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We consider spin injection driven by nonequilibrium chiral phonons from a chiral insulator into an
adjacent metal. Phonon-spin conversion arises from the coupling of the electron spin with the microrotation
associated with chiral phonons. We derive a microscopic formula for the spin injection rate at a metal-
insulator interface. Our results clearly illustrate the microscopic origin of spin current generation by chiral
phonons and may lead to a breakthrough in the development of spintronic devices without heavy elements.
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Introduction.—Chirality, which is defined by the break-
ing of the reflection and inversion symmetries of crystals, is
an important concept in modern condensed-matter physics
[1–6]. The chirality in materials has attracted much
attention, in particular, after the discovery of chirality-
induced spin selectivity (CISS) in DNA and peptides [7–
14]. Indeed, the discovery of CISS has stimulated a number
of theoretical and experimental studies on spin-related
phenomena in chiral materials [15–27] since it may reveal
a way of developing spintronic devices without using heavy
elements.
The concept of chirality has been extended to the

dynamical properties of solids, i.e., phonons, whose chiral
nature is thought to be characterized by pseudoangular [28–
32] or angular momenta [33–40]. Recently, the physical
properties of chiral phonons have been theoretically studied
[41–53] and have been experimentally observed [54–58].
In this situation, it is natural to ask whether chiral phonons
can be converted directly to electron spins at an interface or
not. However, this question remains unanswered because of
the lack of understanding of the microscopic description
underlying interfacial phonon-spin conversion.
The key idea to solve this problem is reconsideration on

microscopic spin-phonon coupling. Usually, it is derived
from an energy change of electrons induced by lattice
displacement in combination with the spin-orbit interac-
tion. This well-studied mechanism requires strong spin-
orbit coupling, limiting its effectiveness to heavy metals
and specific semiconductors. In our Letter, we consider
another mechanism derived from the gyromagnetic effect
[59–61], which has been overlooked so far. Previous
research on the gyromagnetic effect has focused on
micrometer-scale local lattice rotations, significantly larger
than the lattice constant [62–68]. Recently, Kishine et al.

studied the dispersion of chiral phonons [44] by using a
degree of freedom of local rotation (so-called microrota-
tion), within micropolar elasticity theory [69,70]. However,
the atomic-scale lattice rotations and their direct inter-
actions with electron spins remain underexplored. This
Letter aims to demonstrate that the spin-microrotation
coupling is the microscopic mechanism that facilitates
the non-trivial interaction between chiral phonons and
electron spins.
Chirality in solids is characterized by time-reversal

symmetry and lack of the parity (mirror) symmetry with
respect to spatial inversion. This feature is reflected by
splitting of the phonon dispersion ωqλ as schematically
shown in Fig. 1(a), where q is the wave number and λ is the
circularity of phonons. When the phonons propagate along
the chiral axis, their energy becomes different (ωqþ ≠ ωq−)
due to the chirality of the crystal. The phonon dispersion
lacks the parity symmetry (ωqλ ≠ ω−qλ), while it keeps the
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FIG. 1. (a) Schematic illustration of energy dispersion splitting
for chiral phonons. The red and blue lines represent the energy of
the right-handed (λ ¼ þ) and left-handed (λ ¼ −) chiral phonon
modes, respectively. (b) Schematic setup. Heat current in the CI
generates a spin current in the NM through an interface. The
generated spin current can be observed by a voltage in the NM
induced by the inverse spin Hall effect.
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time-reversal symmetry (ωqλ ¼ ω−qλ̄) where λ̄ ¼∓ indi-
cates the circularity opposite to λ. We will show that this
feature of chiral phonons is indeed essential to the phonon-
spin conversion at an interface and directly connects with
the spin current formula derived later.
The present work formulates the coupling between

microrotations and electron spins (spin-microrotation cou-
pling), thereby deriving a spin current through an interface
driven by chiral phonons. Starting with a bilayer system
composed of a normal metal (NM) and chiral insulator (CI)
as shown in Fig. 1(b), we derive the effective Hamiltonian
describing the interfacial coupling between the electron
spins and chiral phonons due to the spin-microrotation
coupling. By treating the interfacial spin-phonon coupling
perturbatively, we derive the spin current injected from the
CI into the NM. The results suggest that an imbalanced
distribution among the chiral phonon modes, e.g., due to a
temperature gradient, drives the interfacial spin current into
the NM [71]. Our findings clearly illustrate the microscopic
origin of the spin current generation by chiral phonons
without the spin-orbit interaction and may lead to a
breakthrough in the development of spintronic devices
without heavy elements.
Model.—We consider a bilayer system composed of NM

and CI with weak interfacial electron tunneling. The
corresponding Hamiltonian is

