soften the shortest-range compo-
nent of the interaction potential and therefore the model is
parametrized by a single number δV0 ¼ V0 − VC

0 , where
VC
0 is the Coulomb interaction’s V0 value [88].
Spectral properties.—We first analyze the energy spectra

of the νb ¼ 1=2 bosonic state obtained using ED, Figs. 2(a)
and 2(b). Throughout, energies are expressed in units of
Coulomb energy, EC ≡ e2=ϵlB. While there is a gapped
magnetoroton mode for the pure Coulomb interaction
[Fig. 2(a)], the dispersion of the collective mode is
significantly altered by reducing the V0 component of
the interaction. As we add a delta interaction of strength
δV0 ¼ −0.4, the wave number corresponding to the roton
minimum changes from klB ∼ 1.5 to k → 0 [Fig. 2(b)].

FIG. 2. (a)–(b) Energy spectrum for bosons at νb ¼ 1=2 in the
LLL, with pure Coulomb potential (a) and softened by adding
δV0 ¼ −0.4 pseudopotential (b), which pushes the system close
to a critical point. Data is for system sizes N ¼ 6–12. All
energies include the rescaling of the magnetic length, see
Supplemental Material [63]. (c) Charge and neutral gaps
(see text for the definition) of the bosonic νb ¼ 1=2 state as
a function of δV0. (d) The scaling of the gaps as a function of
1=N for the fixed value δV0 ¼ −0.43.
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The softening of the magnetoroton mode implies that the
neutral gap decreases as V0 is reduced and potentially
closes in the long-wavelength limit.
In Figs. 2(c) and 2(d) we show the gaps as a function of

δV0. We evaluate two types of gaps for accessible system
sizes and perform their extrapolation to the thermodynamic
limit in 1=N: (i) the neutral gap is defined as the difference
in the lowest two energies at the ground state flux,
2Q ¼ 2N − 2; (ii) the charge or transport gap, i.e., the
energy to create an individual quasihole (occurs at flux
2Qþ 1) and quasiparticle excitation (occurs at flux
2Q − 1). An alternative way to estimate the charge gap
is to extrapolate the gap ΔL¼N , the energy difference
between the ground state and the lowest-lying state with
orbital angular momentum L ¼ N, at the ground state flux.
The L ¼ N roton state is formed by a quasiparticle and a
quasihole on opposite poles of the sphere. The interaction
between these localized excitations vanishes in the thermo-
dynamic limit, hence the charge gap is simply the sum of
their individual energies.
The results in Fig. 2(c) show a sharp drop in both the

charge and neutral gaps as the interaction is softened by
δV0 ≈ −0.4. More precisely, at δV0 ¼ −0.43, the neutral
gap drops to zero (or slightly below, due to the uncertainty
of the extrapolation), however, the charge gap, while
significantly reduced compared to the pure Coulomb point,
remains nonzero. This is demonstrated by the raw scaling
data for gaps as a function of 1=N in Fig. 2(d). The
reliability of the extrapolation is confirmed by independ-
ently calculating ΔL¼N , which extrapolates to the same
value as the charge gap, Fig. 2(d).
Variational wave functions.—To access system sizes

beyond ED, we employ GMP [41] and composite fermion
(CF) [89] ansatz wave functions. Figure 3 shows the gap
estimates from such wave functions. We approximate the
ground state by the bosonic Laughlin wave function [39]
which has a high overlap (upwards of 0.85 for all
N ≤ 14) with the exact ground state across the range
δV0 ∈ ½−0.43; 0�. The exact spectra, Fig. 2(b), show that
the gap can be upper bounded by the GMP excitation that
carries angular momentum L ¼ 2 on the sphere [90]. On
the other hand, to estimate the charge gap, we use the CF
exciton wave functions, which accurately describe the
entire magnetoroton branch [91,92]. The CF exciton wave
function of the Laughlin state in the long wavelength limit
is identical to the GMP ansatz. We estimate the charge gap
by the energy of the L ¼ N member of the CF-exciton
mode [61,93].
We independently evaluate the Coulomb and V0 ¼ 1

pseudopotential gaps for many systems using the
Monte Carlo method and extrapolate these gaps to the
thermodynamic limit [63]. By superposing these gaps, we
extract the variational gap for an arbitrary combination of
the Coulomb and V0 pseudopotential. As shown in Fig. 3,
the neutral and charge gaps have different slopes as a

function of δV0, the former decaying faster. Thus, there is a
region of parameter space 0.43 ≤ −δV0 ≤ 0.84 where the
neutral gap vanishes while the charge gap remains finite.
This variational estimate of the FQHN phase boundaries is
consistent with the ED results above.
Symmetry breaking and geometric response.—As an

order parameter for the FQHN transition, we utilize the
deformed Laughlin states which partly break rotational
symmetry [55,94]:

