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Direct numerical simulation of homogeneous isotropic turbulence shows pronounced clustering of
inertial particles in the inertial subrange at high Reynolds number, in addition to the clustering typically
observed in the near dissipation range. The clustering in the inertial subrange is characterized by the bump
in the particle number density spectra and is due to modulation of preferential concentration. The number
density spectrum can be modeled by a rational function of the scale-dependent Stokes number.
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Inertial heavy particles suspended in turbulence are
frequently observed in geophysical and industrial flows,
such as cloud droplets and volcanic ash in atmospheric
turbulence, dust particles in protoplanetary disks, and fuel
droplets in spray combustion. The particles show nonuni-
form distribution, i.e., clustering, in turbulence due to
deviation of particle motion from the fluid motion [1–3].
Clustering of inertial heavy particles has been studied
extensively; for reviews we refer to, e.g., Refs. [4–8].
The clustering can be characterized statistically by two-
point correlation of number densities such as the radial
distribution function (RDF) and the number density spec-
trum. The former is relevant to, e.g., droplet collision and
coalescence statistics in raindrop formation process [9,10],
and the latter gives estimates of clustering influence on
cloud radar reflectivity factor [11,12]. The mechanism of
the clustering is explained by the preferential concentration
in the pioneering work by Maxey [1] when the particle
relaxation time τp is sufficiently smaller than the flow
timescale: inertial particles are swept out from turbulent
vortices due to the centrifugal effect and concentrate in low
vorticity and high strain-rate regions. The inertial effect can
be quantified by the Stokes number defined as St≡ τp=τη
with the Kolmogorov time τη ≡

ffiffiffiffiffiffiffi
ν=ϵ

p
. Here, ν is the

kinematic viscosity, and ϵ is the mean energy dissipation
rate per unit density. The review [7] well summarizes
clustering mechanisms including other ones proposed for
larger τp.
Inertial particles show multiscale clustering structu-

res [13–19], whose number density spectrum has a pro-
nounced bump in the near dissipation range, i.e., the
scales between the inertial and dissipation ranges [11].
The closure analysis in Ref. [18] predicted a universal
scaling for the number density fluctuation in the inertial
subrange. To observe such inertial subrange clustering,

one needs sufficiently high–Reynolds number turbulence
so that the spectrum of fluid velocity and pressure obeys
the scaling based on Kolmogorov’s idea [20] (K41),
according to the theories in Refs. [17,18]. The recent
development of supercomputers enables us to explore the
influence of the Reynolds number on the clustering by
using direct numerical simulation (DNS) of particle-laden
turbulence. In this Letter, we examine the inertial sub-
range clustering and its dependence on the Stokes number
by performing three-dimensional DNS at high Reynolds
number.
We consider statistically homogeneous turbulent flow

governed by the incompressible Navier-Stokes (NS) equa-
tion, ∂u=∂tþ u·∇u ¼ −∇P þ ν∇2uþ f , where the veloc-
ity uðx; tÞ satisfies ∇·u ¼ 0. Pressure per density is denoted
by Pðx; tÞ, and f ðx; tÞ is an external solenoidal forcing. We
use a cubic domain with length 2π and periodic boundary
conditions. The particle size is assumed to be sufficiently
smaller than the Kolmogorov length η≡ ðν3=ϵÞ1=4, and
ρp=ρ ≫ 1, where ρp and ρ are the particle and fluid densities,
respectively. Then, the Lagrangian motion of inertial heavy
particles is governed by dxp=dt ¼ vp and dvp=dt ¼
−fvp − uðxpÞg=τp, where xp and vp are the position and
velocity of a Lagrangian particle, respectively [3]. The
Taylor-microscale Reynolds number is defined as Reλ ≡
u0λ=ν, where u0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjuj2i=3
p

is the turbulent velocity

fluctuation, and λ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15νu02=ϵ

p
is the Taylor microscale.

