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Recent experiments have confirmed the presence of interlayer excitons in the ground state of transition
metal dichalcogenide bilayers. The interlayer excitons are expected to show remarkable transport properties
when they undergo Bose condensation. In this Letter, we demonstrate that quantum geometry of Bloch
wave functions plays an important role in the phase stiffness of the interlayer exciton condensate. Notably,
we identify a geometric contribution that amplifies the stiffness, leading to the formation of a robust
condensate with an increased Berezinskii-Kosterlitz-Thouless temperature. Our results have direct
implications for the ongoing experimental efforts on interlayer excitons in materials that have nontrivial
quantum geometry. We provide estimates for the geometric contribution in transition metal dichalcogenide
bilayers through a realistic continuum model with gated Coulomb interaction, and find that the
substantially increased stiffness may allow an interlayer exciton condensate to be realized at amenable
experimental conditions.
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Introduction.—Advancements in topological quantum
matter have drawn attention to the crucial role of Bloch
wave functions in diverse condensed matter systems. While
the influenceofBerry curvatureonnoninteractingelectrons is
well understood as an anomalous velocity [1], a closely
related quantity, the quantum metric, has recently gained
significant attention, particularly in the context of flatband
superconductivity and related experiments in moiré hetero-
structures [2].Derived from thegeometric properties ofBloch
wave functions, the quantum metric has profound effects on
various facets of superconductivity. Notably, it modifies
the mass of Cooper pairs [3–5], phase stiffness [6–12],
spectral weight [13–16], and potentially the critical temper-
ature [17,18]. Other than superconductivity, quantum geom-
etry is known to appear in current noise spectrum [19],
dielectric response [20], electron-phonon coupling [21],
plasmons [22], and nonlinear response [23–27]. In this
Letter, we target interlayer exciton condensates (IECs) and
reveal a significant geometric contribution to the phase
stiffness that results in a more robust condensate character-
ized by a higher Berezinskii-Kosterlitz-Thouless (BKT)
transition temperature.
Excitons, bound states of electrons and holes in semi-

conductors, are bosons that have long been proposed to
form a BEC at low temperatures [28,29]. Unlike conven-
tional BECs, exciton condensates conserve total particle
numbers and instead break a Uð1Þe ×Uð1Þh symmetry
that corresponds to separate conservation of electrons and
holes [30,31]. This symmetry is experimentally realizable
in a bilayer system with a spacer that suppresses single-
particle tunneling between the layers. If the electrons
reside on the top (t) and holes in bottom (b) layers, an IEC

is formed by the spontaneous breaking of Uð1Þt ×Uð1Þb
symmetry [32–35]. Its superfluid properties have been
observed in quantum Hall systems [36,37].
Although an exciton condensate arising intrinsically in a

real material has been a challenge, there has been progress in
three-dimensional semimetal 1T-TiSe2 [38], monolayer
WTe2 [39,40], bilayer WSe2 [41], and transition metal
dichalcogenide (TMD) bilayer WSe2=MoSe2 [42]. In par-
ticular, Ref. [43] has established the existence of interlayer
excitons in the ground state by capacitance measurements
and characterized the exciton Mott transition [44–48] as a
function of the density of electron-hole pairs. These
interlayer excitons have finite dipole moments and interact
via dipole-dipole interaction. Thus, as a virtue of interact-
ing bosons in 2D, it is possible that there is condensation
at low enough temperatures [49–53]. Confirming the
existence of the condensate requires transport experi-
ments [31,54], which have remained elusive until two
recent reports [55,56].
IECs display fascinating transport properties, most

