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The recently discovered Van der Waals antiferromagnets have suffered from the lack of a comprehensive
method to study their magnetic properties. Here, we propose an ac intrinsic magnon spin Hall current
driven by surface acoustic waves as a novel probe for such antiferromagnets. Our results pave the way
towards mechanical detection and manipulation of the magnetic order in two-dimensional antiferromag-
nets. Furthermore, they will overcome the difficulties with weak magnetic responses inherent in the use of
antiferromagnets and hence provide a building block for future antiferromagnetic spintronics.
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Introduction.—Intrinsic magnetism in two-dimensional
(2D) materials has long been sought after but believed to
hardly survive due to the enhanced thermal fluctuations
according to the Mermin-Wagner theorem [1]. However,
the recent discovery of mechanically exfoliated Van der
Waals (vdW) magnets [2,3] has revealed that the magnetic
anisotropy can resist the thermal agitation and stabilize
long-range magnetic order in the 2D limit at finite temper-
atures [4–30]. Especially, transition metal phosphorus
trichalcogenides MPX3 (M¼Mn, Fe, Ni; X ¼ S, Se) are
a family of vdW antiferromagnets, and are easily exfoliat-
able down to the monolayer limit due to their weak vdW
interlayer interaction [31]. These materials share the same
honeycomb lattice structure but the bulk antiferromagnetic
(AFM) phase at low temperatures varies depending on the
magnetic elements [32–36]. It therefore provides an ideal
platform to investigate magnetism and magnetic excitations
in the 2D limit. Furthermore, compared to ferromagnets,
antiferromagnets exhibit ultrafast dynamics in the terahertz
regime, null stray field, and robustness against the external
magnetic field perturbation [37–39]. Therefore, the inves-
tigation of these materials paves the way towards not only
the fundamental understanding of 2D magnetism, but
also the possibility of high-speed and compact AFM
spintronic devices.
Standard methods such as magnetization measurements

and neutron diffraction, which could only access macro-
scopic magnetic properties, are not suitable for the study
of magnetic structures of atomically thin magnets [31].
Especially, antiferromagnets do not have net magnetiza-
tion; direct measurement of AFM ordering using the
magneto-optical Kerr effect is not available either.
Although recent studies have focused on the Raman

spectroscopy [31,40–46] and the second-harmonic gener-
ation [47–50] to detect the crystal symmetry lowering
associated with the AFM transition, these signals often do
not provide clear identification in the monolayer limit.
Therefore, a comprehensive method which suits for explor-
ing the magnetic properties of 2D antiferromagnets is
highly desired.
Here, we propose an ac intrinsic magnon spin Hall

current mechanically driven by surface-acoustic waves
(SAWs) as a novel method to probe the magnetic structures
of such 2D honeycomb antiferromagnets (see Fig. 1).
Owing to extremely large mechanical flexibility of 2D
materials, SAWs are ideally suited for fundamental
research of them [51]. When an inhomogeneous strain is
applied to 2D honeycomb magnets, a spatial modulation of
exchange energies mimics the role of artificial gauge fields
for magnons [52–56]. These strain gauge fields work at the

FIG. 1. Schematics of the acoustomagnonic spin Hall effect. A
spatial modulation of the exchange energies due to strain mimics
the role of artificial gauge fields for magnons in a honeycomb
lattice. Both the strain-induced electric fields and the magnon
Berry curvature work at the two valley points in the opposite
direction, respectively, leading to a net spin Hall current.
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two valley points in the opposite direction, which in turn
activates the valley degrees of freedom (d.o.f.). Therefore,
the valley d.o.f. with the use of SAWs is a promising
concept for detection and manipulation of the magnetic
order in 2D vdW antiferromagnets. Furthermore, our
mechanically driven magnon spin Hall effect will overcome
the difficulties with weak magnetic responses inherent in
the use of antiferromagnets and hence provide a building
block for more sophisticated AFM spintronics.
Formulation.—We start from a standard nearest-

neighbor AFM Heisenberg model of spins S placed on
the sites of a honeycomb lattice:

Ĥ0 ¼ J
X

hi;ji
Ŝi · Ŝj; ð1Þ

where J > 0 is the AFM exchange interaction, Ŝi ¼
ðŜxi ; Ŝyi ; Ŝzi Þ are the spin operators at the ith site, and the
sum hi; ji runs over nearest-neighbor sites. Here, we have
neglected the magnetic anisotropy because this entails only
quantitative changes in the main results [57]. We also
assume that the ground state of the unstrained Hamiltonian
Ĥ0 is the Néel ordered state perpendicular to the hexagonal
plane and it is maintained under weak strain.
The quantized spin-wave excitations in magnets,

so-called magnons, have attracted special attention as a
promising candidate for a spin information carrier with
good coherence and without dissipation of the Joule
heating [58–70]. The excitation spectrum of magnons is
obtained by the linear spin-wave theory. We perform the
Holstein-Primakoff transformation for magnons on sub-
lattices A and B, respectively [71],

