
Non-Abelian Braiding of Topological Edge Bands

Yang Long ,1,* Zihao Wang ,1,* Chen Zhang ,2 Haoran Xue ,3 Y. X. Zhao ,4,5,† and Baile Zhang 1,6,‡
1Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University,

21 Nanyang Link, Singapore 637371, Singapore
2National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China

3Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
4Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong,

The University of Hong Kong, Hong Kong, China
5HK Institute of Quantum Science and Technology, The University of Hong Kong, Hong Kong, China

6Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore

(Received 10 January 2024; revised 8 April 2024; accepted 6 May 2024; published 4 June 2024)

Braiding is a geometric concept that manifests itself in a variety of scientific contexts from biology to
physics, and has been employed to classify bulk band topology in topological materials. Topological edge
states can also form braiding structures, as demonstrated recently in a type of topological insulators known
as Möbius insulators, whose topological edge states form two braided bands exhibiting a Möbius twist.
While the formation of Möbius twist is inspiring, it belongs to the simple Abelian braid group B2. The most
fascinating features about topological braids rely on the non-Abelianness in the higher-order braid group
BN (N ≥ 3), which necessitates multiple edge bands, but so far it has not been discussed. Here, based on the
gauge enriched symmetry, we develop a scheme to realize non-Abelian braiding of multiple topological
edge bands. We propose tight-binding models of topological insulators that are able to generate topological
edge states forming non-Abelian braiding structures. Experimental demonstrations are conducted in two
acoustic crystals, which carry three and four braided acoustic edge bands, respectively. The observed
braiding structure can correspond to the topological winding in the complex eigenvalue space of projective
translation operator, akin to the previously established point-gap winding topology in the bulk of the
Hatano-Nelson model. Our Letter also constitutes the realization of non-Abelian braiding topology on an
actual crystal platform, but not based on the “virtual” synthetic dimensions.
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Braiding is a multifaceted concept that finds applications
across diverse scientific domains, from physics to biology
[1–3]. Geometrically described by the intricate intertwining
of strands forming specific patterns, braiding has signifi-
cantly broadened its scope in physical systems [4–13],
including the classification of topological bulk bands [14–
16]. Topological edge states can also form braiding
structures. For example, in the recently demonstrated
Möbius topological insulators [17–22], the topological
edge states can form two braided edge bands exhibiting
a Möbius twist. The time-reversal-invariant Möbius insu-
lator phase is protected by the projective translation
symmetry and is characterized by the Z2 topological
invariant [19–21].
While the presence of Möbius twist enriches the topo-

logical classification, it is worth noting that the Möbius
twist represents an Abelian braid formed by two bands,
thus falling within the Abelian braid group B2. This
prompts a fundamental question: will there be topological
insulators beyond the Möbius topological insulators,
namely, the topological insulators whose edge states can
form non-Abelian braids of multiple edge bands? Note that

the non-Abelian braiding topology has sparked some recent
experimental progress in synthetic dimensions [8,23] and
electric circuit networks [24,25], but has not been realized
in an actual crystal platform, neither has been applied to
topological edge bands. In this Letter, we propose topo-
logical insulators protected by translation symmetry, mirror
symmetry, and time-reversal symmetry, which can realize
non-Abelian braiding of topological edge bands.
Conventionally a translation operator translating a crys-

tal by a is represented as eik·a, which exerts no constraint on
the k-space Hamiltonian. Therefore, translation symmetry
is usually not considered as protecting symmetry of
topological insulators. However, recent research has shown
that this common belief no longer holds when the gauge
structure of crystals is considered [19,26–28]. Particularly,
for acoustic crystals gauge structures ubiquitously exist and
can be flexibly engineered [20–22,29–33], and therefore it
is important to consider symmetry constraints from trans-
lation symmetry for topological acoustic crystals [34–38].
Let us briefly introduce the underlying reason. The

gauge connection configuration of a noninteracting tight-
binding model consists of the phases of hopping amplitudes
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[see Fig. 1(a) for an example]. Under a given configuration
C, we can choose primitive unit cells and the corresponding
translation symmetry operators Γ̂i with translation vectors
ai. Here, the gauge connection configuration C is invariant
under Γ̂i. Nevertheless, Γ̂i may not be the minimal trans-
lations considering the gauge structure. There may exist a
translation operator L̂i with fractional translation vector
ai=N for some i, such that L̂i transforms C to C0 [see
Fig. 1(b)], where C0 is related to C by a gauge trans-
formation Gi [see Fig. 1(c)]. Then, the combination
L̂i ¼ GiL̂i, termed G-dressed translation, is a symmetry
of the system [as demonstrated in Figs. 1(a)–1(c) as a
cycle], namely ½H; L̂i� ¼ 0.
We choose the G-dressed translation symmetry L̂x as a