notably dissipationless counterflow transport. When equal
and opposite fields are applied to the two layers, excitons
flow without resistance in the condensate [36]. The
longitudinal counterflow conductivity, σCFðωÞ, diverges
in the dc limit with σCFðωÞ ¼ DsδðωÞ þ � � �, where the
weight of the delta function, Ds, represents the phase
stiffness that governs the free energy cost of phase
fluctuations in the condensate [57]. In this Letter, we
demonstrate that Ds, in addition to a conventional con-
tribution from band dispersion, has a significant geometric
contribution that arises from the wave functions of the
noninteracting electron and hole bands.
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The critical role of wave functions in exciton condensa-
tion is evident from quantum Hall bilayers where excitons
exhibit macroscopic coherence and condense [58,59]
despite the noninteracting bands having flat dispersion
and infinite mass. The nontrivial wave functions of the
Landau level endow mobility to excitons even when the
constituent electrons and holes are immobile. Similar
phenomenology is anticipated in materials without a
magnetic field, such as WSe2=MoSe2, as a virtue of their
nontrivial wave functions [60–62]. However, there are key
distinctions due to finite dispersion and asymmetric elec-
tron-hole bands, and it remains to be seen if such effects
preserve or diminish the geometric contribution. We
address these fundamental questions in this Letter.
We begin by deriving the phase stiffness of a general

exciton Hamiltonian, separating it into conventional and
geometric components. The latter arises primarily from the
noninteracting electron and hole wave functions. To dem-
onstrate this effect, we consider a realistic continuum
model endowed with screened Coulomb interactions appli-
cable to bilayer TMD devices and provide estimates for
the geometric contribution to stiffness in MoTe2 homo-
bilayers [63], as well as WSe2=MoSe2 heterobilayers [43].
Finally, we propose experimental setups that can serve as
validation platforms for our theory.
Phase stiffness.—Thermodynamic stability of a conden-

sate depends on the free energy cost associated with spatial
fluctuations in the phase, θ → θðrÞ, which is quantified as
F ¼ ð1=2ÞDs

R
drj∇θðrÞj2, where Ds represents the phase

stiffness. For IECs, the phase stiffness is calculated as a
linear response coefficient when equal and opposite vector
potentials are applied to the two layers [37]. The anti-
symmetric vector potential couples symmetrically to the
exciton, since electron and holes have opposite charges,
inducing infinitesimal phase fluctuations in the condensate.
A general model Hamiltonian for the IEC is given by

Hex ¼ H0 þHint, where H0 ¼ Ht þHb describes the
noninteracting properties with Bloch Hamiltonians fHνg
for the two layers ν ¼ ft; bg, and Hint is a density-density
interaction that gives rise to excitons. We write H0 ¼P

k Ψ
†
kH0ðkÞΨ†

k, where H0ðkÞ ¼ ½HtðkÞ ⊕ HbðkÞ� þ
Vbτz and Ψk is a spinor that has internal labels ðα; βÞ that
are omitted for brevity along with layer label ν:
Ψk ¼ ðck;α;t;…; ck;β;b; � � �ÞT , and k∈BZ. The last term
describes a bias voltage Vb that tunes the gap between the
conduction and valence bands (see Fig. 1) with τz being the
Pauli matrix in the layer subspace. With vanishing single-
particle tunneling between the layers, the noninteracting
model has aUð1Þt ×Uð1Þb symmetry that is spontaneously
broken by the IEC.
Density-density interactions remain unaffected by the

external vector potential. Consequently, when equal and
opposite A ¼ Ax̂ are applied to the two layers, the current
operators depend solely on the Bloch Hamiltonian as
H0ðk; AÞ ¼ Htðk − eA=ℏÞ ⊕ Hbðkþ eA=ℏÞ. We assume

spatially isotropic systems to suppress the tensor nature of
currents and stiffness and leave the extension to anisotropic
systems to Sec. A6 in Supplemental Material [64]. The
current operator can be expressed as j ¼ −δH0=δA ¼
jP þ AjD, where jP ¼ ðe=ℏÞPk Ψ