ĤT ¼ Ĥm þ Ĥe þ Ĥint þ Ĥph þ Ĥsmc: ð1Þ

The first term Ĥm ¼ P
kσ ϵkc

†
kσckσ describes the electron

state in the NM, where c†kσðckσÞ represent the creation
(annihilation) operators of electrons with eigenenergy ϵk
and spin σ. The second term Ĥe ¼

P
kσ Ekd

†
kσdkσ describes

the electron state in the conduction band of the CI, where
Ek is the eigenenergy of the conduction band and d†kσðdkσÞ
represent the creation(annihilation) operators of conduction
electrons in the CI. We assume that the conduction band of
the CI is located above the Fermi energy with a large gap Δ
and is empty [see Fig. 2(a)]. The third term Ĥint ¼P

klσ½T l;kd
†
lσckσ þ H:c:� represents electron tunneling

through the interface, where T l;k is the tunneling matrix

element. The fourth term Ĥph ¼
P

qλ ℏωqλða†qλaqλ þ 1=2Þ
describes chiral phonons, where ωqλ and a†qλðaqλÞ are the
frequency and creation(annihilation) operator of phonons
with wave number q and circularity λ, respectively. For
simplicity, we focus on acoustic modes of chiral phonons.
Coupling between spin and chiral phonon.—Next, let us

derive the coupling between the phonons and electron spins
represented by the fifth term Ĥsmc. The displacement of the
jth ion from the equilibrium position rj can be expressed as

uj ¼
X
qλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ρVCIωqλ

s
eqλðaqλ þ a†−qλ̄Þeiq·rj ; ð2Þ

where ρ is the mass density of the lattice, VCI is the volume
of the CI, and eqλ are the polarization vectors. There are two
types of ion displacement. One is the displacement involv-
ing changes in the bond lengths and bond angles, leading to
the conventional electron-phonon coupling. The other is a
local rotation characterized by the microrotation [44,70],
inducing a direct coupling with the electron spin. In our
Letter, we focus on the latter one hereafter [72]. In the
Born-Oppenheimer approximation, atomic orbitals at a
target atom rotate following the motion of the surrounding
atoms through atomic bonds in the presence of the
phonons. Let us now introduce a corotating frame in which
the atomic orbitals and the surrounding atoms do not move.
The atomic orbital at the jth ion in the corotating frame ϕj

can be written as ϕj ¼ expðiJ · θj=ℏÞϕ0
j , where ϕ0

j is the
atomic orbital, in the laboratory frame, θj is the rotation
angle, and J ¼ Lþ S is the total angular momentum
consisting of the orbital and spin angular momenta, L
and S. The time-dependent Schrödinger equation is written
in the corotating frame as iℏ∂tϕj ¼ ðhj − J · θ̇jÞϕj, where
hj is the Hamiltonian for the atomic orbitals in the
laboratory frame. In this Letter, we assume that the
orbital angular momentum is quenched due to crystal
fields as expected in materials composed of typical ele-
ments or transition metals [73]. Then, we obtain the spin-
microrotation coupling, Ĥθ ¼ −

P
j S · θ̇j.