protecting symmetry of the topological insulators together
with mirror and time-reversal symmetries. In each eigen-
space of L̂x, the topological invariant leads to an edge
bands on the edges preserving L̂x. In our Letter, there are
totally N edge bands and each edge band is charged by an
eigenvalue of L̂xðkxÞ. The N edge bands can be regarded as
strands of a braid in the (Re½Lx�, Im½Lx�, kx)-space
(Re=Im½·� denotes the real and imaginary part), which will
be denoted as the Lx-kx space hereafter. In the Lx-kx space,
the topological edge states can form a non-Abelian braiding
structure.
We begin by introducing the twisted energy band

structures. As depicted in Fig. 2(a), recent studies in the

Möbius topological insulator [19–21] have shown that,
under projective translation symmetry, two initially sepa-
rated edge bands can braid with each other after traversing
through the edge BZ, forming a Möbius twist. The top-
ology of the Möbius twist can be characterized by an
Abelian braiding τ−11 between two bands in the Lx-kx space
in Fig. 2(b), where τn (τ−1n ) is the braid operation with the
meaning that the nth strand crosses under (above) the
(nþ 1)th strand. In contrast, our 2D topological insulators
can accommodate multiple topological edge states and
braid them together, with three bands illustrated in Fig. 2(c)
and four bands illustrated in Fig. 2(e), respectively. Now
each edge state can return to its original status after

(a)

(b)

(c)

FIG. 1. Illustration for G-dressed translation symmetry. (a) A
1D chain with a gauge connection configuration C. All hopping
amplitudes have real values with the same magnitude. Negative
and positive ones are marked in red and blue, respectively.
Accordingly, C is visualized as the blue-red pattern. Γ̂ is the unit
translation of the primitive unit cells with one surrounded by the
dashed line. (b) The translation of the 1D chain by L̂. L̂
corresponds to a half of Γ̂ as indicated in (a). C in (a) is changed
to C0 in (b). (c) The gauge transformation G on the 1D chain in (b).
G is represented as � sign on each site. The gauge transformation
switches the color of all bonds as each bond has different signs at
its two endpoints. Hence, (b) is transformed to (a) by G.

(a) (b)

(d)

(f)

(c)

(e)

(g) (h)

FIG. 2. Twisted band structures of multiple topological edge
bands in the E-k space and their braiding in the complex Lx-kx
space. (a) In the Möbius topological insulator, two initially
separated edge bands can braid with each other after traversing
through the edge BZ, forming a Möbius twist. The ψ s denotes
the edge eigenstate. Since the momentum kx is restricted to the
edge BZ kx ∈ ½−π; π�, each topological edge state ψs can be
represented as a strand of a braid in the Lx-kx space. (b) The
Möbius twist corresponds to an Abelian braid τ1 in the Lx-kx
space. By exploiting the projective translation symmetry, we
can realize the twisted band structures of multiple edge bands,
such as three edge bands in (c) and four edge bands in (e).
These twisted band structures correspond to non-Abelian braids
in the Lx-kx space, which are described by τ−11 τ−12 in (d) and
τ−12 τ−11 τ−13 in (f), respectively. (g),(h) Non-Abelian properties of
τ−11 τ−12 and τ−12 τ−11 τ−13 .
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traversing through the edge BZ for three or four times.
These three or four topological edge bands then form non-
Abelian braids: τ−11 τ−12 in Fig. 2(d) and τ−12 τ−11 τ−13 in
Fig. 2(f), respectively. Namely, the braids cannot be
topologically equivalent after exchanging braid operations,
as shown in Figs. 2(g) and 2(h).
To realize the topological edge states depicted in

Figs. 2(c) and 2(e), we propose the tight-binding models
shown in Figs. 3(a) and 3(b). The Hamiltonians for these
models preserve the projective translation symmetry L̂x,
mirror symmetry M̂y (y → −y), and time-reversal sym-

metry T̂ . The gauge transformations to be combined with
the translation operators L̂x are given by: G ¼ I2 ⊗
diag½1; 1;−1� in Fig. 3(a) and G ¼ I2 ⊗ diag½1; 1; 1;−1�
in Fig. 3(b). The gauge transformation G is denoted as the
sign � on the sites. The introductions of the gauge
transformations lead to 3 × 2 sites and 4 × 2 sites for the

primitive unit cells, respectively. As a result of projective
translation symmetry, we have κ2 ¼ −κ1 in both cases. For
the lattice in Fig. 3(a), we can introduce a unitary trans-
formation U to diagonalize L̂x: UL̂xU† ¼ eiðkx=3Þdiag½−1;
eiπ=3; e−iπ=3� ⊗ I2. Since ½L̂x; H� ¼ 0, the Hamiltonian H
can be represented in a block diagonalized form
H ¼ UHU† ¼ diag½h1; h2; h3�. Because L̂3

