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The Chern number has been widely used to describe the topological properties of periodic structures in
momentum space. Here, we introduce a real-space spin Chern number for the optical near fields of finite-
sized structures. This new spin Chern number is intrinsically quantized and equal to the structure’s Euler
characteristic. The relationship is robust against continuous deformation of the structure’s geometry and is
irrelevant to the specific material constituents or external excitation. Our Letter enriches topological
physics by extending the Chern number to real space, opening exciting possibilities for exploring the real-
space topological properties of light.
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An essential concept in topological physics is the Chern
number—an invariant describing the topological properties
of dispersion bands in momentum space. It has been widely
applied to study periodic condensed-matter systems with
broken time-reversal symmetry, where the Chern number
decides the number of chiral edge states at the interface
of two distinct systems [1,2]. For the periodic systems with
fermionic time-reversal symmetry and spin-orbit interac-
tion, the spin Chern number has been introduced to predict
the number of helical edge states [3–6]. Akin to the
condensed matter systems, periodic optical systems can
also support topological states described by the Chern
number [7–10] and spin Chern number [10–15].
These photonic topological states can find applications
in high-efficiency lasing [16,17] and robust optical
communications [18].
In addition to the momentum-space topological

properties, there is a growing interest in the real-space
topological properties of optical systems. Optical fields
can exhibit nontrivial topology in real space, forming knots
and links [19,20], toroids [21,22], and skyrmions [23,24].
Interestingly, the polarization of optical fields can also
generate complex topological configurations such as
Möbius strips [25–28]. These real-space topological optical
fields can be characterized by some invariants (e.g., sky-
rmion number) different from the Chern number, and they
provide rich degrees of freedom for high-precision light
manipulation with potential applications in encoding infor-
mation [29], metrology [30], and sensing [31].
Finding the invariants of topological optical fields is

essential to comprehensively understanding the emergence
of nontrivial field patterns and singularities. Revealing the
relationship between different topological quantities can
offer insightful physical pictures for abstract topological

concepts. For instance, the Chern number can be inter-
preted as the winding of the geometric phase on the
Brillouin-zone torus, where the geometric phase arises
from the evolution of Bloch states [32]. Geometric phases
can emerge in various parameter spaces in addition to the
momentum space [33]. In real space, the evolution of
electromagnetic states can also give rise to geometric
phases [34–37]. Is it possible to derive a monopole-type
topological invariant similar to the Chern number from the
real-space geometric phase? What topological properties
are described by this invariant?
In this Letter, we introduce a new type of spin Chern

number based on the geometric phase of optical near fields
in finite-sized structures, thus generalizing this important
concept from momentum space to real space. This spin
Chern number characterizes the global topological proper-
ties of optical polarization on the structures’ surfaces.
Unlike the momentum-space Chern number and other
real-space invariants which have no relevance to the
real-space topology of optical structures, the spin Chern
number here is intrinsically quantized by the genus (i.e.,
number of “holes”) of optical structures and is guaranteed
equal to the Euler characteristic by the Poincaré-Hopf (PH)
theorem. This relationship, analytically proved and numeri-
cally verified, exists in general metal structures of arbitrary
geometry and is independent of the specific material
constituents or external excitations, as long as the structures
have smooth surfaces with a small skin depth.
We first define the new spin Chern number and then

apply it to several examples to discuss the physics. A
general complex magnetic field in three-dimensional space
can be expressed as HðrÞ ¼ eðrÞHðrÞ, where eðrÞ ¼
AðrÞ þ iBðrÞ is the normalized polarization vector with
e� · e ¼ A2 þ B2 ¼ 1 and HðrÞ ¼ jHjei argðH·HÞ=2. Here,
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AðrÞ and BðrÞ are the major and minor axes of the
polarization ellipse, respectively. The spatial variation of
eðrÞ can generate geometric phases, including the spin-
redirection phase [38–40] and the Pancharatnam-Berry
phase [41]. For the polarization evolution on a closed loop
in real space, the geometric phase can be determined via a
path integral over the loop: ΦG ¼ H

A · dr, where A ¼
−ie� · ð∇Þe ¼ −2B · ð∇ÞA is the Berry connection with
Cartesian components Ai ≡ −2

P
3
j¼1 Bj∇iAj [41–43].