†
k½τz∂kH0ðkÞ�Ψk and

jD ¼ −ðe=ℏÞ2Pk Ψ
†
k∂

2
kH0ðkÞΨk are the paramagnetic

and diamagnetic currents, respectively. The stiffness is
determined by the Kubo formula, given by Ds ¼ −½hjDi−
χjPjPðq⊥ → 0;ω ¼ 0Þ�=4, where χjPjP is the longitudinal
current-current correlator [57,71,72]. Calculating the stiff-
ness requires a complete enumeration of the eigenstates of
the full interacting Hamiltonian Hex. To make progress
beyond the formal definition, we focus on mean-field
theories where the interaction term breaks down into
fermionic bilinears. We can then utilize the eigenspectrum
Em;k and eigenstates jum;ki of the mean-field Hamiltonian
to express the stiffness as

Ds ¼
ℏ2

4e2A

�X
k;m

fm;khum;kj∂2kH0ðkÞjum;ki

−
X
k;m;n

fm;k − fn;k
En;k − Em;k

jhum;kjτz∂kH0ðkÞjun;kij2
�
; ð1Þ

where fm;k ≡ f½Em;k� is the Fermi occupation factor and A
is the volume normalization factor, which is the area of
the sample in 2D. The stiffness measures coherence
between transport in the two layers. In the absence of inter-
layer tunneling, the only way to get finite stiffness is
for the interaction to admit an off-diagonal exciton term
Ψ†

k½τiϕ̂ðkÞ�Ψk with i ¼ x, y within mean field. The matrix
function ϕ̂ðkÞ is a mean-field ansatz that needs to be
evaluated self-consistently.
Although the dependence of the phase stiffness on wave

functions is evident in Eq. (1) from the matrix structure of
the current operators, the geometric and energetic terms are
intertwined with no clear route to separation. To tackle this
challenge, we introduce a projected low-energy model [9],
which is applicable when excitons predominantly arise

FIG. 1. Device setup with the two layers, orange and blue, with
electrons in one and holes in the other. The hexagonal boron
nitride (h-BN) spacer (green) suppresses single-particle tunneling
between the layers. Bias voltage, Vb, tunes the gap between
lowest unoccupied band and highest occupied band. It is
important that these are direct excitons. The bands are shifted
horizontally to highlight the layers.
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from the lowest lying electron band (e) and the highest hole
band (h),

Hex ¼
X
k

ψ†
k

�
ϵeðkÞ−ΣeðkÞ φðkÞ

φðkÞ� ϵhðkÞþΣhðkÞ

�
ψk; ð2Þ

where ϵe=h are the bare electron and hole dispersions, ψk ¼
ðck;e; ck;hÞT is the low-energy basis state, Σe=hðkÞ are the
self-energies (including Vb), and φðkÞ is a shorthand for

φðkÞ ¼
X

α∈ t;β∈ b

½UtðkÞ��e;αϕαβðkÞ½UbðkÞ�β;h: ð3Þ

A crucial aspect to highlight is that UtðkÞ and UbðkÞ are
independent unitary matrices that diagonalize HtðkÞ and
HbðkÞ, respectively. The subscripts e and h indicate the
electron and hole bands involved in the exciton pairing. It is
important to note that, unlike in BCS theory where the
redundancy in Nambu basis introduces a particle-hole
symmetry in the Bogoliubov–de Gennes Hamiltonian,
UtðkÞ and UbðkÞ do not have such constraints. Hence
our framework is a generalization of phase stiffness that is
designed for WSe2=MoSe2 bilayers where the electron and
hole bands originate from distinct materials.
We next assume ϵeðkÞ¼−ϵhðkÞ¼ ϵðkÞ, while allowing

UtðkÞ to differ from UbðkÞ. This assumption is justified as
the effect of asymmetric dispersion on exciton is a well-
understood textbook problem [73] that only complicates
our analysis without offering additional insight [64]. On the
other hand, the presence of UtðkÞ and UbðkÞ has a
nontrivial consequence for φðkÞ in the presence of vector
potential

