
Observation of Momentum Space Josephson Effects
in Weakly Coupled Bose-Einstein Condensates

Annesh Mukhopadhyay ,1,* Xi-Wang Luo,2,3,4,* Colby Schimelfenig ,1 M. K. H. Ome ,1

Sean Mossman ,1,5 Chuanwei Zhang ,6,7,† and Peter Engels 1,‡
1Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA

2CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China,

Hefei, Anhui 230026, China
4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China

5Department of Physics and Biophysics, University of San Diego, San Diego, California 92110, USA
6Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA

7Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA

(Received 13 November 2023; revised 13 April 2024; accepted 15 May 2024; published 7 June 2024)

The momentum space Josephson effect describes the supercurrent flow between weakly coupled Bose-
Einstein condensates (BECs) at two discrete momentum states. Here, we experimentally observe this exotic
phenomenon using a BEC with Raman-induced spin-orbit coupling, where the tunneling between two local
band minima is implemented by the momentum kick of an additional optical lattice. A sudden quench of
the Raman detuning induces coherent spin-momentum oscillations of the BEC, which is analogous to the
ac Josephson effect. We observe both plasma and regular Josephson oscillations in different parameter
regimes. The experimental results agree well with the theoretical model and numerical simulation and
showcase the important role of nonlinear interactions. We also show that the measurement of the Josephson
plasma frequency gives the Bogoliubov zero quasimomentum gap, which determines the mass of the
corresponding pseudo-Goldstone mode, a long-sought phenomenon in particle physics. The observation of
momentum space Josephson physics offers an exciting platform for quantum simulation and sensing
utilizing momentum states as a synthetic degree.

DOI: 10.1103/PhysRevLett.132.233403

Introduction.—The Josephson effect describes supercur-
rents flowing between two reservoirs with a weak tunneling
link (e.g., flow through a thin insulating barrier) [1,2].
Josephson effects have experimentally been observed in
manyplatforms, ranging from solid state superconductors [3]
to superfluid helium [4–8], exciton polaritons [9], and
ultracold atomic gases [10–26]. Important applications of
Josephson effects include superconducting quantum inter-
ference devices [27,28], superconducting qubits [29–32],
and precision measurements [27].
In recent years, momentum states of ultracold bosons

have emerged as a new synthetic degree of freedom for
quantum matter and simulation. In this context, the
Josephson effect in momentum space has been theoretically
predicted for Bose-Einstein condensates (BECs) located at
two momentum states with a weak coupling induced by
momentum kicks of laser beams [33]. Such momentum
space tunneling has been implemented in experiments using
a Bragg transition for a single-component BEC [34,35]
or an optical lattice in a spin-orbit coupled BEC [36].
Despite significant experimental progress in the observa-
tion of various forms of quantum dynamics in momentum
space lattices (e.g., macroscopic quantum self-trapping or
phase-driven nonlinear dynamics [34,35]), the momentum

space Josephson oscillation has not been observed in
experiments due to the challenge of realizing a coherent
ground state BEC occupying two momentum states with a
long lifetime.
In this Letter, we show experimental evidence for the

momentum space Josephson effect in a spin-orbit coupled
BEC [37–39], whose double-well band dispersion pos-
sesses two band minima at different momentum states, in
analogy to real space Josephson junctions. The incorpo-
ration of a weak optical lattice induces a coupling between
BECs located at two band minima, leading to the exper-
imental observation of the long-lived (> 100 ms) super-
fluid stripe ground state [36]. Starting from the stripe
ground state, a supercurrent through the momentum space
junction is induced by a sudden quench of the Raman
detuning between two band minima, similar to applying a
voltage in a superconducting Josephson junction. The
detuning quench displaces the initial stripe state from
the ground state for the final detuning parameter, leading
to periodic spin-momentum oscillations observed in experi-
ments that are Josephson oscillations.
We observe two types of Josephson oscillations:

(i) Josephson plasma oscillations, which are characterized
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by a small change in population and small phase
differences between the two BECs, excited through a weak
change of the system ground state; (ii) regular Josephson
oscillations with a large population oscillation and a
continuous increase (or decrease) of the phase difference,
excited through a large change of the ground state.
Our experimental results show good agreement with a
theoretical model based on a two-mode approximation and
numerical simulation based on the nonlinear Gross-
Pitaevskii (GP) equation. The observed constant plateau
of the plasma oscillation frequency in the weak lattice
region showcases the important role of nonlinear inter-
actions. Furthermore, we find that the observed Josephson
plasma oscillation frequency corresponds to the zero
quasimomentum gap of the Bogoliubov excitations in
the superfluid stripe phase, which, in our system, represents
the mass of a pseudo-Goldstone mode [40] emerging from
explicit symmetry breaking (here, the weak optical lattice
breaks spatial translational symmetry). Pseudo-Goldstone
modes, first proposed in particle physics [41], have been a
long-sought phenomenon in many different fields, and our
Letter provides one direct experimental evidence for
observing such an exotic mode.
Description of the system.—The experimental setup for

the spin-orbit coupled BEC [42] has been described in our
previous work [36]. Briefly, a 87Rb BEC is confined in a
cigar-shaped crossed optical dipole trap [Fig. 1(a)]. An
external magnetic field applied along the x axis lifts the
degeneracy among the three Zeeman states (mF) in the
F ¼ 1 hyperfine manifold. A pair of 789 nm Raman beams
intersecting at approximately 45° angles with the x axis
couples the j↑i≡ j1;−1i and j↓i≡ j1; 0i Zeeman split
states [Fig. 1(b)], which generates spin-orbit coupling
(SOC) in the x direction. The Raman coupling provides
an effective momentum offset of 2ℏkR between these two
pseudospin states. Because of the quadratic Zeeman split-
ting, the j1;þ1i state is sufficiently decoupled and does not
play a significant role [42]. Additionally, two 1064 nm laser
beams copropagating with the Raman beams create a weak
stationary optical lattice VLðxÞ ¼ 2ℏΩLsin2ðkLxÞ along the
x direction, which provides a 2ℏkL momentum kick while
keeping the spin unchanged. Additional experimental
details involving the atomic states and energy scales are
provided in [42].
The dynamics of the system can be described by the one-

dimensional GP equation

i∂tψ ¼ ½H0 þ gjψðx; tÞj2�ψ ; ð1Þ

where ψ ¼ ðψ↑;ψ↓ÞT is the two-component spinor wave
function with the normalization to the total number of
atoms N ¼ R jψ j2dx, g is the density interaction strength,
andH0 ¼ HSOC þ VLðxÞ is the single-particle Hamiltonian
with

HSOC ¼ ði∂x þ σzÞ2 −
δ

2
σz þ

ΩR

2
σx: ð2Þ

Here, ΩR is the Raman coupling strength, δ is the detuning
of the two-photon Raman transition, and ℏkR and ER ¼
ðℏ2k2R=2mÞ ¼ h × 1.96 kHz are the momentum and energy
units, respectively.
Figure 1(c) shows the momentum space double-well

band dispersion of HSOC. In the experiment, the period of
the optical lattice is set such that 2ℏkL equals the separation
between the two spin-orbit band minima [36]. The optical
lattice leads to the hopping between the BECs at the two
band minima, in analogy to the tunneling between two
superconductors separated by an insulating barrier in a
Josephson junction. While the optical lattice produces
multiple off-resonance couplings in addition, the momen-
tum space Josephson junction can be more intuitively
understood using a two-mode approximation, i.e., consid-
ering only two BEC modes at two band minima with
ψ ¼ ðϕlχle−ikLx þ ϕrχreikLxÞeikbx, where χj are the spinor
wave function at two band minima, ϕjðtÞ are the mode
population coefficients, and kb is the bias momentum
induced by the detuning δ. This model also neglects modes
in the excited band. Denoting ϕj ¼ ffiffiffiffiffinjp eiθj , the GP
equation can be projected as

∂τz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
sin θ;