Ŝþi;A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S − â†i âi

q
âi; Ŝzi;A ¼ S − â†i âi; ð2aÞ

Ŝþj;B ¼ b̂†j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S − b̂†j b̂j

q
; Ŝzj;B ¼ −Sþ b̂†j b̂j; ð2bÞ

which describe fluctuations above the Néel ordered ground
state and Ŝ�j ¼ Ŝxj � iŜyj are the raising and lowering
operators for the jth spin. Here, the bosonic operator
âi (b̂

†
j ) annihilates (creates) a magnon at the i (j)th A (B)

site. The Hamiltonian is then diagonalized by subsequent
Fourier and Bogoliubov transformations: α̂k¼ukâk−vkb̂

†
−k

and β̂†−k ¼ ukb̂
†
−k − v�kâk, and Eq. (1) is cast into non-

interacting Dirac magnons [53],

Ĥ0 ¼
X

k

�
ℏωα

kα̂
†
kα̂k þ ℏωβ

kβ̂
†
kβ̂k

�
; ð3Þ

which is justified well below the Néel temperature. In these
honeycomb systems, two inequivalent valley points K�
reside at the corners of the hexagonal Brillouin zone (see
Fig. 2). In the vicinity of K�, α̂k ðβ̂kÞ can be regarded as

âk ðb̂kÞ because the Bogoliubov coefficients are approxi-
mated as uK� ≃ 1 and vK� ≃ 0. The relevant spectrum of
magnons near the valley points are described by a quadratic

dispersion: ℏωαðβÞ
K� ðqÞ ¼ 3JS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a20q

2=4
p

with relative
momentum q ¼ ðqx; qyÞ measured from the valley center.

We also obtain the magnon Berry curvature Ωα
k ¼ −Ωβ

k
and its distribution is depicted in Fig. 2(c). Notice that Ωα

k
is an odd function and it shows opposite values in the vicinity
of K�.
A continuummodel for Dirac magnons is complemented

with elasticity theory [72] to incorporate the effect of strain.
We here consider a spatial modulation of the exchange
energies due to strain which mimics the role of artificial
gauge fields that govern magnon dynamics. For large
lattice, the displacement field uðr; tÞ ¼ ðux; uy; uzÞ can
be taken as a smooth function of the coordinates, and
the strain tensor is defined by εij¼ð∂iujþ∂juiþ∂ih∂jhÞ=2
having h ¼ uz as the normal component of the displace-
ment. By expanding the operators around the two valley
points: âðrÞ ≃ eiK�·rψ̂K�

a ðrÞ, b̂ðrÞ ≃ e−iK�·rψ̂K�
b ðrÞ, we

obtain the strained Hamiltonian as [57]

Ĥ ¼
Z

dr Ψ̂†ðrÞ
�
HKþ 0

0 HK−

�
Ψ̂ðrÞ; ð4Þ

where Ψ̂† ¼ ðψ̂Kþ†
a ; ψ̂Kþ

b ; ψ̂K−†
a ; ψ̂K−

b Þ and the continuous
effective Hamiltonian is given by

FIG. 2. (a) Lattice structure of the Néel ordered honeycomb
antiferromagnets and the corresponding Brillouin zone. Two
valley points K� reside at the corners of the hexagonal Brillouin
zone. (b) Dispersion of magnons in the unstrained honeycomb
Heisenberg antiferromagnets, which shows quadratic maximum
at the valley points. (c) Distribution of the magnon Berry
curvature for α magnons.
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HKη ¼ −vJð−iℏ∇þ ηAsÞ · ση þ 3JS − ϕs: ð5Þ

vJ ¼ 3JSa0=2ℏ is the exchange velocity of magnons with
the length of the bond between neighboring magnetic
atoms a0. Here, η ¼ �1 is the valley index labelling the
two inequivalent valleys K� and ση ¼ ðησx; σyÞ are the
Pauli matrices representing a psuedospin from the sub-
lattice d.o.f. The vector potential As ¼ ℏðγ=2a0Þðεxx − εyy;
−2εxyÞ couples minimally to the magnonic excitations with
opposite signs at the two valley points, which results in the
activation of the valley d.o.f. The scalar potential ϕs ¼
ð3JS=2Þγðεxx þ εyyÞ originates from the change of density
due to the variation of the sample area described by ∇ · u.
The factor γ encodes the strength of the magnetoelastic
coupling, which is expected to be of the order of unity [73].
Note that the emergence of the strain gauge fields is related
to the fact that quasiparticles in Dirac systems are described
by the corresponding relativisticlike equations [74–78].
The introduction of the gauge fields ðϕs;AsÞ leads to

emergent pseudoelectromagnetic fields:

Es
1 ¼ −∇ϕs; Es

2 ¼ −∂tAs; ð6aÞ

Bs ¼ ∇ × As: ð6bÞ

Here, Es
2 is generated only when considering a time-

varying strain such as SAWs and has a significant
importance for the main results. Fundamentally, this
pseudoelectric field couples not the charge d.o.f. but the
valley, and hence opens a new paradigm to explore
novel properties of charge-neutral quasiparticles [79–81].
Previous magnon transport in conventional antiferromag-
nets relies on thermal gradients as a driving force [82–87],
but these alone cannot distinguish the spin between two
magnons; therefore, a magnon-mediated spin current has
been difficult to generate without lifting the degeneracy of
twomagnons. However, in honeycomb antiferromagnets, the
valley d.o.f. is activated by the strain gauge fields and hence
has a potential to result in a pure spin current by combining
with the valley-contrasting magnon Berry curvature.
The semiclassical equations for magnons under strain-

induced pseudoelectromagnetic fields Eq. (6) are derived in
a similar form to the conventional semiclassical equations
for electrons [88],

ṙαðβÞη ¼ ∂ωαðβÞ
η

∂q
− q̇αðβÞη ×ΩαðβÞ

η ; ð7aÞ

ℏq̇αðβÞη ¼ −Es
η − ṙαðβÞη × Bs

η; ð7bÞ

where we have introduced a compact form of pseudoelec-
tromagnetic fields: Bs

η ¼ ηBs, Es
η ¼ Es

1 þ ηEs
2. We should

note the validity of the treatment in the framework of the
semiclassical approach. The typical frequencies of SAWs

range from MHz to GHz, whereas those of relevant
magnons in the vicinity of valley points are of the order
of THz; therefore, we can assume that magnons adiabati-
cally follow the deformation and their dynamics are
governed by Eq. (7).
Rayleigh-type SAWs-induced pseudoelectric fields.—

Among the diverse modes of SAWs, the Rayleigh-type
waves, which are the superposition of longitudinal and
normal components, can be easily excited under traction-
free boundary conditions on piezoelectric substrates [51].
Considering Rayleigh-type SAWs propagating on the sur-
face of a piezoelectric substrate in the xy plane (see Fig. 3),
the displacement field is given by

uRayleighðr; tÞ ¼ Re½ðuLQ̂þ iuzẑÞeiðQ·r−ωtÞ�; ð8Þ

where uL and uz are the longitudinal and normal displace-
ments, Q ¼ Qðcos θ; sin θÞ is the in-plane propagating
wave vector with θ being an azimuthal angle, and ω is
the frequency of applying SAWs. Here, θ ¼ 0 corresponds
to the x direction with the zigzag orientation of the
honeycomb lattice. By assuming that the Van der Waals
magnet on a piezoelectric substrate completely follows the
displacement of the substrate, the Rayleigh-type SAWs-
induced pseudoelectric fields reads

Es
2¼ℏ

γ

2a0
ctξQ2Re½uLð−cos3θQ̂þsin3θθ̂ÞeiðQ·r−ωtÞ�; ð9Þ

where θ̂ ¼ ∂θQ̂ ¼ ð− sin θ; cos θÞ is the azimuthal unit
vector transverse to Q̂, ct is the transverse velocity of
the sound wave, and ξ is a constant characterizing the
SAWs dispersion as ω ¼ ctξQ. We should note that the
pseudoelectromagnetic fields stemming from the out-of-
plane displacement are proportional to u2z due to ∂ih∂jh,
which is less relevant under weak strain, and hence we
neglect their contributions in the following analysis.