φðk; AÞ ≈ φðkÞ − eA
ℏ

PðkÞ − e2A2

2ℏ2
DðkÞ; ð4Þ

where PðkÞ and DðkÞ are the paramagnetic and diamag-
netic terms that involve derivatives of UνðkÞ (Sec. A2 in
Supplemental Material [64] has the full expression). These
terms are in addition to the energetic terms arising from
∂kϵðkÞ and ∂2kϵðkÞ in the current operator and are key to our
analysis. After performing a lengthy but straightforward
calculation [64], we find two main contributions to the
stiffness Ds ¼ Dc

s þDg
s with

Dc
s ¼

1

2A

X
k

∂
2
ki
ϵðkÞv2k ð5Þ

Dg
s ¼ 1

4A

X
k

GðkÞ
EðkÞ þ

1

4A

X
k

Re½PðkÞφðkÞ��2
EðkÞ3 ; ð6Þ

where v2k ¼ ½1 − ξðkÞ=EðkÞ�=2 is the momentum
occupation factor with ξðkÞ ¼ ϵðkÞ − ΣðkÞ, and EðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðkÞ2 þ jφðkÞj2

p
is the mean-field quasiparticle

dispersion. The second part of the equation includes the
geometric quantity GðkÞ ¼ Re½DðkÞφðkÞ�� − jPðkÞj2. We
note that all terms in Eq. (6) are individually gauge
invariant and constitute the main result of our Letter [64].
A few comments are in order. The geometric contribu-

tion in Eq. (6) arises explicitly from the Taylor expansion of
the off-diagonal term φðk; AÞ. If the wave functions were
trivial, say independent of k, this contribution would
vanish since PðkÞ ¼ DðkÞ ¼ 0.
As one might expect, there are some connections with

superconductivity as well. If the bands were particle-hole
symmetric, Eq. (2) would reduce to a Bogoliubov–de
Gennes matrix and the function GðkÞwill become precisely
the quantum metric, gðkÞ. This is not surprising since
superfluid stiffness is known to be enhanced by quantum
metric in superconductors within mean field [2]. Since the
particle-hole symmetry is not enforced in an exciton mean-
field theory, our results present a generalization of quantum
geometric phase stiffness beyond pairing between particle-
hole symmetric states.
We further note that orbital embedding modifies our

calculation in a similar fashion as in superconductivity [11].
It enforces the minimal condition where the solution to gap
equation is kept real in the presence of external vector
potential [74]. Our result demonstrate a generalization of
excitonic phase stiffness beyond particle-hole symmetry
discussed in the context of quantum Hall bilayers [58].
Hubbard model with tunable quantum metric.—To

illustrate the phenomenology with a simple model, we
consider an interlayer on-site orbital-diagonal Hubbard
interaction Hint ¼ V

P
i;α n̂i;α;tn̂i;α;b. The labels i, α per-

taining to unit cell index and orbitals, are not crucial for our
discussion as long as the interaction is interlayer in
character [64].
For the Bloch hamiltonian, we consider a tunable

quantum metric model that has two orbitals on a square
lattice with the Bloch Hamiltonian

Hðζ;kÞ ¼ 2tð2 − pkÞ þ tF cosðζpkÞσx þ tF sinðζpkÞσy;
ð7Þ

where the Pauli matrices σi act in orbital space, pk is a
periodic function given by pk ¼ cos kx þ cos ky, and
the parameter ζ controls the quantum geometry by intro-
ducing long range hoppings [75]. More precisely, ζ is an
overall scaling factor for the quantum geometric tensor
Qðk; ζÞμν ¼ ðζ2=4Þ sin kμ sin kν, which is real because of
inversion and time-reversal symmetries. The Berry curva-
ture FðkÞ ¼ −Im½QðkÞ�xy=2 vanishes identically while the
quantum metric gμνðkÞ ¼ Re½Qk�μν is finite. Another
convenient aspect of this model is that the band dispersions
ϵ�;k ¼ 2tð2 − pkÞ � tF are independent of ζ. This permits
the use of ζ to tune quantum geometry without affecting the
band dispersion, capturing the discussion around Eq. (6).
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Symmetric bilayers, where both layers are described by
the same parameter ζ, give rise to excitons [see Fig. 2(a)],
where the stiffness has a significant enhancement coming
from the geometric term Dg