∂τθ ¼ Λzþ zffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p cos θ − ΔE ð3Þ

(a) (b)

(c) (d)

FIG. 1. Illustration of the experimental setup and the momen-
tum space Josephson effect. (a) A crossed optical dipole trap (red)
with two Raman laser beams (green) collinear with two optical
lattice beams (red) intersecting at the BEC position in the center.
(b) Two-photon Raman transitions within the F ¼ 1 hyperfine
manifold of 87Rb. (c) Band structure of HSOC for ℏΩR ¼ 2.7ER
and δ ¼ 2π × 500 Hz. (d) Phase space diagram demonstrating
Josephson dynamics for ℏΩL ¼ 0.5ER and gn ¼ 0.25ER.
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in terms of the phase difference θ ¼ θl − θr and relative
population difference z ¼ ðnr − nlÞ=n, where n ¼ nl þ nr
is taken as a constant by neglecting populations in other
modes. τ ¼ 2Kt, where K ¼ ðΩL=2Þχ�l χr describes the
hopping between the two modes (K is chosen to be real
without loss of generality). Λ ¼ −Un=ð2KÞ, where U ¼
gjχ�l χrj2 represents the interaction strength of the BECs
with two modes. ΔE ¼ ðEl − ErÞ=ð2KÞ, with Ej ¼R
dxχ�jH0χj þ ðgþ UÞn, is the energy difference between

the two modes. Equation (3) describes a Bose Josephson
junction governed by the effective Hamiltonian Heff ¼
ðΛ=2Þz2 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cos θ − ΔEz [15].

A typical phase space diagram is shown in Fig. 1(d) to
illustrate the momentum space Josephson dynamics. The
red fixed point (z0, θ0) corresponds to the equilibrium
ground state that can be obtained by finding the minima of
Heff . When the BEC is initially prepared away from
(z0, θ0), (z, θ) oscillates following periodic orbits in phase
space, corresponding to Josephson oscillation between
BECs at two band minima. There are two different types
of oscillating behavior: (i) When the BEC is initially
prepared not far from the fixed point, θ changes only
within a small range for the closed periodic orbits,
representing Josephson plasma oscillation shown as the
orange dashed line; (ii) when the BEC is far from the fixed
point, θ increases (or decreases) continuously through
½0; 2π�, corresponding to regular Josephson oscillation
shown as the orange solid line [15].
Observation of Josephson oscillation.—In our experi-

ments, we observe momentum space Josephson dynamics
after a sudden quench of the Raman detuning from an initial
value δi to a final value δf, in analogy to the voltage-driven
ac Josephson effect. After the quench, the initially prepared
superstripe state at δi is no longer the ground state at δf. The
BEC will then evolve under the two-mode approximation
along a periodic orbit around the fixed point for δf,
demonstrating the Josephson oscillation. The starting point
of the experiment is the preparation of a superfluid stripe
state through Raman and optical lattice dressing of the
BEC [36]. SOC is generated by adiabatically ramping
on the Raman beams such that the Raman coupling
strength ℏΩR increases from 0 to 2.7ER in 50 ms. During
this time, the Raman coupling is far detuned [typically,
δ ¼ 2π × ð5.5 kHz� 100 Hz)] from the resonance. The
optical lattice beams are then adiabatically applied, increas-
ing ℏΩL from 0 to the desired strength in 50 ms. Following
that, δ is linearly decreased to a desired value δi in 50 ms.
This adiabatic process prepares the BEC in the superfluid
stripe ground state for δi.
In the case of a Josephson plasma oscillation, ðz; θÞ

oscillates along a small closed orbit around ðz0; θ0Þ in
phase space. We choose a fixed δf ¼ 2π × 500 Hz and
different δi ¼ 2π × ð500 HzþQÞ for different ℏΩL ∈
f0.2; 0.4;…; 1.4gER. Proper reasoning for choosing a