x ¼ −eikx , U
is not periodic when kx goes from −π to π (i.e.,
Ujkx¼−π ≠ Ujkx¼π), and H is also not periodic along kx
(i.e.,Hjkx¼−π ≠ Hjkx¼π). We find that the blocks inH have
the following relation [39]:

h3;2;1ðkx þ 2π; kyÞ ¼ h2;1;3ðkx; kyÞ: ð1Þ

Here, Eq. (1) implies that the blocks can transform into
each other in a cyclic manner when kx goes from −π to π.
This gives rise to the threefold rotation Ĉ3 behavior in the
basis fh3; h2; h1g [39]. Similarly, the lattice in Fig. 3(b)
satisfies h4;3;2;1ðkx þ 2π; kyÞ ¼ h3;2;1;4ðkx; kyÞ, leading to
the fourfold rotation Ĉ4 behavior in the basis of blocks
in H [39].
With preserved L̂x, M̂y, and T̂ , the topological proper-

ties of lattices in Figs. 3(a) and 3(b) can be described by
a Z topological invariant [42,43] (i.e., MZ topology in
class AI), which can have topological edge states on an
edge protected by L̂x, similar to the Möbius insulator
[19–21]. Because the preserved L̂x can block diagonalizeH
into H and the blocks in H can be transformed from each
other by the relation of Eq. (1), theZ invariant can be defined
according to h1. The MZ topology of h1 can be described
by an integer number N− ¼ Nπ

− − N0
− ∈Z [39,43], where

N0
−ðNπ

−Þ denotes the number of occupied bands at
ky ¼ 0ðky ¼ πÞ with −1 eigenvalues of M̂y. N− can
associate with the Zak phase of 1D subsystem h1 when
kx is fixed [39]. Note that Nπ

− is constant for any kx because
the gap keeps open in thewhole BZ.When t2 > t1 (t1 < t2),
the lattices in Figs. 3(a) and 3(b) can open a bulk gap in
Figs. 3(c) and 3(d), respectively, and become topological
with N− ¼ −1 (trivial with N− ¼ 0). In the topological
phase, non-trivial bulk topological invariant (N− ¼ −1)
of each 1D subsystem hi can correspond to an in-gap
topological edge state on the edge that preserves L̂x. As
shown in Figs. 3(c) and 3(d), multiple in-gap edge states
from subsystems fhig can form the twisted band structures,
corresponding to interconnected bulk states [e.g., Eq. (1)].
Because each subsystem hi belongs to the block with a
distinct eigenvalue of L̂x, these edge states can thus form a
non-Abelian braid in the Lx-kx space (we will discuss in the
following).
According to the tight-binding models in Figs. 3(a) and

3(b), we design the topological acoustic crystals in Figs. 4(a)
and 4(b), which exploit coupled acoustic resonators that host

(a)

(c)

(d)

(b)

FIG. 3. Topological insulators with braided edge bands. (a) The
unit cell of the topological insulator with three braided edge
bands. Here, (n, m) (n;m∈Z) denotes the coordinate of the site.
The dotted gray box denotes the primitive unit cell. (b) The unit
cell of the topological insulator with four braided edge bands.
Here, κ1 ¼ −κ2 due to the projective translation symmetry, where
κ1, κ2 ∈R, and t1, t2 > 0. (c) The bulk band of the topological
insulator in (a) when t1 ≠ t2, κ1 ¼ −κ2 ¼ −0.1. The system will
open a gap and become topological (trivial) when t1 ¼ 0.2 and
t2 ¼ 1.0 (t1 ¼ 1.0 and t2 ¼ 0.2). (d) The bulk band of the
topological insulator in (b) when t1 ≠ t2, κ1 ¼ −κ2 ¼ −0.1.
The system will open a gap and become topological (trivial)
when t1 ¼ 0.2 and t2 ¼ 1.0 (t1 ¼ 1.0 and t2 ¼ 0.2). The right
two figures in (c),(d) show the edge spectra, and the gray regions
in them denote the bulk bands.
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dipolar resonances. The positive and negative couplings are
implemented by engineering the coupling channels [38].
The cuboid resonators used in experiment have dimensions
of 48 mm × 24 mm × 12 mm in Fig. 4(a) and 40 mm ×
20 mm × 10 mm in Fig. 4(b). The resonators are hollow
(filled with air) and surrounded by hard walls. The geo-
metrical details can be found in the Supplemental Material
[39]. After obtaining the band structures of the acoustic
crystals in Figs. 4(a) and 4(b) numerically, we observe gaps
between 3.45–3.7 kHz and 4.16–4.4 kHz, respectively, as
shown in Figs. 4(c) and 4(d).We experimentallymeasure the
acoustic pressures of each site on the edge in a finite sample
and obtain the edge bands after performing Fourier trans-
formation, as shown in Figs. 4(e) and 4(f). The experimental
results show the presence of topological edge states in the
gaps of bulk bands. Importantly, these edge states have