s. The extra contribution is
indeed proportional to the trace of the quantum metric
in this particular case, as Eq. (6) simplifies to Dg

s ¼
ðϕ2=4AÞPk gðkÞ=EðkÞ [76]. While the geometric con-
tribution dominates at higher bias voltage jVbj, it is
important to note that a high jVbj results in higher densities
of electron-hole pairs and may ultimately drive the system
to the exciton Mott transition [45–48]. The case of
asymmetric wave functions follows along similar lines
and is outlined in Fig. S3 [64].
Continuum model for TMDs.—With the formalism in

place, we now aim to quantify the role of quantum
geometric effects in TMD exciton bilayers. TMDs are
semiconductors with valley optical selection rules [77] and
hence their minimal model is that of a gapped Dirac cone.
We consider the continuum Hamiltonian introduced in
Ref. [78] with spin-valley locking. The continuum k:p
Hamiltonian for a given spin and valley, to first order in k,
reads

HνðkÞ ¼ Δνσz þ vνk · σ; ð8Þ

where σi is the Pauli matrix in the internal sublattice
degrees of freedom for the conduction and valence bands,
and dispersion ϵkν� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ν þ v2νjkj2
p

. The two-band
aspect of the model is justified for the valence band where
the Ising spin-orbit coupling gap is of the order of 180 meV
in MoX2 and 440 meV in WX2 [79]. We also neglect the
quadratic trigonal warping term and the quadratic particle-
hole mass imbalance since it does not play an important
role in our phenomenological discussion.
The geometric properties of the model are encoded in the

form factors Fν
k;q ¼ U†

νðkÞUνðkþ qÞ, which have non-
trivial momentum dependence. In order to isolate the
geometric contribution, we will compare our results with
the gapped Dirac cone in Eq. (8) to that of a parabolic band

HνðkÞ ¼ �ϵkνσz with energies ϵkν ≈ Δν þ k2=2mν with
mν ¼ v2ν=mν and trivial form factor Fν

k;q ¼ δk;q.
We overlay this model with a gated Coulomb interaction,

Hint ¼
1

2A

XΛ
q

X
ν;ν0¼t;b

Vνν0
q n̂q;νn̂−q;ν0 ; ð9Þ

where n̂q;ν is the layer resolved density operator n̂q;ν ¼PΛ
k

P
a¼K;K0 ψ†

k;aνψkþq;aν and

Vtt
q ¼Vbb

q ¼ e2

ϵϵ0

tanhqξ
2

2q
; Vtb

q ¼Vbt
q ¼ e−dqVtt

q : ð10Þ

Here, d is the interlayer distance, Λ is the UV cutoff, and ξ
is the screening length of the bilayer, which is defined as
the distance between the bilayer and the metallic gates. As
representative values [41,43], we set ξ ¼ 12 nm, ϵ ≈ 6, and
d ≈ 1 nm. We focus on the regime of low density of
electron-hole pairs ne-h ≤ 0.075 to reduce screening effects
leading to the exciton Mott transition [44–48]. We now
proceed with a Hartree-Fock calculation. We find that
while the Hartree term vanishes as a consequence of
charge neutrality, the Fock term gives rise to a self-energy
correction to the single-particle Hamiltonian. The self-
consistent equations for the Fock self-energy are solved
employing an iterative scheme [64].
The Coulomb interaction induces intravalley excitons