Here, h·i denotes an ensemble average. A series of DNS
computations of particle-laden turbulence was performed
using the same numerical code as in Refs. [11,12,21,22].
External solenoidal forcing was applied at large scale,
jkj < 2.5, where k is the wave number vector, to obtain
statistically stationary turbulence, following a random forc-
ing scheme in Ref. [23] (see details in the Supplemental
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Material [24]). Inertial particles were seeded uniformly and
randomly in the turbulent flow at a statistically steady state,
defined as t ¼ 0. Particle position data were then sampled at
10 time instants of t ¼ 11T0 to 20T0 at interval of T0, where
T0 is the dimensionless time unit, comparable to the large-
eddy turnover time. Spectra in this Letter are averaged for the
data at the sampling time instants. The DNS parameters and
the turbulent flow statistics are summarized in Table I. The
ensemble average for the statistics is computed as spatial and
temporal average. The latter is taken for the period of
10T0 ≤ t ≤ 20T0. The Stokes number St is 0.05, 0.1, 0.2,
0.5, 1.0, 2.0, and 5.0.
Figure 1(a) shows kinetic energy spectra EuðkÞ for

the different flows listed in Table I. Here, EuðkÞ≡
ð1=2ÞP0

k jûðkÞj2, where b· denotes the Fourier transform,P0
k ≡ð4πk2=NkÞ

P
k−1=2≤jkj<kþ1=2, andNk is the number of

k that satisfy k − 1=2 ≤ jkj < kþ 1=2. In the largest
Reynolds number case, Reλ ¼ 648, the compensated spec-
trum is nearly flat for about one decade in kη, indicating that
the spectrum is close to the scaling k−5=3 [20]. According to
the preferential concentration mechanism [1,2], the cluster-
ing formation is affected by the vorticity and strain rate
distributions represented by the second invariant Q of the
fluid velocity gradient tensor, where Q≡ ½Ω∶Ω − S∶S�=2
with Ω≡ ½∇u − ð∇uÞT �=2 and S≡ ½∇uþ ð∇uÞT �=2. Q
satisfies the relationship 2Q ¼ ∇2P. The superscript
T denotes the transposed. Positive and negative Q indi-
cate rotation- and strain-dominated regions, respectively.

According to dimensional analysis [25–27] following K41,
the spectrum of Q, defined as EQðkÞ≡P0

k jQ̂ðkÞj2, has a
k5=3 scaling in the turbulence inertial subrange at sufficiently
high–Reynolds number because EQðkÞ is equivalent to
ð1=4Þk4EPðkÞ, where EPðkÞ≡P0

k jP̂ðkÞj2 is the pressure
spectrum. Figure 1(b) shows the spectra EQðkÞ. This figure
confirms that, for Reλ ¼ 648, the compensated spectrum is
almost flat for 0.008≲ kη≲ 0.03, implying that EQðkÞwell
obeys the prediction of the dimensional analysis. For
Reλ ¼ 648, the forcing is imposed in jkjη < 2.48 × 10−3,
which is smaller than the above wave number range.
Spatial distributions of particles obtained by the DNS for

Reλ ¼ 648 are displayed in Fig. 2. For St ¼ 0.05 and 0.2,
small voids distribute intermittently, whereas for St ¼ 1.0
and 5.0, particle nonuniformity is significant even for scales
larger than 200η.
We consider the particle number density field nðx; tÞ in

the continuous setting [1] to define the particle number
density spectrum EnðkÞ≡P0

k jn̂ðkÞj2. To compute the
spectrum, the discrete particle position data are converted
into number density field data on N3

g equidistant grid points
with the histogram method. The number density field is
normalized such that the mean value yields hni ¼ 1. The
discrete nature of particles causes Poisson noise, and the
conversion to the field data causes the suppression for large
wave numbers [28]. These effects have been removed from
the obtained spectra (see the Supplemental Material [24]).

TABLE I. DNS parameters and statistics of obtained turbu-
lence; the number of grid points Ng, the number of particles Np,
the Reynolds number of DNS, Re ¼ U0L0=ν, Reλ, u0, ϵ, and
kmaxη, where kmax ≡ Ng=2 is the maximum wave number, andU0

and L0 are unity.

Ng Np Re Reλ u0 ϵ kmaxη

512 1.5 × 107 816 155 0.97 0.451 2.05
1024 5.0 × 107 2052 251 0.97 0.438 2.07
2048 4.0 × 108 5257 402 0.96 0.417 2.07
4096 3.2 × 109 13 212 648 0.99 0.453 2.03

FIG. 1. (a) Compensated kinetic energy spectra and (b) com-
pensated spectra of Q.