FIG. 3. Schematic illustration of the Rayleigh-type SAWs
generation. SAWs are mainly generated, detected, and controlled
by interdigital transducers (IDTs) placed on the ends of a
piezoelectric substrate. IDTs are periodic arrays of metallic
finger electrodes with a pitch of half the SAW wavelength
λSAW ¼ 2π=Q and convert ac electric signals into the SAWs
propagating along Q via the inverse piezoelectric effect.
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Acoustomagnonic spin Hall effect.—As a demonstration
of semiclassical magnon transport driven by SAWs-
induced gauge fields, we consider magnon-mediated spin
currents. Because the two valley points are largely sepa-
rated in the Brillouin zone, the valley index η can be used as
a good quantum number in the presence of weak disorder.
In previous works, various electron transport phenomena
under strain applied to 2D Dirac materials have been
intensively studied [89–98]. However, the role of SAWs
in magnon transport has not been well investigated yet.
Since the two magnons are completely decoupled in

Eq. (3), we can treat the dynamics of each mode inde-
pendently. The Boltzmann equation for αðβÞ magnons is
then given by

∂nαðβÞη

∂t
þ ṙη ·

∂nαðβÞη

∂r
þ q̇η ·

∂nαðβÞη

∂q
¼−

nαðβÞη −nBðℏωqÞ
τ

; ð10Þ

where nαðβÞη ðr; q; tÞ is the distribution function for α (β)
magnons with valley η and relative momentum q. nBðϵÞ ¼
ðeϵ=kBT − 1Þ−1 is the Bose-Einstein distribution function
with zero chemical potential and τ is the momentum
relaxation time for magnons.
We are now ready to discuss the magnon-mediated spin

currents driven by the Rayleigh-type SAWs. By invoking
the Bogoliubov transformation, we obtain the z component
of the total spin as ℏ

P
kð−α̂†kα̂k þ β̂†kβ̂kÞ, and thereby −ℏ

(þℏ) spin angular momentum is carried by α (β)
magnons [99]. Because the strain gauge fields only work
around the two valley points and magnons in other points
do not contribute to the spin currents due to their degen-
eracy [57], we only consider the contribution from the
vicinity of K�:

jzs ¼ ℏ
X

η¼�1

Z
½dq�ð−Dαṙαηnαη þDβ ṙβηn

β
ηÞ; ð11Þ

where the factor DαðβÞ ≡ 1þ ð1=ℏÞBs
η ·Ω

αðβÞ
η ðqÞ is a field-

induced correction to the volume of the phase space andR ½dq�≡ R
d2q=ð2πÞ2. By substituting Eq. (7) into Eq. (11),

we obtain a transverse magnon-mediated spin current as

jzs ¼ Es
2 ×

Z
½dq�ð−Ωαþnαþ þΩα

−nα− þΩβ
þn

β
þ −Ωβ

−nβ−Þ

¼ −Es
2 ×

Z
½dq�Ωαþðnαþ þ nα− þ nβþ þ nβ−Þ; ð12Þ

where we have used the relationΩα
k ¼ −Ωα

−k ¼ −Ωβ
k [100].

Equation (12) is the main result of this Letter, which
originates from the interplay between the strain gauge
fields and the magnon Berry curvature. Both of them have
a valley-contrasting property and work in the opposite
direction at the two valley points respectively, resulting in a

net spin Hall current (see Fig. 1). Furthermore, Eq. (12)
gives a finite contribution even when the magnons obey the
Bose-Einstein distribution nB; therefore, our mechanically
driven spin Hall current dubbed acoustomagnonic spin Hall
effect becomes independent of the magnon relaxation time
τ and hence provides an intrinsic spin Hall current.
Discussion.—Finally, we will discuss the experimental

feasibility of our acoustomagnonic spin Hall effect.
Transition metal phosphorus trichalcogenides MPX3 are
a family of AFM semiconductors with a band gap of the
order of 1 eV [11–15], which is much larger than the typical
frequency of SAWs, and hence the spin transport is
dominated by magnons. Here, we suppose MnPS3 as a
candidate of Néel-type antiferromagnets [45–48], in which
long-distance magnon transport over several micrometers
has been recently observed [101]. By introducing the cutoff
wave number qc, which is a radius of the effective region of
strain gauge fields in the vicinity of each valley point, the
spin Hall conductivity is approximated as

σAMHE
s ¼

Z
3JS

3JS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a2

0
q2c=4

p dϵDðϵÞΩαðϵÞnBðϵÞ

≃
q2ca20
4π

1

e3JS=kBT − 1
; ð13Þ

where DðϵÞ is the density of states and we have defined
the spin Hall conductivity owing to acoustomagnonic spin
Hall effect as jzs ¼ σAMHE

s Es
2 × ẑ. Figure 4 shows the

temperature and qc dependences of σAMHE
s , in which the

horizontal axis is normalized by 3JS=kB ≃ 134 K. The
Néel temperature is experimentally obtained as TN ≃ 79 K
[48,101]. Therefore, the amplitude of the spin current jjzsj is
estimated to be of the order of meV=m at T ≪ TN with the
pseudoelectric field jEs