Equivalently, it can be determined via a surface integral
over the area enclosed by the same loop if A is nonsingular
in this area: ΦG ¼ ∬Ω · dS, where Ω ¼ ∇ ×A is the Berry
curvature. Taking the helicity of the magnetic field into
account, one can define a spin Berry connectionAspin¼σA
and a spin Berry curvature Ωspin ¼ σΩ on a given surface
M, where σ ¼ signðs · nÞ ¼ �1 is the local helicity with
s ¼ Im½H� ×H�=jHj2 being the normalized local spin
density of magnetic field and n being the outward unit
normal vector of the surface. Note that the helicity here
is different from the traditional optical helicity, which is
defined as the projection of spin onto the direction of wave
vector [44]. We define the spin Chern number as

Cspin ¼
1

2π

Z Z
M
Ωspin · dS; ð1Þ

where the integral is carried out over the surfaceM. We note
that Cspin differs from the conventional spin Chern number,
which is defined bymultiplying the helicity globally after the
integration of Berry curvature [3,4,12]. We apply Cspin to
study light scattering by finite-sized metal structures with
smooth surfaces. We assume the structures are made of a
perfect electric conductor (PEC), and the effect of material
dispersion and loss will be discussed later. All the numerical
results are obtained via full wave simulations with the finite-
element package COMSOL.
We consider a PEC sphere under the illumination of a

plane wave Hinc ¼ x̂eikz−iωt. The numerically calculated
Berry connection A on the sphere surface is shown by the
black arrows in Fig. 1(a) (see the figure caption for the
system parameters). We notice that A localizes and
circulates around four discrete points. These points are
C points—a polarization singularity at which the field is
circularly polarized and the orientation of the polarization
major axis A is ill-defined [45–47]. The C points corre-
spond to the phase singularities of the scalar field
Ψ ¼ H ·H ¼ ðA2 − B2ÞH2, as shown by the color in
Fig. 1(a). Since the C points are topological defects of
polarization, they can only emerge or annihilate in pairs.
Consequently, the surface C points extend into free space
to form C lines [27,48]. Each C line connects a pair of
surfaceC points with opposite helicity or extends to infinity
[27,49]. Figures 1(b) and 1(c), and 1(d) and 1(e), show the
polarization ellipses and Berry connection A, respectively,

near the two C points with opposite helicity. The con-
nection A circulates in opposite directions, indicating its
dependence on the helicity of the magnetic field.
Figure 2(a) shows Aspin on the sphere (denoted by

the black arrows), where the surface color denotes the
helicity σ. Figure 2(b) shows the value of n ·Ωspin, which
localizes but does not diverge at the C points. This can be
understood as follows. If we define another Berry con-
nection for the normalized magnetic field h ¼ H=jHj as
Ã ¼ −ih� · ð∇Þh ¼ Aþ 1

2
∇½argðΨÞ�, which is identical

to A up to a gauge transformation term 1
2
∇½argðΨÞ�,

the corresponding Berry curvature is Ω̃ ¼ ∇ × Ã ¼
∇ ×Aþ 1

2
∇ ×∇½argðΨÞ� ¼ ∇ ×A ¼ Ωspin=σ. Since Ω̃

and σ are well-defined and continuous at the C points
where H is a smooth function, Ωspin must also be
continuous. We apply Eq. (1) to numerically calculate
the spin Chern number for the sphere. Remarkably, we
find that Cspin ¼ 2. Is the quantized value of Cspin a
coincidence?
To address the above question, we conduct further

simulations for various PEC structures shown in
Figs. 2(c)–2(f). The structures are excited by the same
plane wave as in Fig. 2(a). For the torus in Fig. 2(c), there
are eight C points on the surface connected by four C lines.
For the double torus in Fig. 2(e), twelveC points emerge on
the surface, connected by six C lines. In both cases, the
helicity distribution is antisymmetric with respect to the
xoz plane and yoz plane. Similar to the case of the sphere,
Aspin and Ωspin concentrate near the C points. By numeri-
cally integratingΩspin over the surface, we obtain Cspin ¼ 0

for the torus and Cspin ¼ −2 for the double torus [50].
These results imply that the spin Chern number always
takes the quantized value identical to the Euler character-
istic of the metal structures.

Arg(Ψ)

C line(a)

A A

(b) (c)

(e)(d)

xy
z

π-π

FIG. 1. (a) C lines and Berry connection (black arrows) of
magnetic field on the PEC sphere excited by a plane wave. The
polarization ellipses near the C points with spin pointing
(b) outward and (c) inward of the sphere. (d) The Berry
connection corresponding to (b). (e) The Berry connection
corresponding to (c). The sphere has a radius r ¼ 400 nm. The
frequency is f ¼ 200 THz.
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The mechanism underlying the quantized spin Chern
number can be understood with a rigorous analytical proof
of its relationship with the topology of optical structures, as
we show in the following. We divide the metal surface into
a set of infinitesimal disks fDig each centered at a C point
and the exterior region of the disksM −