twisted band structures as predicted theoretically in
Figs. 3(c) and 3(d).
In the following, we will discuss the braiding topology of

the topological edge bands. While the single bulk topo-
logical invariant derived from bulk band topology is
effective in predicting the presence of topological edge
states in two different crystals in Figs. 3(a) and 3(b), the
edge bands can form different braids. Since ½L̂x; H� ¼ 0,
namely L̂x shares the same eigenstates as H, we can
investigate the braiding based on L̂x. To illustrate the
braiding structure in Fig. 4(e), we numerically simulated
the values Lx ¼ hψ sjL̂xjψ si of each edge state jψ si, and
also calculated their values based on the measured eigen-
states jψ si [39], as presented in Fig. 5(a). The complex
values of Lx for three edge states in Fig. 4(e) form a
braiding structure in the Lx-kx space, which is a non-
Abelian braid described by the braid word τ−11 τ−12
(τ−11 τ−12 ≠ τ−12 τ−11 ) [39]. Despite these three edge states
crossing each other in the E-k space, they will satisfy
the separable band condition [44] in the Lx-kx space.
Similarly, in Fig. 5(d), the Lx values of edge states of the
lattice in Fig. 4(b) are simulated numerically and calculated
from measured data, forming a non-Abelian braid
described by τ−12 τ−11 τ−13 [39].
For three edge bands in Fig. 5(a), N ¼ 3, the topology of

three such separable bands is classified by the braid group
B3. B3 is isomorphic to the knot group of the trefoil knot K:
π1ðR3nKÞ, which is an infinite non-Abelian group. As the
momenta at the two ends of the edge BZ are equivalent, the
two ends of the braid are identical, thus closing the braid to
form a knot or a link. Since all bands are connected, the
braiding shall form a knot, as shown in Fig. 5(b). The knot
topology in Fig. 5(b) corresponds to an unknot. Because the
unknot has the knot group isomorphic to the group of in-
tegers Z, we can exploit an integer topological invariant to
describe the topological properties in theLx-kx space [14,45]:
v¼ð1=2πiÞR 2π

0 ∂kx lndet½Lx−1
2
TrðLxÞ�dkx, where Lx is a

matrix with the element as ðLxÞm;n ¼ hψmjL̂xjψni, and
jψni denotes the nth edge state. v describes how many times
the bands wind as kx varies from −π to π, with the sign
indicating the handedness of the braid, similar to the vorticity
of separable bands [44]. In Fig. 5(c), we find that v ¼ 1 for
three edge bands in Fig. 5(a). Similarly, for four edge bands
(N ¼ 4), it has an unknot in Fig. 5(e) and belongs to the
Z group, which has v ¼ 1, as shown in Fig. 5(f).
The braiding structures in Fig. 5 are protected by

projective translation symmetry L̂x and cannot be removed
without breaking L̂x or closing the band gap [39]. The
meaning of v can be understood by mapping to the 1D
Hatano-Nelson model within a superlattice [39,46–50].
For a large finite system truncated by open boundary
conditions, if the edge bands have that v ¼ 1, the L̂x
spectrum of such a finite lattice forms a branch on the
(Re½Lx�, Im½Lx�) plane, which is consistent with the

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Experimental measurements of twisted edge band
structures in topological acoustic lattices. (a) A snapshot of
the acoustic crystal corresponding to the tight-binding model in
Fig. 3(a). The unit cell is denoted in a dashed rectangle. Here,
ax ¼ 180 mm, ay ¼ 120 mm. (b) A snapshot of the acoustic
crystal corresponding to the tight-binding model in Fig. 3(b).
Here, ax ¼ 200 mm, ay ¼ 100 mm. (c) Simulated bulk band
structure of the lattice in (a). The blue region denote the bulk band
gap. (d) Simulated bulk band structure of the lattice in (b).
(e) Experimentally measured edge spectrum of the acoustic lattice
in (a). The background color denotes the Fourier spectrum of the
measured pressure field distribution data, and the dotted white
lines represent the theoretical predictions with fitted parameters.
(f) Experimentally measured edge spectrum of the acoustic lattice
in (b). Here, we use kx;y to denote kx;yax;y, ψn denotes the nth
edge state.
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previous research works [14,39,51,52]. The nontrivial
knots or links of topological edge bands can be realized
by introducing long-range couplings [39].
In summary, we demonstrate the non-Abelian braiding

topology of topological edge states and experimentally
observe braiding structures in a topological acoustic crys-
tal. Our Letter opens up a new avenue for exploring
braiding topology and can be applied to understand
braiding-related topological phenomena [53,54], such as
braids in the isofrequency plane [55], nonequilibrium
stochastic dynamics [56], or non-Abelian photonics
[57,58].
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