Ψνb¼1=2;α ¼
Y

i<j

ðzi − zj − αÞðzi − zj þ αÞ; ð1Þ

where we have suppressed the usual Gaussian factor and
the parameter α controls the breaking of rotational sym-
metry by “splitting” the zeros of the wave function. For
small α, these wave functions, as well as related ones in
Refs. [43,94], describe an incompressible fluid rather than
an FQHN. Nevertheless, we can use their variational energy
to define a “mean-field” order parameter: we keep the
interaction fully rotation invariant, while we evaluate the
expectation value of the energy for the anisotropic wave
functions. For δV0 > δVcritical

0 , we expect the energy mini-
mum to correspond to α ¼ 0, i.e., the isotropic Laughlin
wave function, while for δV0 < δVcritical

0 the minimum
should shift to a nonzero α� > 0. In the vicinity of a
second-order phase transition, mean-field theory predicts
a critical component β ¼ 1=2 for the order parameter
α� ∝ ðδVcritical

0 − δV0Þβ [4].
This scenario is confirmed in Fig. 4(a), which shows

the energy of Ψνb¼1=2;α states for the LLL-projected
Coulomb interaction at several values of δV0. The isotropic
Laughlin state (recovered at α ¼ 0) indeed yields the
minimum of energy when jδV0j ≤ 0.44 ¼ −δVcritical

0 .
This estimate of the FQHN transition point is in good

FIG. 3. Variational estimate of the neutral gap (i.e., the gap of
the L ¼ 2 GMP state) and charge gap (i.e., the gap of
L ¼ N CF exciton state) as a function of δV0 for bosons at
νb ¼ 1=2. The inset shows the finite-size extrapolation of the
Coulomb and V0 gaps of L ¼ 2 and L ¼ N trial states.
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agreement with our previous exact results for the closing
of the neutral gap. Upon further reducing V0, the lowest
energy state appears at a nonzero α� value. The scaling of
α� near criticality is presented in the inset of Fig. 4(a),
which is consistent with the mean-field exponent 1=2.
To characterize the geometric nature of the FQHN

transition, we have computed the nematic susceptibility
introduced in Ref. [56], see Fig. 4(b). This calculation is

performed in the torus geometry [95] by varying the
aspect ratio. Figure 4(a) shows that deep in the Laughlin
phase the nematic susceptibility is zero while close to
the transition point, δV0 ¼ −0.43, it jumps to a nonzero
value and thereafter varies erratically with system size.
Moreover, we have computed the Hall viscosity ηA on the
torus [96–98] as the system is tuned towards the FQHN
critical point [63]. For gapped FQH states, the Hall
viscosity is quantized by the shift, ηA ¼ ðℏρ=4ÞS [99],
where ρ is the fluid density. The extracted value of S is
plotted in the inset of Fig. 4(b) as a function of δV0. Deep in
the gapped phase, δV0 ≳ −0.3, the shift is robustly quan-
tized to the Laughlin value S ¼ 2. Near the transition but
still in the gapped phase, the smaller systems depart from
the quantized value, which is attributed to an increase in
the correlation length. Finally, as we hit the FQHN critical
point, the quantization of ηA breaks down completely. In the
Supplemental Material [63], we show that the onset of the
transition is also signaled by the dynamical response of
the system to a geometric quench.
Experimental implications.—The key ingredient of

our model—the softening of the V0 pseudopotential of
the Coulomb interaction—can realistically arise due to the
finite width of the 2DEG or screening by electrostatic gates.
LL mixing, in particular, leads to a large reduction of V0