as well as charge transfer between the two layers
ϕz ¼ hτzσ0i ¼ 2ne-h. The operators τ�σa probe spontane-
ous interlayer coherence where τ� ¼ ðτx � iτyÞ=2 are
raising or lowering operators in the layer degree of freedom
and σa are Pauli matrices in the band space. A finite
expectation value hτ�σai ≠ 0 corresponds to an interlayer
intravalley exciton condensate that breaks the Uð1Þe=h
symmetry. The first panel of Fig. 3 shows the evolution

of ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

a¼x;y;zhτxσai2
q

in the gauge where interlayer

symmetry is broken along τx as a function of Vb for the
homobilayer [Fig. 3(a)] and heterobilayer [Fig. 3(b)] case.
We notice that for the continuum theory the energy Vb is
given by Vb ¼ ðΔt þ Δb − 2EzÞ=2 with Ez electric dis-
placement field applied to the bilayer. Above a critical
value of the electrostatic potential V�

b ≈ 70=75 meV the
system turns into a semiconductor where the energy gap
Egap grows linearly with the applied bias. Finally, the phase
stiffness is calculated using Eq. (1) where the expectation
value is taken with the Hartree-Fock wave functions. The
results are shown in the right panel of Figs. 3(a) and 3(b),
blue data for parabolic bands and green for a gapped Dirac
cone. We emphasize that the nontrivial structure of the
wave functions appears in the geometric contribution of the
superfluid stiffness, while it does not change the exciton
binding energy (energy gap) and the size of the order
parameter.

(a) (b)

FIG. 2. (a) Mean-field gap solution for the toy model with
tunable quantum metric at fixed interaction U ¼ 6t. (b) Mean-
field phase stiffness. All energy scales, ϕ, Ds, Vb, are plotted in
units of single-particle hopping t [see Eq. (7)]. Subscripts c and g
denote conventional and geometric contributions respectively.
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Remarkably, the geometric component increases Ds
and, correspondingly, the BKT transition temperature
ðTBKTÞ related to the superfluid stiffness by the Nelson-
Kosterlitz relation kBTBKT ¼ π=2½limT→T−

BKT
DsðTÞ� [80].

ApproximatingDsðTÞ with its T ¼ 0 value [from last panel
in Fig. 3(b), we infer that geometric contribution increases
TBKT roughly from 12 to 36 K at Vb ≈ 40 meV. This
threefold increase should be observable in experiments.
Conclusion.—Phase stiffness is significantly modified by

the constituent electron and hole wave functions of the
exciton. We investigated two limiting scenarios, one with
local Hubbard interaction and the other with gated Coulomb
interaction projected onto the low-energy bands, and
remarkably, we find geometric contributions that play a vital
role in either case. Our findings complement existing
research on the effects of quantum geometry in exciton
spectrum [81–83], exciton wave function [84] and its
possible realizations in moiré heterostructures [76,85,86].
Importantly, we find a gauge-invariant quantum geometric
quantityGðkÞwhose properties require further investigation.
Bilayer TMD devices offer an ideal platform to validate

our predictions. However, unlike theoretical models where
wave functions can be turned off explicitly, isolating the
geometric component from experimental data is a big
challenge [87]. One key observation from our numerics
is that the exciton binding energy (ϕ) is mostly unaffected

by the wave functions, in stark contrast to superfluid
stiffness (Ds) (Fig. 3). This feature should lead to a
discrepancy between ϕ and Ds, and more generally,
between thermodynamic (capacitance) and transport probes
(counterflow). The enhancement in Ds should raise the
BKT transition temperature. Quite recently, two experi-
ments [55,56] have claimed perfect drag in MoSe2=WSe2
bilayers around 20 K. If the perfect drag is a result of
exciton condensation, our calculations indicate that the
quantum geometry of TMDs is essential in estimating the
onset temperature. Another avenue for isolating the geo-
metric contribution can be critical counterflow current
experiments using nonlinear transport similar to studies
in twisted bilayer graphene superconductor [88].
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