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We study a controlled large-N theory of electrons coupled to dynamical two-level systems (TLSs) via
spatially random interactions. Such a physical situation arises when electrons scatter off low-energy
excitations in a metallic glass, such as a charge or stripe glass. Our theory is governed by a non-Gaussian
saddle point, which maps to the celebrated spin-boson model. By tuning the coupling strength we find that
the model crosses over from a Fermi liquid at weak coupling to an extended region of non-Fermi liquid
behavior at strong coupling, and realizes a marginal Fermi liquid at the crossover. Our results are valid for
generic space dimensions d > 1.
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Introduction.—Understanding scenarios in which strong
interactions between itinerant electrons and collective
quantum fluctuations invalidate the conventional Landau
Fermi-liquid (FL) paradigm is a central problem in the field
of correlated metals [1–5]. A prominent example of such a
scenario is the enigmatic “strange metal” (SM) behavior
found in high-Tc superconductors and other quantum
materials [6–9]. SMs are commonly defined by an anoma-
lous T-linear scaling of the dc resistivity at arbitrarily low
temperatures, which is in sharp contrast to the T2 depend-
ence predicted by FL theory. While SM behavior is often
associated with an underlying quantum critical point (QCP)
at T ¼ 0 [1,10–14], there are multiple examples, such as
cuprates [15–18], twisted bilayer graphene [9,19], and
twisted transition metal dichalcogenides [20], where it
appears to persist over an extended region, suggesting
the interesting possibility of a critical, non-Fermi liquid
phase at zero temperature. Extended critical behavior
has also been observed in MnSi with T3=2 scaling of the
resistivity [21–24] and in CePdAl with a Tn scaling with n
varying from ∼1.4 to 2 [25].
The absence of a quasiparticle description in such systems,

known as non-Fermi liquids (NFLs) [11,26,27] or marginal
Fermi liquids (MFLs) [10,11], makes well-controlled theo-
retical investigations challenging. Nevertheless, recent years
have witnessed a proliferation of illuminating solvable
models, largely facilitated by the use of large-N and
Sachdev-Ye-Kitaev (SYK) techniques [2,5,28,29]. In par-
ticular, the extensive analysis of a class of Yukawa-SYK
theories [30–39], where a Fermi surface is coupled to critical
bosons, has demonstrated that strange metallicity can ema-
nate from a QCP.
Non-Fermi liquid behavior is ultimately tied to an

anomalous spectrum of gapless excitations that invalidate
the phase-space arguments that protect FLs. Such a

spectrum occurs at a QCP. In contrast, a controlled micro-
scopic theory hosting a stable NFL phase, free of fine-
tuning, remains mostly absent within the existing literature.
This is surprising as such extended metallic critical phases
seem to be allowed within holographic setups [40,41], and
are also supported by numerical evidence [42].
A gapless spectrum can also be the result of quantum

fluctuations of localized, gapped modes, if the distribution
of the local gaps has a sufficiently large weight near zero.
Indeed, in the presence of disorder, a system may host such
an anomalous spectrum of localized modes due to quantum
Griffiths effects, where rare, large droplets have a gap that
is exponentially small in the droplet volume [43–45].
Here we take a different route and show that a NFL phase

can arise due to coupling of electrons to the low-energy two-
level excitations of an underlying glassy state [46,47]. While
individual two-level systems (TLSs) are governed by a
distribution function thatmayvanish rapidly near zero energy,
strong local quantum fluctuations renormalize the excitation
gap down. This changes the shape of the excitation spectrum
drastically, resulting in a breakdown of FL behavior.
To this end we formulate and solve in a controlled large-N

limit a model of N fermion species coupled to M ∼ N
dynamical TLSs per site via spatially random interactions.
The theory is governed by a non-Gaussian saddle point,
which maps to the spin-boson (SB) model. While the
electrons constitute an Ohmic bath for the TLSs for all
coupling strengths, the backaction of the TLSs gives rise
to a tunable exponent γðαÞ in the electronic self-energy
ImΣðωÞ ∼ jωjγ . Here α is the dimensionless coupling con-
stant of the problem. Notably, the low-temperature dc
resistivity obeys ρðTÞ ¼ ρ0 þ CTγ , with a tunable exponent
0 < γ < 2 that depends on the coupling. This behavior offers
an alternative viewpoint to the conventional form: ρðTÞ ¼
ρ0 þ AT þ BT2, that is often used in the interpretation of
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strange metal behavior [8,15,16,48–52]. A summary of our
results for a representative model is shown in Fig. 1.
Our theory draws inspiration from the intricate phase