From here on, we will restrict ourselves to long-wave-
length phonons for simplicity [74]. We note that this long-
wavelength approximation is sufficient to explain spin
generation at temperatures lower than the Debye temper-
ature. We introduce a continuous lattice displacement
constituted by smoothly connecting the discretely located
ions, i.e., uðrÞ ¼ P

q uqe
iq·r, which is governed by the

elastic equations. In the low-frequency region, the micro-
rotations of the ions, which is characterized by the vorticity
ΩðrÞ ¼ ∇ × u̇ðrÞ, adiabatically interlock with one another.
In this case, the angle of the microrotation and the vorticity
can be related through θ̇j ¼ ΩðrjÞ=2. Therefore, the spin-
microrotation coupling reduces to a second-quantized
expression of the spin-vorticity coupling:
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FIG. 2. (a) Schematic energy diagram in the first process
considered in the perturbation theory. The two parabolic curves
indicate the density of states of the conduction bands in the CI
and NM. (b) The Feynman diagram relevant to phonon-spin
conversion at the interface.
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Ĥsmc ¼ −
ℏ
2

X
qλ

σ̂−q ·Ωqλ; ð3Þ

where σ̂−q ¼ ð1=2ÞPlσσ0 d
†
lþqσσσσ0dlσ0 is the spin density

operator of the electrons in the CI with σ ¼ ðσx; σy; σzÞ
being the Pauli matrices acting on the spin space. Here,Ωqλ

is the Fourier component of the vorticity, whose second-
quantized expression is given by

Ωqλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏωqλ

2ρVCI

s
ðq × eqλÞ

�
aqλ − a†−qλ̄

�
; ð4Þ

and Ω†
−qλ̄ ¼ Ωqλ holds.

It should be noted that the vorticity is connected with the
dispersion of chiral phonons through the micromotion.
Recently, Kishine et al. revealed that microrotation is vital
to demonstrating the features of the chiral phonon
dispersion [44]. The spin-vorticity coupling derived here
constitutes a coupling inherently tied to the microscopic
properties of chiral phonons, unlike the phonon angular
momentum that has been previously discussed [35–38].
The spin-vorticity coupling, together with its origin, the
spin-microrotation coupling, can be regarded as fundamen-
tal interactions between chiral phonons and electron spins.
They potentially play a crucial role in phonon-spin con-
version processes linked to chirality in various systems,
from bulk materials to junctions.
Interfacial spin-phonon coupling.—First, let us derive the

effective Hamiltonian describing the conversion between the
chiral phonon and electron spins. We define the projection
operator P to restrict the model space composed of the
electron system in the NM and the phonon system in the CI.
The effective Hamiltonian up to second order in the electron
tunneling process and first order in the spin-microrotation
coupling is

Ĥe-ph ¼ PĤint
1

E0 − Ĥ0

QĤsmc
1

E0 − Ĥ0

QĤintP; ð5Þ

where Ĥ0¼ĤmþĤeþĤph is the unperturbed Hamiltonian,
and E0 is the unperturbed energy. The operator Q ¼ 1 − P
describes the projection of the complementary space to the
model space. The corresponding Feynman diagram is illus-
trated in Fig. 2(b). By a straightforward calculation, the
effective Hamiltonian can be given in the form of an
interfacial coupling between the electron spin of the NM
and phonon vorticity of the CI as

Ĥe-ph ¼ −
X
pqλ

Jq;p
�
Ωþ

qλŝ
−
−p þΩ−

−qλ̄ŝ
þ
p

�
; ð6Þ

where Ω�
qλ ¼ Ωx

qλ � iΩy
qλ is the ladder operator of the

vorticity, and ŝ�p ¼ ŝxp � iŝyp is that of the electron spin with

ŝαp ¼ ð1=2ÞPkσσ̄ c
†
k−pσσ

α
σσ̄ckσ̄ denoting the spin density

operator in the NM. Here, Jq;p is the matrix element of the
interfacial spin-phonon coupling (detailed expression is given
in Supplemental Material [75]). In this Letter, we have
assumed that the electron tunneling at the interface is local
and its wave-number dependence is negligible [77].
Interfacial spin current.—The spin current from the

CI into the NM can be calculated with the effective
Hamiltonian Ĥ ¼ Ĥm þ Ĥph þ Ĥe-ph. The interfacial spin
current operator is defined by the change in the total spin in
the NM per unit time:

Îs ≡ −ℏ
∂ŝz0
∂t

¼ i½ŝz0; Ĥ�

¼ i
X
pqλ

Jq;p
�
Ωþ

qλŝ
−
−p −Ω−

−qλ̄ŝ
þ
p

�
: ð7Þ

Therefore, the average of the interfacial spin current is
given as

hÎsðtÞi ¼ Re

�
2i
X
pqλ

Jq;phŝ−−pðtÞΩþ
qλðtÞi

�
; ð8Þ

where ŝ−p ðtÞ and Ωþ
qλðtÞ indicate the interaction representa-

tion, and the average h� � �i is taken for the Hamiltonian Ĥ.
Let us consider a second-order perturbation with respect to
Ĥe-ph [78]. Here, the statistical average of the interfacial
spin current becomes [75,79]

hÎsi ¼
ℏ2

ρVCI

Z
C
dτ
X
pqλ

jJq;pj2ωqλðq× eqλÞþðq× e�qλÞ−

×Re
	
χpðτ− τ2Þ



Dqλðτ1 − τÞþD−qλ̄ðτ− τ1Þ

��
; ð9Þ

where the integral is taken over the Keldysh time τ ¼ ðt0; ηÞ
with η ¼ � and the two time variables, τ1 ¼ ðt;þÞ
and τ2 ¼ ðt;−Þ, are, respectively, put on the forward
and backward branches of the Keldysh contour. The
functions DqλðτÞ ¼ −ði=ℏÞhTKaqλðτÞa†qλi0 and χpðτÞ ¼
ði=ℏÞhTKŝþp ðτÞŝ−−pi0 are, respectively, the phonon Green
function and spin susceptibility in Keldysh form, where the
average h� � �i0 is taken for the unperturbed Hamiltonian and
TK is the time-ordering operator on Keldysh contour C.
These Keldysh Green functions (response functions)
include four components, i.e., the lesser, greater, retarded,
and advanced components [79–81]. Using the lesser and
retarded components, the nonequilibrium distribution func-
tions are defined for spin excitations in the NM and chiral
phonons in the CI as

fmp ðωÞ ¼ χ<p ðωÞ=2iImχRp ðωÞ; ð10Þ

fphq;λðωÞ ¼ D<
qλðωÞ=2iImDR

qλðωÞ: ð11Þ
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Here, the superscripts, < and R, indicate the lesser and
retarded components. We assume that the NM remains in
thermal equilibrium due to its high thermal conductivity
and the distribution function fmp ðωÞ coincides with the

Bose-Einstein distribution f0ðω; TmÞ ¼ ðeℏω=kBTm − 1Þ−1
with temperature Tm. By simplifying the convolution
integral with the Fourier transformation, the spin current
is calculated as [75]

hÎαsi ¼
4ℏ2jJj2
ρVCI

X
pqλ

ωqλðq · α̂Þ½q · Imðe�qλ × eqλÞ�
Z

∞

−∞

dω
2π

ImχRp ðωÞ


−ImDR

qλðωÞ
�

fphq;λðωÞ − f0ðω; TmÞ

�
; ð12Þ

where the formula is extended to include the spin current
with polarization in the α̂ direction (α̂: a unit vector
indicating the spin direction to be measured). For a rough
interface, the random average of the matrix elements jJq;pj2
reduce to jJj2 ¼ ðℏjT j2=4Δ2Þ2Nb=N2

N , where Nb is the
bond number at the interface, NN is the number of the unit
cells in the NM, and jT j represents the magnitude of the
interfacial electron tunneling [75]. The formula (12) shows
that the spin current is generated when the phonon
distribution function fphq;λðωÞ in the CI is driven away from
the thermal equilibrium distribution f0ðω; TmÞ. We empha-
size that in the formula (12), the chirality of the material is
reflected by the factor ðq · α̂Þ½q · Imðe�qλ × eqλÞ� [82]. Ac-
tually, the axial vector e�qλ × eqλ points to the chiral axis,
along which the asymmetry under the mirror transforma-
tion exists. The flipping of structural chirality, i.e., a mirror
operation on a plane perpendicular to the chiral axis, inverts
the polarization of the chiral phonons, and consequently,
reverses the flowing direction of the spin current through
the factor e�qλ × eqλ. Furthermore, if the material has
symmetry with respect to the mirror operation, the spin
current becomes zero after a summation with respect to q.
This is our main result.
Temperature gradient.—Let us derive a formula for the

spin current injected into the NM due to steady phonons
flows driven by a temperature gradient [see Fig. 1(b)]. We
assume that the temperature gradient is in the z direction
(the same as the chiral axis) and is of much larger scale
than the typical mean-free path of phonons lph, i.e.,
lphj∂zT=Tj ≪ 1. The steady-state phonon distribution is