FIG. 2. Spatial distributions of the particles for (a) St ¼ 0.05
(b) 0.2, (c) 1.0, and (d) 5.0 at t ¼ 11T0 in the ranges of
π ≤ x1 ≤ 2π, π ≤ x2 ≤ 2π, and 0 ≤ x3 ≤ 4η for Reλ ¼ 648.
The red arrow in (c) indicates the length 200η.
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Figure 3(a) shows Reλ dependence of the number density
spectra EnðkÞ for different St values. For St ¼ 1.0, each
spectrum for Reλ > 200 shows a peak around kη ≈ 0.2. The
peak wave number of the bump near the dissipation range is
similar for St ≤ 1. These observations are consistent with
the results in Ref. [11]. For kη≲ 0.03, the spectrum values
increase as Reλ increases for all St cases, and each spectrum
for St ≥ 0.5 clearly displays a bump for Reλ ¼ 648. For
St ¼ 5.0, only the bump for kη≲ 0.03 exists, and the peak
near the dissipation range disappears. Note that we con-
firmed that the existence of the bump for kη≲ 0.03 is
robust against the external forcing schemes [21,23] (See the
Supplemental Material [24] and Ref. [29] therein). We can
also observe that the slope of the spectra in the inertial
subrange (0.008≲ kη≲ 0.03) is dependent on St in con-
trast to the prediction by Ariki et al. [18], in which
EnðkÞ ∝ k1=3. The slope for St ¼ 0.05 and Reλ ¼ 648 is
close to 1=3. However, the negative slopes for St ≥ 0.5 are
obviously different from the prediction.
To examine the clustering mechanism in the inertial

subrange, we consider the particle velocity field vðx; tÞ in

the continuous setting based on the approximation by
Maxey [1], i.e.,

v ¼ u − τpaL þOðτ2pÞ; ð1Þ

where aL ≡ ∂u=∂tþ u·∇u, which is the Lagrangian accel-
eration of fluid. Then, the conservation equation of n reads
∂n=∂tþ∇·ðnvÞ ¼ 0. This approximation is valid at least
for a coarse-grained field of vp for a spatial scale r
satisfying τp ≪ τr, where τr is the timescale of the fluid
flow for r. Note that Maxey [1] considered the Lagrangian
transport of n along the inertial particle trajectory,
∂n=∂tþ v·∇n ¼ −n∇·v, and applied Eq. (1) to the particle
velocity divergence, yielding ∇·v ¼ 2τpQþOðτ2pÞ. The
preferential concentration mechanism is explained by this
approximation: the inertial particles preferentially concen-
trate in flow regions where Q is small or negative. The
conservation equation can be rewritten in the form of
Lagrangian transport of n along the fluid particle trajectory,

∂n
∂t

þ u·∇n ¼ −∇·ðnv − nuÞ; ð2Þ

in which the production term on the right-hand side
represents the effect of particle drift velocity. Based on
the advection term, AðxÞ≡ u·∇n, in Eq. (2), the transfer
spectrum for the number density is defined as TðkÞ≡
2
P0

k R½ÂðkÞn̂�ðkÞ�, which represents the scale-to-scale
transfer of number density fluctuation. Here, R½·� denotes
the real part and the asterisk the complex conjugate.
Figure 3(b) shows the transfer spectra TðkÞ computed
for each St for Reλ ¼ 648. For all the Stokes numbers,
TðkÞ exhibits positive values in the inertial range, indicat-
ing that the forward transfer of particle number density
fluctuation (from large scales to small scales) is dominant.
Thus, the bump of EnðkÞ for kη≲ 0.03 is due to pro-
nounced clustering production in the inertial range and not
due to backward transfer from the dissipation range.
We analyze the clustering production in the inertial sub-

range based on the production term,BðxÞ≡−∇·ðnv −nuÞ¼
τp∇·ðnaLÞþOðτ2pÞ, in Eq. (2). When considering the
Fourier transform B̂ðkÞ in the inertial subrange, the effect
of viscosity and forcing terms on aL is negligibly small
according to the K41 phenomenology. Therefore, we can
assume that only the pressure gradient term in the NS
equation affects the inertial particle drift, i.e., B̂ðkÞ≈
dB∇PðkÞ, where B∇PðxÞ≡ −τp∇·ðn∇PÞ. Then we can
define the approximated production spectrum P∇PðkÞ≡
2
P0

k R½dB∇PðkÞn̂�ðkÞ�. Note that the exact production
spectrum is equivalent to TðkÞ assuming statistical statio-
narity. Figure 3(b) shows the approximated spectra P∇PðkÞ.
For St ≤ 2.0, P∇PðkÞ well agrees with TðkÞ for kη≲ 0.03,
including the inertial subrange. For St ¼ 5.0, P∇PðkÞ and
TðkÞ show significant difference in the inertial subrange,