diagrams of high-Tc superconductors which often exhibit a
competition between multiple frustrated orders that could
lead to metallic glassiness [53,54]. In the cuprates, there is
plenty of evidence for short-range charge-density-wave and
nematic order [55–69], that can account for such glassy
behavior. It is worth noting that such a scenario can arise
independently of extrinsic quenched disorder, namely, due
to frustration-induced self-generated randomness [70]. For
example, the dynamics of helical magnetism in MnSi is
governed by soft bosonic excitations on a surface in
momentum space, a setting prone to lead to self-generated
glassiness [71].
Model.—We consider a model of N species of electrons

hopping on a d-dimensional lattice with dispersion εk. Each
site hosts M TLSs (i.e., spin-1=2 Pauli operators) subject
to random fields hl;r, which we locally describe in their
eigenbases:

H ¼
X
k;i<N

εkc
†
ikcik −

X
r;l<M

hl;rσ
z
l;r þHint: ð1Þ

Having multiple TLSs per site (M ≫ 1) could arise from a
coarse grained description of mesoscale collective degrees
of freedom of an underlying glassy state [72,73], each of
which interacts with many electrons. The electronic orbitals
are extended as well, such that each electron interacts with
many TLSs. The coupling between the electrons and TLSs
is given by

Hint ¼
1

N

X
r;ijl

gijl;r · σl;rc
†
ircjr; ð2Þ

with random couplings gijl;r. Adding a potential scattering
term Hpot ¼ ð1= ffiffiffiffi

N
p ÞPr;ij<N Vij;rc

†
ircjr induces elastic

scattering of the itinerant electrons, while leaving the
TLS properties unaffected.
For gijl;r ∼ ð0; 0; 1Þ the TLSs are static and the problem

reduces to a single-particle one and can be solved exactly.
Electrons cause quantum transitions whenever there are
coupling constants that differ from the above choice. We
have analyzed the case of general coupling constants and
find that the case where gijl;r ∼ ðgijl;r; 0; 0Þ describes all the
important aspects that occur in the generic case [74].
Finally, we need to specify the distribution function of
the random coupling constants and fields. For the former
we chose a Gaussian distribution with zero mean and
variance gijl;rgijl;r0 ¼ g2δðr − r0Þ. For the latter, consider
that each TLS represents two nearly degenerate configu-
rations of some local collective mode. The level splitting
and tunneling rate, characterizing each TLS, can be
considered as independently distributed random variables
due to their disordered nature. For the eigenvalues h in

Eq. (1) this yields a distribution function PðhÞ ∝ jhj for
jhj < hc, where hc is the maximum splitting of the TLSs,
assumed to be much smaller than the Fermi energy, EF. We
further consider PβðhÞ ∝ jhjβ that also includes the case of
a constant distribution for β ¼ 0 (which could describe a
physical situation where tunneling is significantly smaller
than the energy splitting), and keep β ≥ 0 arbitrary. The
qualitative behavior is similar for all values of β ≥ 0.
Effective action.—We start from a coherent-state path

integral for the fermions and TLSs, average over the
random couplings by using the replica trick, and enforce
the identities

Gr;r0 ðτ; τ0Þ ¼
1

N

X
i

c̄irðτÞcir0 ðτ0Þ; ð3Þ

χrðτ; τ0Þ ¼
1

M

X
l

σxl;rðτÞσxl;rðτ0Þ; ð4Þ

via corresponding Lagrange multiplier fields Σr;r0 ðτ; τ0Þ and
Πrðτ; τ0Þ. We integrate out the fermions and obtain the
effective action:

Seff ¼ STLS − Ntr log ðG−1
0 − ΣÞ − NtrGΣþM

2
trχΠ

þM
2
g2
X
r

Z
τ;τ0

Grðτ; τ0ÞGrðτ0; τÞχrðτ; τ0Þ; ð5Þ

where the trace is taken over space and time. In contrast to
the usual Yukawa-SYK approach [30–39], where the role
of the TLSs is played by Gaussian bosonic modes, there is
no Wick theorem for spin variables and the TLSs cannot be
integrated out. Instead, they are governed by the action
STLS ¼

P
r;l SSB½σl;r�, which is a sum of individual spins

with fermion-induced dynamics:

SSB½σl;r� ¼ −
Z
τ;τ0

Πrðτ0 − τÞσxl;rðτÞσxl;rðτ0Þ

−
Z
τ
hl;rσ

z
l;rðτÞ þ SBerry½σl;r�: ð6Þ

See Supplemental Material [75] for details of the derivation
of Eq. (6). The last term is merely the Berry phase that
occurs from the spin coherent state representation. SSB½σl;r�
is a highly nontrivial local many-body problem. One
recognizes that it is equivalent to the spin-boson problem
of a localized spin coupled to an environment of bosons
with spectral function leading to the bath function
Πrðτ0 − τÞ [78–81]. In our case the bath is due to electronic
particle-hole excitations. In the large-N, M limit the theory
is governed by the saddle point with respect to G, Σ, and χ,
given, respectively, by

Σr;r0 ðτÞ ¼ δr;r0
M
N
g2Gr;rðτÞχrðτÞ;

Gr;r0 ðiωÞ ¼ ðG−1
0 ðiωÞ − ΣðiωÞÞ−1jr;r0 ;

ΠrðτÞ ¼ −g2Gr;rðτÞGr;rð−τÞ: ð7Þ
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The saddle with respect to Π replaces the right-hand side of
Eq. (4) by its expectation value. Equations (7) are similar to
the Yukawa-SYK problem, where one obtains essentially a
set of coupled Eliashberg equations. The crucial difference
is that in our case, Π and χ are not the self-energy and
propagator of a boson, related by a Dyson equation. Instead
Π is the bath function of a spin-boson problem whose
solution determines χ.
The saddle-point equations (7) together with the solution

of the spin-boson problem SSB of (6) are valid for a
given disorder configuration fhl;rg of the random field.
Hence, the system is not translation invariant and correla-
tion functions like hσxl;rðτÞσxl;rð0Þi fluctuate in space.
However, to determine the self-energy in Eq. (7) we only
need to know the average of this correlation function
over the M flavors. To proceed we employ the large-M
limit to replace sums over the TLS flavors with an average
over the TLS splitting distribution: ð1=MÞPM

l¼1 � � � →R
PðhÞ � � � dh. Since the distribution is independent of

position we obtain a statistical translation invariance for
the average of interest. Hence, χðτÞ and therefore the bath
function ΠðτÞ are independent of r, implying that the local
fermionic Green’s function and self-energy are position
independent as well.
The theory is therefore governed by a momentum-

independent self-energy. Standard manipulations for such
a self-energy, valid in the regime where the typical bosonic
energies are smaller than the electronic bandwidth, yield
ΠðiωÞ ¼ ðρ2Fg2=2πÞjωj. That is, the electrons constitute an
Ohmic bath for the TLSs, independent of the form of the
self-energy. To proceed, we obtain the TLS susceptibility
χðhl;ωÞ (i.e. for a fixed hl) by solving its corresponding
SB problem SSB½σl;r�, and average over the random field
configurations χðωÞ ¼ R

dhPðhÞχðh;ωÞ. Then the fer-
mionic self-energy of Eq. (7) can at T ¼ 0 be written

as ImΣretðωÞ ¼ −ρFg2ðM=NÞ R jωj
0 dω0Imχretðω0Þ (hereafter

“ret” denotes the retarded function).
Results.—The solution of the SB model is a classic

problem in many-body physics of impurity models [79,81].
For our purposes we use two established facts: (i) the low-
energy physics of the problem is governed by renormal-
ization group equations

dα
dl

¼ −αh̃2 and
dh̃
dl

¼ ð1 − αÞh̃ ð8Þ

for the dimensionless coupling constant α ¼ g2ρ2F=π
2 and

field h̃ ¼ h=EF, where l measures the logarithm of
the characteristic energy. Its solution yields renormalized
fields and coupling constants hRðh; αÞ and αRðh; αÞ,
respectively [up to Oð1Þ numerical coefficients which
can be determined by alternative methods [82–85] ].
(ii) The correlation function obeys a scaling form in terms
of the renormalized field

Imχretðh;ω; TÞ ¼
1

ω
fα

�
ω

hR
;
T
hR

�
: ð9Þ

The scaling function fα is known numerically and, in
several limiting regimes, analytically. To perform the
average over field configurations, it is convenient to work
with the distribution function of renormalized fields:

PR;βðhRÞ≡ dh
dhR

PβðhÞ: ð10Þ

The renormalized distribution function follows from the
solution of the flow equations. In Fig. 2 we show the
evolution of the corresponding renormalized distribution
function as a function of the coupling constant α for the
case of β ¼ 1 (i.e., a linear bare distribution).
We first consider α < 1. In this case the solution of