2j ≃ 1 eV=m induced by the
Rayleigh-type SAWs. Here, we have used the parameters
[101]: J ≃ 1.54 meV, S ¼ 5=2, a0 ∼ 1 Å, uL ≃ 100 pm,
λSAW ¼ 2π=Q ≃ 1 μm, ct ¼ 4000 m=s, ξ ≃ 0.95, and

FIG. 4. Temperature dependence of the acoustomagnonic
spin Hall conductivity σAMHE

s for different values of qca0. The
horizontal axis is normalized by 3JS=kB.
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γ ∼ 1 [73]. This ac spin current oscillating in the order of
GHz may be detected by the present experiments such as
spin wave resonance [102,103].
The conventional strategy for generating magnon spin

currents in AMF spintronics has been applying magnetic
fields in order to lift the degeneracy of magnons or to
realize a canted AFM structure along the fields [37–39].
This provides only weak spin currents due to extrinsically
perturbative magnetic fields. On the other hand, the valley
d.o.f., which is a characteristic of the honeycomb lattice
structure, is activated by the strain-induced gauge fields.
Here, we have focused on the interplay between the strain
gauge fields and the magnon Berry curvature, which have
opposite sign between the two valley points respectively,
resulting in an intrinsic magnon spin Hall current. This fact
may offer a bright prospect for the long-standing dilemma
that antiferromagnets show only weak magnetic responses
which are hard to detect and control. Furthermore, our
acoustomagnonic spin Hall effect does not require the
Dzyaloshinskii-Moriya interaction, which is an essential
ingredient for the magnon spin Nernst effect [82–84] but is
negligible in MnPS3 [104]. In addition, our results do not
rely on the nontrivial topology of magnon bands originat-
ing from the magnon-phonon coupling. However, the
magnon-phonon coupling results in the formation of the
hybridized excitation of magnons and phonons, which can
carry large Berry curvature in the anticrossing regions
between their bands [105–109]. The impact of the magnon-
phonon coupling on our results may be an interesting future
work. Therefore, our results will overcome the difficulties
inherent in the use of antiferromagnets and provide a
building block for more sophisticated AFM spintronics.
Symmetry considerations are summarized in Table I. We

can see that the symmetry of Es
2 is quite different from that

of the conventional thermal gradient. Thus, Es
2-induced

magnon spin currents are prohibited in centrosymmetric
antiferromagnets and our acoustomagnonic spin Hall effect
becomes a novel probe for noncentrosymmetric AFM
phases such as the Néel ordered phase. Furthermore, Es

2

can generate magnon spin current with preserving the
effective time reversal symmetry T C, which is the

combined action of time reversal T and 180° spin
rotation around an in-plane axis C. This is why our
acoustomagnonic spin Hall effect does not require the
Dzyaloshinskii-Moriya interaction and the magnon-
phonon coupling.
Conclusion.—In summary, we have developed a basic

framework of SAWs-driven magnon transport in a honey-
comb antiferromagnet. Here, we have proposed a magnon-
mediated spin Hall current driven by the Rayleigh-type
SAWs dubbed acoustomagnonic spin Hall effect as a novel
probe for exploring the magnetic properties of such 2D
vdWantiferromagnets. By focusing on the valley d.o.f., we
have revealed that the interplay between the strain gauge
fields and the magnon Berry curvature results in an intrinsic
spin Hall current without the Dyzaloshinskii-Moriya inter-
action and the magnon-phonon coupling in the Néel
ordered state. Therefore, our results open a promising
route for mechanical detection and manipulation of the
magnetic order in 2D antiferromagnets. Furthermore,
they will overcome the difficulties with weak magnetic
responses inherent in the use of antiferromagnets and hence
provide a building block for future AFM spintronics.
Recent studies have shown that the strain effect also
introduces the pseudogauge fields for Dirac magnons in
honeycomb ferromagnets [52], twisted honeycomb ferro-
magnet [54], and honeycomb noncollinear antiferromag-
nets [110]. Therefore, magnon Hall effects driven by the
surface acoustic waves may be applicable to a wide range
of 2D magnets and are our interesting future work.
Furthermore, we expect that the measurements of the
magnon Hall effect based on our strategy is robust against
electronic contributions [111]. Our work motivates further
systematic studies on 2D vdW magnets, which are signifi-
cant not only for the potentially diverse applications, but
also for the fundamental understanding of 2D magnetism.
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