FIG. 3. (a) Particle number density spectra EnðkÞ for
Reλ ¼ 155, 251, 402, and 648 and (b) transfer spectra TðkÞ
for Reλ ¼ 648 with the approximated production spectra P∇PðkÞ.
The number density spectra compensated by the scaling k1=3 are
provided in the Supplemental Material [24].
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indicating a breakdown of the approximation (1) due to large
τp. Therefore, we can conclude that B∇P plays a dominant
role for the clustering production for kη≲ 0.03 and St ≤ 2.0,
as predicted above.
The approximated production term B∇P represents the

production due to the convergence of the inertial particle
drift, and can be rewritten as B∇P ¼ BQ þ Bθ, where BQ ≡
−2τpQ and Bθ ≡ −τp∇·ðθ∇PÞ with θ≡ n − 1, where
hθi ¼ 0. The term BQ represents the preferential concen-
tration mechanism, and its contribution can be dominant
when the number density is nearly uniform. B∇P guaran-
tees the conservation of n but BQ does not. Hence the
residual term Bθ can be considered as the modification of
the clustering production for the conservation of n. The
effect of Bθ can be significant reflecting the nonuniformity
of n.
We examine the scale dependence of the number density,

transfer and production spectra in the approximated balance
equation ∂EnðkÞ=∂tþ TðkÞ ¼ P∇PðkÞ, using dimensional
analysis. Ariki et al. [18] predicted a scale similarity
solution kEnðkÞ ∝ St2r using the approximation B ≈ BQ

for τp ≪ τr. Here, Str ≡ τp=τr is the scale-dependent
Stokes number [17,18,30] with τr ¼ ϵ−1=3k−2=3 for a scale
r ¼ k−1. Following K41, the representative velocity and
pressure at the scale k are scaled by ϵ1=3k−1=3 and ϵ2=3k−2=3

in the inertial subrange, respectively [20,25]. Then, we can
expect kEnðkÞ, τrkTðkÞ and τrkP∇PðkÞ to be given by a
function of Str even when the contribution of Bθ in B∇P ¼
BQ þ Bθ is not negligible.
This expectation is verified by normalizing the spectra

by a characteristic length Λ≡ τ3=2p ϵ1=2 [18] so that
kΛ ¼ St3=2r , i.e., τr ∼ τp for r ∼ Λ. The normalized spectra
E†
nðkΛÞ≡ EnðkÞ=Λ and T†ðkΛÞ≡ τrTðkÞ=Λ are displayed

in Fig. 4. The spectra E†
nðkΛÞ in the inertial subrange,

indicated by solid lines in Fig. 4(a), align on the same
curve, which is a function of kΛ, for Reλ ¼ 648 and
St ¼ 0.5, 1.0, and 2.0. The spectra for St ¼ 0.05, 0.1,
and 0.2 lay only near the curve. For the case of Reλ ¼ 402,
the spectra E†

nðkΛÞ in the inertial subrange do not show the
alignment on the same curve because Q and P do not obey
the scaling predicted by the dimensional analysis [see
Fig. 1(b)]. In Fig. 4(b), the transfer spectra T†ðkΛÞ for
Reλ ¼ 648 align along a single curve in the inertial
subrange more clearly for 0.05 ≤ St ≤ 2.0. These results
support our conjecture that the spectra are given by a
function of Str, whereas the slope of both spectra changes
significantly depending on kΛ, i.e., Str. Therefore, the
bump observed in EnðkÞ for kη≲ 0.03 for St ≥ 0.5 is due to
the Str dependence of E†

nðkΛÞ in the inertial subrange,
which shows a negative slope for kΛ≳ 10−3 (Str ≳ 10−2).
The normalized production spectra P†