Eqs. (8) yields hR ¼ EFh̃
½1=ð1−αÞ� [78–81], which yields that

PR;βðhRÞ ∝ hβ−αð1þβÞ
R . The downwards renormalization of

the excitation energies of the TLSs leads to a strong weight
transfer in the distribution function, making it significantly
more singular at low energies. As soon as α reaches αMFL ≡
β=ð1þ βÞ the renormalized distribution function remains
finite at arbitrarily small hR, for α > αMFL it is even
divergent in the low-energy limit. We can now straightfor-
wardly perform the average with the renormalized distri-
bution. We find that at T ¼ 0, the low-energy (ω ≪ hc;R)

FIG. 1. Phase diagram for a system with a linear field
distribution (β ¼ 1). α is the dimensionless coupling strength
and hc ≪ EF is the bare cutoff energy of the TLS distribution.
The colored area represents the low-T dynamical regime,
characterized for α < 1 by the exponent γ ¼ 2ð1 − αÞ that
governs the inelastic scattering rate. We find FL behavior for
α < 1=2, a MFL at α ¼ 1=2 and a NFL for α > 1=2. As α crosses
1, the TLSs partially freeze at T ¼ 0, indicated by a thick black
line. At temperatures above the renormalized cutoff T ≫ hc;R, the
TLSs act as classical elastic scatterers with T-independent
scattering rate. The crossover to this region is denoted by the
fading out of the color. Here hc=EF ¼ 0.4.
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TLS susceptibility and the electronic self-energy are
characterized by a coupling-constant-dependent exponent
γ ¼ ð1þ βÞð1 − αÞ:

ImχretðωÞ ¼ signðωÞ γAα

hc;R

���� ω

hc;R

����
γ−1

;

ImΣretðωÞ ¼ −ρFg2Aα
M
N

���� ω

hc;R

����
γ

: ð11Þ

hc;R is the renormalized value of the upper cutoff hc.
Importantly, the exact form of the scaling function fαðx; 0Þ
of Eq. (9) only affects the Oð1Þ coefficient Aα, given in the
Supplemental Material [75]. At finite temperatures Eq. (9)
implies that the averaged TLS-correlation function and
hence the self energy obey ω=T scaling. Since the exponent
γ is a continuous function of the coupling strength α,
the self-energy can be tuned to realize a MFL form:
ImΣretðωÞ ∼ jωj, provided that α ¼ αMFL. The MFL behav-
ior arises at generic couplings and is not associated with
a QCP [14], rather, the system smoothly crosses over
between a Fermi liquid for α < αMFL, where the lifetime is
large compared to the excitation energy, and a non-Fermi
liquid for α > αMFL. The coefficient in the self-energy
defines an energy scale ω0 ∼ hc;RðαMEF=Nhc;RÞ½1=ð1−γÞ�.
This scale is significant relative to the natural scale hc;R
provided that M=N ≳ hc;R=EF. Because of the large
density of states of the TLSs, the system exhibits pro-
nounced NFL behavior even in a limit of dilute TLSs, i.e.,
when M=N ≪ 1.
We proceed to consider transport properties of the theory

using the Kubo formula. With vanishing vertex corrections
due to spatially uncorrelated interactions, the T dependence

of the conductivity follows from the frequency dependence
of the self-energy. We find

ρðT ≪ hR;cÞ − ρ0 ∝ Tγ; ð12Þ
where the residual resistivity, ρ0, is due to the potential
scattering term Hpot. The same reasoning for the thermal
conductivity implies that the Wiedemann-Franz law is
obeyed in the T → 0 limit [86]. For T ≳ hR;c, ρðTÞ saturates
to a T-independent constant, up to a small T2=EF correc-
tion. Our results agree with the T-linear resistivity pre-
viously obtained in the weak coupling limit with β¼0 [87].
The optical conductivity is given by σðΩÞ ¼ σelðΩÞ þ
σTLSðΩÞ, where the first term denotes the electronic
contribution and the second term is due to dipole excita-
tions of TLSs, with magnitude proportional to the typical
TLS-dipole moment (for more details see the Supplemental
Material [75]). At T ¼ 0, in the absence of potential
scatterers we find σel ∝ Ω−minð2−γ;γÞ [γ ¼ 1 admits a log-
arithmic correction ∼Ω−1 log−2ðΩÞ], while the TLS term

reads σTLSðΩÞ ∝ d2ΩImχretðΩÞ, d2 being the typical
squared magnitude of the TLS-dipole moment, and hence
may give rise to a nonmonotonic Ω dependence of the
optical response. The frequency dependence of σðΩÞwith a
small potential scattering term included is shown in Fig. 3.
A similar analysis can be performed for a coupling

constant α ¼ 1 and α > 1. For α ¼ 1 the renormalized
field is exponentially small, hR ∼ EF exp ½−ðπ=2h̃Þ�, which
yields a renormalized distribution function PRðhRÞ ∼
h−1R log−ð2þβÞðEF=hRÞ and we find for the TLS propagator
and fermionic self-energy the highly singular behavior