P
i Di. SinceAspin

is singular only at the C points, we can apply the Stokes’
theorem to the exterior region to compute the spin
Chern number: Cspin¼ð1=2πÞ∬M−

P
i
Di
ð∇×AspinÞ ·dS¼

−ð1=2πÞPi

H
∂Di

Aspin ·dr, where ∂Di is the boundary of
Di whose positive direction is consistent with n according
to the right-hand rule [50]. Here, we have used
∬P

i
Di
Ωspin · dS ¼ 0 since Ωspin is continuous at the C

points. In addition, we have Aspin ¼ −2σABeB · ð∇ÞeA ¼
−2σABðσn × eAÞ · ð∇ÞeA ¼ −2ABe0B · ð∇ÞeA, where
eA ¼ A=A, eB ¼ B=B and e0B ¼ σeB ¼ n × eA such that
feA; e0B;ng forms a right-handed basis. Along the lines
separating the regions of opposite helicity, the magnetic
field is linearly polarized and the coefficient 2AB becomes
zero, thereby ensuring the continuity of Aspin. As a result,
the Stokes’ theorem can be safely applied. Near the C
points, the coefficient 2AB approaches unity, and the
spin Berry connection is reduced to Aspin¼−e0B ·ð∇ÞeA.
Thus, we have −ð1=2πÞ H

∂Di
Aspin · dr ¼ ð1=2πÞ H

∂Di
½e0B·

ð∇ÞeA� · dr ¼ ð1=2πÞ H
∂Di

e0B · deA ¼ Ii, where Ii is the
index of the C point (i.e., winding number of eA).
Finally, we obtain

CspinðMÞ ¼ −
1

2π

X
i

I
∂Di

Aspin · dr

¼ 1

2π

Z Z
M
Ωspin · dS ¼

X
i

Ii ¼ χ: ð2Þ

Here, χ is the Euler characteristic of the structure. The last
step corresponds to the application of the PH theorem to
tangent line fields on smooth manifolds [27,51], since A is
a line field (A and −A denote the same polarization major
axis) and the structures’ surfaces can be considered smooth
manifolds. Equation (2) is the main finding of our Letter. It
shows that the spin Chern number is intrinsically quantized
by the topology of the metal structures and is decided solely
by the genus g via χ ¼ 2 − 2g. In contrast, the integration
of the ordinary Berry curvature always leads to a trivial
Chern number C ¼ ∬MΩ · dS ¼ 0 regardless of the top-
ology of the structures [50]. This is because feA; eB;ng
does not necessarily form a right-handed basis, andΩ in the
regions of opposite handedness cancel each other. The
optical spin serves as a hidden degree of freedom dividing
the whole surface magnetic field into topologically non-
trivial subgroups, akin to the function of fermionic spin that
gives rise to the nontrivial momentum-space topology of
time-reversal-invariant topological insulators [12,13,15].
While Eq. (2) is based on a rigorous analytical proof, it

can be intuitively understood as follows. Consider the case of
the sphere in Fig. 2 as an example, its spin Chern number can
be viewed as the accumulated change of spin Berry phase
along latitude circles: Cspin ¼ ð1=2πÞ R π

0 dθ∂θ
R
θ¼constAspin·

dr ¼ ð1=2πÞ R π
0 dθ∂θΦG

spinðθÞ, where θ is the polar angle.
Since the latitude circles at both θ ¼ 0 and θ ¼ π reduce to a
point, we haveΦG

spinð0Þ ¼ ΦG
spinðπÞ ¼ 0 mod 2π. Therefore,

Cspin must be quantized, and continuous variation of the
surface magnetic field will not change Cspin as long as the
field remains nonzero. The field can be continuously varied
such that at every point of the sphere it reduces to circular
polarization while maintaining the original orientations
of the major and minor axes. In this homogeneous

FIG. 2. Spin Berry connection (black arrows) on the surface of (a) a sphere, (c) a torus, and (e) a double torus excited by the same plane
wave. The surface color denotes the local helicity σ. The spin Berry curvature on the surface of (b) the sphere, (d) the torus, and (f) the
double torus. The sphere has a radius r ¼ 400 nm. The torus has radii rin ¼ 110 nm and rout ¼ 250 nm. The double torus has
rin ¼ 60 nm, rout ¼ 120 nm, and d ¼ 180 nm.
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circular polarization limit, the normal projection of the
spin Berry curvature at each point is exactly identical
with the local Gaussian curvature ΩGauss of the sphere
(i.e., n ·Ωspin → ΩGauss), and thus Cspin is determined by
the integral of ΩGauss, i.e., the Euler characteristic of the
structure.
Equation (2) remains valid for any excitations and