calculated from the Boltzmann equation as vqλ ·∇fphq;λ ¼
ðfphq;λ − f0Þ=τqλ, where we have employed the relaxation-
time approximation, and vqλ ¼ ∂qωqλ is the velocity of
phonons, and τqλ is the momentum relaxation time of
phonons, respectively. Solving the Boltzmann equation up
to first order in the temperature gradient, the nonequili-
brium part of the phonon distribution function is found to
be δfphq;λ ¼ fphq;λ − f0 ¼ τqλðℏωqλ=kBTÞvzqλð−∂zT=TÞ.
We can proceed in calculation using ImDR

qλðωÞ ¼
−πδðℏω − ℏωqλÞ and

P
p ImχRp ðωÞ ¼ πν2FN

2
Nℏω, where

νF is the density of states at the Fermi level per unit cell
in the NM. For simplicity, we roughly approximate the

polarization vector as eq� ¼ ðx̂� iŷÞ= ffiffiffi
2

p
[83], and assume

wave-number-independent relaxation time as τqλ ¼ τ.
Thus, the spin current is calculated as

hÎzsi ¼
πτℏ3ν2FN

2
N jJj2

ρVCIkBT

X
q∈qz>0

q2z
∂

∂qz
ðω4

qþ −ω4
−qþÞ



−
∂zT
T

�
;

ð13Þ

where the sum has been restricted into positive qz using the
time-reversal symmetry ω−qλ ¼ ωqλ̄ and the symmetry of

the distribution function, δfph−q;λ̄ ¼ −δfphq;λ, under temper-

ature gradient. This result indicates that the temperature
gradient along the chiral axis in the CI generates spin
current into the NM across the junction. As clearly shown
from Eq. (13), this spin current is generated only when the
material has the structural chirality, i.e., lacks the parity
symmetry (ωqλ ≠ ω−qλ) [84].
Finally, let us estimate the spin current generated by

temperature gradient. For simplicity, we use the dispersion
relation of chiral phonons calculated in Ref. [85] as a
typical example. We set the parameters as τ ¼ 10−10 s [85],
the lattice constant c ¼ 1 Å, the mass of the unit cell as
M ¼ ρc3 ¼ 10−26 kg, νF ¼ 10−2 eV−1, and jT j=Δ ¼
1=20. By assuming a linear temperature gradient of 1%
at 1 mm length, the spin current is estimated for a 104 μm2

junction as hÎzsi ∼ 100 nA, which is observable in the
present experimental technique.
Discussion.—In this Letter, our primary focus has been

on the long-wavelength acoustic phonon modes, where the
continuum approximation can be applied to relate vorticity
with microrotation. However, above the Debye temper-
ature, the consideration of optical modes (or short-wave-
length phonons) becomes necessary. We stress that spin-
microrotation coupling can be established also for optical
modes through careful examination of the rotation of
atomic orbitals, induced by the motion of surrounding
atoms. This expansion of our Letter will facilitate the
evaluation of spin-microrotation coupling for specific
materials, utilizing energy dispersion and lattice displace-
ment obtained from first-principles calculations. Further
elucidation of this extended framework will be presented in
a separate publication.
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Summary.—We investigated spin injection into a metal
driven by nonequilibrium chiral phonons in an adjacent
insulator. We constructed an effective Hamiltonian to depict
the spin-phonon conversion at an interface attributable to
the spin-microrotation coupling and computed the spin
current considering the nonequilibrium distribution func-
tion of chiral phonons. The results of our Letter imply that
the spin current at the interface into a nonmagnetic material
is caused by an imbalanced distribution of phonons along
the chiral axis. Importantly, our findings present a solid
groundwork for chirality-governed spintronics via pho-
nons, bypassing the requirement for a strong spin-orbit
interaction with heavy elements. Future studies will apply
these findings to spin-induced phenomena arising from
chiral phonons.

Note added.—After our submission, an experimental study
that observed a thermal-gradient-induced spin current in a
bilayer composed of α quartz and tungsten was published
[71]. Our findings are in good agreement with this
experiment.
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