[100–102]. Moreover, the node in the single-particle wave
functions in higher LLs tends to expose the magnetoroton
mode in the long-wavelength limit [103], thus providing a
natural setting for FQHNs [104]. One of the main exper-
imental challenges is distinguishing the FQHN from a
CDW. Resonant inelastic Raman scattering [36,54,105] or
surface acoustic waves [38] can map out the magnetoroton
mode and confirm whether it closes in the long-wavelength
limit. Recent advances in the scanning tunneling microscopy
of FQH states [106–109] could provide further insights into
the FQHN formation, generalizing the previous observation
of nematicity of free electrons in bismuth [31].
Beyond solid-state systems, interactions in synthetic

systems of alkaline atoms can be tuned by coupling to
the highly excited Rydberg levels. The Rydberg blockade
radius that simulates the V0 interaction can be tuned in
these platforms and both FQH and crystalline phases have
been shown to arise in these models [110,111]. The long-
range interactions in Rydberg-dressed atoms as well as
dipolar gases [112] make them a promising platform for
FQH physics [113]. Other platforms where bosonic FQH
states can be stabilized are polaritons where an artificial
magnetic field and LLs can be generated by rotating the
medium through which light propagates [114]. A suitably
chosen medium could potentially allow to engineer a
desired interaction [115,116].
Conclusions.—In summary, we have presented a micro-

scopic model that exhibits key features of the FQHN
transition. Intriguingly, the model shows clearer FQHN
signatures compared to short-range models, such as the one

FIG. 4. (a) Energy of the wave functions in Eq. (1) for various
δV0. We discretize the α range in steps of 0.02lB. Inset shows the
value of α which minimizes the total energy at each δV0. The
Coulomb energy and V0 ¼ 1 energy are calculated, respectively,
for N ¼ 15, 20, 25, 30 and the thermodynamic values are
obtained from finite-size extrapolation. The red dashed line is
the fitting of the data with the form of κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δVcritical

0 − δV0

p
, where

κ ¼ 0.439 and δVcritical
0 ¼ −0.44. (b) Nematic susceptibility from

Ref. [56] for bosons at νb ¼ 1=2 on the torus with a square unit
cell for several system sizes indicated in the legend. As V0 is
reduced and the critical point is approached, we observe a sharp
increase and strong finite-size fluctuations in the nematic sus-
ceptibility. Similar behavior is found for the shift S shown in the
inset. We extract the shift from the Hall viscosity ηA on the torus
near the square aspect ratio. In the gapped FQH phase, the shift is
quantized to the S ¼ 2 value expected in the Laughlin state.
Similar to the nematic susceptibility, as the FQHN critical point is
approached, we observe large fluctuations in S, which is no
longer quantized.
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in Ref. [56]. We speculate that this is due to the tendency of
the Coulomb interaction to “pull down” the magnetoroton
mode below the spectral continuum in the long-wavelength
limit, as seen in Fig. 2. By contrast, in short-range models,
the long-wavelength limit of the magnetoroton mode is
clearly inside the continuum [117]. The necessary con-
ditions for the gaplessness of the L ¼ 2 neutral excitation in
short-range models have been derived in Ref. [57], and it
would be interesting to generalize those results to long-
range interactions.
While we have provided multiple pieces of evidence

for the FQHN critical point, the nature of the phase past
criticality is not fully understood. At large negative δV0, we
expect a CDW to become the ground state. On the sphere,
the study of CDW phases is hindered by frustration effects,
requiring very large systems to observe the expected
closing of the charge gap. On a torus, by varying the
aspect ratio, we have indeed found a proximate phase
with a manifold of ground states consistent with CDW
ordering [63]. Thus, the FQHN phase found above could be
proximate to a CDW.
One important question is, how general are the results

above? In the Supplemental Material [63], we show that
fermions at ν ¼ 1=3 behave similarly to bosons at νb ¼ 1=2
considered above. Moreover, other incompressible states,
in particular ν ¼ 2=5 and 3=7 Jain states, also have
collective modes “exposed” below the continuum of
the spectrum [118,119]. We leave their study to future
work. We note, however, that the FQHN presented above
could potentially be realized even beyond noninteracting
CF states. For example, we have checked that bosons at
νb ¼ 1, which realize the Moore-Read state [40,120–123],
support a similar phenomenology. Beyond the nematic
instability of incompressible FQH states, it would be
interesting to explore a compressible nematic which could
arise in third and higher Landau levels [18,124–126], e.g.,
due to the quantum (or thermal) melting of a stripe state
[26,104,127] or a Pomeranchuk instability of the com-
pressible ν ¼ 1=2 state [48,128].
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