continuous deformations of the structure’s geometry.
Figures 3(a)–3(c) show the C lines and spin Berry curvature
for the PEC sphere excited by plane waves with linear,
elliptical, and circular polarizations, respectively, at the
same frequency. The different incident waves induce
different C lines and Ωspin. In Figs. 3(a) and 3(b), there
are an equal number of C points on the surface with
different locations, and the associated Ωspin is different.
In Fig. 3(c), there are only two C points extending from the
surface to infinity due to the cylindrical symmetry, and
Ωspin is approximately uniform on the surface except at the
equator. Numerical calculations confirm that Cspin ¼ 2 in
all the three cases. We also verify the effect of geometric
deformations, as shown in Figs. 3(d) and 3(e), where
two different geometries with the same genus g ¼ 0 are
illuminated by the plane wave Hinc ¼ x̂eikz−iωt. The C
points and Ωspin are different in the two cases, but
numerical calculations confirm that their spin Chern
numbers are both Cspin ¼ 2. The global topology can only
be changed by a topological transition of the structure’s

geometry, e.g., adding or removing holes, or by breaking
the conditions of the PH theorem, e.g., adding sharp edges
to the structure’s surface so that it cannot be considered a
smooth manifold. An example is given in Fig. 3(f), where a
half torus is excited by the same plane wave as in Figs. 3(d)
and 3(e). In this case, we obtain Cspin ¼ 1.7 by numerically
integrating the spin Berry curvature over the surface, which
does not include the contribution from the sharp edges.
The Cspin is different from the cases in Figs. 3(a)–3(e) due
to the sharp edges at which the spin Berry curvature is ill-
defined. In fact, the spin Chern number can take arbitrary
unquantized values in the presence of sharp edges.
In the above discussions, we have assumed that the

structures are made of a PEC. The physics also applies to
realistic metals with material dispersion and loss, as long as
the magnetic field is approximately tangent near the sur-
face. This condition is generally satisfied for various metals
at microwave frequencies. At high frequencies, it requires
the skin depth of metals to be much smaller than the
characteristic geometric dimensions of the structures so that
the induced currents localize near the surface and maintain
an approximately tangent magnetic field. For dielectric
structures, there also exist eigenmodes with tangent mag-
netic or electric fields near the surface, where similar
properties can be found [52]. It should be noted that when
considering generic perturbations, all stable polarization
singularities should be C points [53,54]. The V points with
a vanished field norm can also emerge on the structure’s
surface under certain symmetry, rendering the spin Berry
curvature ill-defined at these points. However, the V points
are not topologically protected and can split into multiple C
points under a generic perturbation, in which case the spin
Berry curvature and spin Chern number remain well-defined.
The theory can be naturally extended to the far fields, where
the spin Chern number is decided by the topology of the
momentum sphere [55–57] and is always Cspin ¼ 2.
In conclusion, we introduce a new type of spin Chern

number for the optical near fields of metal structures with
smooth surfaces. The spin Chern number is subtly related
to the indices of surface C points and equal to the Euler
characteristic of the structures. Thus, it links the topological
properties of optical fields and the topological properties of
optical structures. The results provide a robust mechanism
to manipulate optical near fields via a new degree of
freedom, i.e., the topology of structures, which can find

FIG. 3. The C lines and spin Berry curvature of the PEC sphere
excited by different plane waves: (a) Hinc ¼ x̂eikz−iωt,
(b) Hinc ¼ ðx̂þ i0.5ŷÞeikz−iωt, and (c) Hinc ¼ ðx̂þ iŷÞeikz−iωt.
The C lines and spin Berry curvature in different geometries
without sharp edges [(d) and (e)] and with sharp edges [(f)]
excited by the same plane wave as in (a).

TABLE I. Comparison of topological physics in momentum space and real space.

Momentum-space topology Real-space topology (this Letter)

Physical system Periodic structures Finite-sized structures
Wave function Bloch states Near fields
Topological invariant (Spin) Chern number Near-field spin Chern number
Physical property Protected interface states Protected interface polarization singularities
Related real-space property Symmetry of structures Topology of structures
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applications in high-precision optical metrology, sensing,
and imaging. Our Letter expands the realm of topological
physics by extending the concept of monopole-type topo-
logical charge from momentum space to real space, open-
ing exciting possibilities for exploring the real-space
topological properties of light (see Table I for a comparison
between the topological physics in the two spaces). The
results can be naturally generalized to other types of
classical waves such as sound waves and water surface
waves, which can bring new insights into these fields.
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