QðkΛÞ≡ τrkPQðkÞ,
where PQðkÞ≡ 2

P0
k R½cBQðkÞn̂�ðkÞ�, i.e., the contribution

of the preferential concentration, are also displayed in

Fig. 4(b), only in the inertial subrange. A clear discrepancy
between T†ðkΛÞ and P†

QðkΛÞ can be observed for
kΛ≳ 10−3, meaning that the clustering production for
such scales is reduced by the contribution of Bθ, i.e., the
modulation due to the n conservation. The observed Str
dependence of E†

nðkΛÞ implies that the spatial structure of n
at each scale changes depending on Str. It has been
confirmed in the Supplemental Material [24] that the
skewness and flatness factors at each scale of n well
exhibit the scale dependence as a function of Str.
If the Str dependence of E†

nðkΛÞ holds even for higher
Reλ, then we conjecture that the Str dependence of the slope
should be observed in the inertial subrange for St≳ 0.5.
The Kolmogorov-like scaling predicted in Ref. [18] could
be observed only for smaller values of Str, i.e., Str ≪ 10−2,
supposing such a scaling exists. Assuming that the pre-
dicted scale similarity appears for Str ≪ 1, E†

nðkΛÞ and

FIG. 4. (a) Normalized number density spectra E†
nðkΛÞ for

Reλ ¼ 648 and 402 and (b) normalized transfer spectra T†ðkΛÞ
for Reλ ¼ 648. The spectra in the inertial subrange (0.008≲
kη≲ 0.03) are indicated by the solid lines. The dashed lines in
(b) are the normalized spectraP†

QðkΛÞ for the production due toBQ

for Reλ ¼ 648 only in the inertial subrange. The gray solid lines in
(a) and (b) are approximated functions for the inertial subrange,
E†
nðkΛÞ≈82.1ðkΛÞ1=3=ð1þ75.7StrÞ and T†ðkΛÞ ≈ 32.2ðkΛÞ1=3=

ð1þ 37.8StrÞ, respectively, where kΛ ¼ St3=2r .
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T†ðkΛÞ can be approximated by functions. A least-square
fitting of a rational function of the form c1=ð1þ c2StrÞ with
constants c1 and c2 to ðkΛÞ−1=3E†

nðkΛÞ and ðkΛÞ−1=3T†ðkΛÞ
in the inertial subrange results in thegray solid curves inFig. 4.
The curves well agreewith the spectra for St ≤ 2.0 though the
function form is chosen heuristically.
Experimental studies are also crucial to verify the scale

dependence of the clustering for high Reynolds numbers. In
Ref. [31], a plateau in the RDFs, referred to as a “shoulder
region,” was reported for r=η ≥ 50 based on wind tunnel
experiments for Reλ up to 800. However, the authors stated
that it was attributed to large-scale inhomogeneity caused
by the experimental setup. Reference [32] reported that
the clustering was observed up to the scales 300η–400η in
experiments for Reλ ¼ 500. In practical situations, e.g.,
laboratory experiments or cloud droplets and aerosols in
the atmosphere, the gravitational settling further influences
the clustering (e.g., Refs. [32–35]). Under the presence of
gravity, the particlemotion can be decoupled from the carrier
turbulent flow. In the inertial subrange, the particle clustering
would be modulated when the terminal velocity vT is larger
than the flow velocity scale ur ¼ ϵ1=3k−1=3 for a scale k.
Therefore, for large scales that satisfy vT ≪ ur, the settling
effect could remain negligibly small as discussed inRef. [36].
In this work, the pronounced inertial particle clustering

has been discovered in the inertial subrange, in addition to
the clustering in the near dissipation range. The obtained
number density spectra well obey a function of Str in the
inertial subrange, showing a bump around kΛ ≈ 10−3. The
clustering production is dominated by the preferential
concentration mechanism for kΛ≲ 10−3, whereas it is
suppressed by the modulation due to the n conservation
for 10−3 ≲ kΛ≲ 10−1. The discovered inertial particle
clustering in the inertial subrange could have an impact
on the subgrid-scale modeling for large-eddy simulations.
The clustering of cloud droplets in the inertial subrange
may also cause temperature and moisture fluctuations,
which affect the condensation and evaporation of droplets
in the raindrop formation process. Including the influence
of gravitational setting, the spatial correlation for different
Stokes numbers and turbulent mixing of clear air, in future
work is important to understand and to model the droplet
behavior in cloud turbulence.
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