ImχretðωÞ ∼
1

ωlog2þβ
�
EF
jωj
� ;

ImΣretðωÞ ∼
1

log1þβ
�
EF
jωj
� ; ð13Þ

FIG. 2. Main: Evolution of the renormalized distribution
PRðhRÞ [see Eq. (10)] is shown for increasing dimensionless
coupling α with β ¼ 1 and hc=EF ¼ 0.4. Inset: Frequency
dependence of ImΣretðωÞ at T ¼ 0 for different α. ImΣretðω ≪
hc;RÞ ∼ jωj2ð1−αÞ, while it saturates to the value Σ∞ ∼ αEF for
ω ≫ hc;R due to the finite Hilbert space of TLSs.

FIG. 3. Representative plot of the optical conductivity at the
MFL point (γ ¼ 1). The electronic and TLS contributions are
shown in dashed lines. Inset shows the total optical conductivity
for different values of the TLS-dipole moment strength d2.
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where the single-particle scattering rate vanishes extremely
slowly as ω → 0, a behavior owed to the fact that there are
many exponentially small excitations of the ensemble of
TLSs (this is reminiscent of the behavior found in [88]).
For α > 1þ hc=EF the flow equations imply that the

field h̃ flows to zero and the TLS freezes due to the
Caldeira-Leggett mechanism [79,81,89–91]. This yields a
contribution δðhRÞ to the renormalized distribution function
and a corresponding term ∼δðωÞ in ImχðωÞ, giving rise to a
constant elastic scattering term in ImΣðωÞ. The frozen
TLSs behave like additional potential scatterers and give
an extra contribution to the residual resistivity, i.e., FL
behavior is reinstated. In the narrow regime 1 < α < 1þ
hc=EF we must divide the TLSs into those that are still
dynamical (h=EF > α − 1), and those that are frozen
(h=EF ≤ α − 1). While the frozen ones give rise to a
constant ImΣretðωÞ, the contribution of the dynamical ones
will be similar to that for α ¼ 1 given in Eq. (13).
Discussion.—In conclusion, we formulated and solved a

model for TLSs coupled to electrons that are expected to
emerge in a glassy metallic state. We find a critical phase
with exponents that change as one varies microscopic
parameters. Electrons form an Ohmic bath for the TLS,
while the backaction of TLSs yields the variable exponent
for electrons. We then find a sequence of crossovers from a
FL via a MFL to a NFL state as one increases the coupling
strength; once the interaction becomes too strong, all TLSs
freeze. We verified that these results are robust if we
include more generic coupling constants gijl;r, provided
that the dominant bath is not aligned with the direction of
the field [74] (i.e., that the z component of g2 is not the
largest of the three).
Our model is solvable in the large-N, M limit. It is

important to discuss physical effects that may arise at
finite N, M. One such effect is RKKY-like interactions
between TLSs (mediated by itinerant electrons), which are
suppressed by 1=N due to the frustrated nature of the
interactions. Physically, such frustration could occur if the
TLSs are spatially extended, and interact with several
channels of incident itinerant electrons, each with a random
interaction (corresponding to the many electron “flavors” in
our model). Moreover, if the TLSs are dilute (correspond-
ing to M ≪ N in our model), the RKKY interactions
between them are small. Nevertheless including this effect,
we find that each TLS modifies the bath felt by other
TLSs [92,93], and its Ohmic behavior breaks down below
a small energy scale ω⋆ ∼ hc;RðM=N2Þ½1=ð2−γÞ�. In this
low-energy regime, we expect the theory of Ref. [94] to
be of relevance, which still yields deviations from γ ¼ 2 FL
behavior.
Another property of the large-M limit is the self-

averaging of the electronic self-energy, physically related
to the fact that each electron may undergo multiple
scattering events with different TLSs. Considering finite
M corrections we find that the self-averaging assertion

holds down to a small energy scale ω⋆⋆ ∼ hc;R=Mð1=γÞ,
below which fluctuations are expected to dominate. We defer
further investigation of such effects to future study [74].
Our theory is applicable in arbitrary space dimensions

d > 1, i.e., the quantum critical phase is not due to strong
long-wave fluctuations that are particularly pronounced in
low dimensions, but due to the very slow dynamics present
in an ensemble of local degrees of freedom. It is conceiv-
able that such slow local fluctuations of a glassy state
are responsible for some of the strange metal behavior
observed in strongly correlated materials.
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