finite value of the final Raman detuning (δf) can be found
in [42]. Suitable values of the quench frequency Q are
chosen such that spin oscillations are still observable, but
the initial ðzi; θiÞ do not deviate significantly from ðz0; θ0Þ,
leading to plasma oscillation. After the sudden quench
δi → δf, we let the BEC evolve for a time t in the presence
of the Raman and optical lattice couplings. Subsequently,
the Raman and lattice beams are switched off; the BEC is
released from the crossed optical dipole trap, and a 17.5-
ms-long time of flight (TOF), along with a briefly applied
Stern-Gerlach field, resolves the BEC into different bare
spin-momentum eigenstates. In the absorption images of
the BEC, the two spin states are separated vertically, and,
for each spin state, the momentum components are resolved
horizontally [36] (Fig. 2). We measure the total spin
polarization hσzi ¼ ðN↑ − N↓Þ=ðN↑ þ N↓Þ at each time
t, where N↑ and N↓ are the total number of atoms in spin
j↑i and j↓i, respectively. Notice that hσzi ¼

P
jðnj=nÞ

hχjjσzjχji, which can be written as hσzi ¼ aþ bz under
the two-mode approximation, with 2a ¼ hχljσzjχli þ
hχrjσzjχri and 2b ¼ hχrjσzjχri − hχljσzjχli. Therefore,
the spin polarization oscillates with the same frequency
as the Josephson oscillation. For the parameters in Fig. 3,
we have a ¼ 0.0493 and b ¼ 0.732 [42].
Figures 3(a)–3(c) show the oscillations of hσzi during the

postquench time t, measured for three different lattice
coupling strengths. The corresponding quench, optical
lattice coupling strength, and the spin-polarization oscil-
lation frequency ðQ;ℏΩL;ΔÞ for the three cases are
(a) [1.3 kHz, 0.2ER, ð0.287� 0.007ÞER], (b) [200 Hz,
1.0ER, ð0.530� 0.016ÞER], and (c) [400 Hz, 1.4ER,
ð0.734� 0.039ÞER], where the errors in oscillation
frequencies represent the standard errors in Δ obtained
from the sinusoidal fitting of the corresponding dataset.
The experimentally observed time evolution of hσzi agrees
reasonably well with the numerical results from directly
simulating the quench dynamics using the GP Eq. (1) [42].
In Fig. 3(d), we show experimentally measured Josephson
plasma oscillation frequencies with respect to ℏΩL and
their comparison with several theoretical models and
numerical calculations for the interaction strength
gn ¼ 0.25ER. The constant Josephson plasma frequency
for small values of ℏΩL indicates a nonlinear interaction in
the system, as evidenced by the comparison to the

(a) (b) (c)

FIG. 2. Spin-momentum oscillation in a double-well SOC
BEC. (a)–(c) Absorption images for ℏΩL ¼ 0.4ER after an
evolution time of t ¼ 0.15, 1.05, and 1.65 ms.
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noninteracting case [Fig. 3(e)]. Additionally, Fig. 3(e) shows
the dependence of the plasma oscillation frequencies (Δ)
on the Raman detuning (δ), which is an experimental
parameter [42]. The different theoreticalmodels and numeri-
cal calculations are described below. (i) Numerical simu-
lations ofGPEq. (1), which agreewellwith the experimental
data for all ℏΩL. (ii) Numerical simulations of the effective
dynamics (3) from the two-mode approximation. In such
detuning quench-driven dynamics, we have θi ¼ 0, as
seen from the fixed point position in the phase space
diagram. Starting from the initial zi for δi, we numerically
integrate Eq. (3) and determine the oscillation frequency.
(iii) Perturbation analysis of the two-mode dynamics. For
the case of a small quench, we can treat the dynamics around
the fixed point ðz0; θ0 ¼ 0Þ for δf as a perturbation, i.e.,
z ¼ z0 þ δz, θ ¼ δθ, yielding

∂τδz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z20

q
δθ;

∂τδθ ¼ �
Λþ ð1 − z20Þ−3=2

�
δz; ð4Þ

with initial conditions δzð0Þ ¼ zi − z0 and δθð0Þ ¼
θi − θ0 ¼ 0. Therefore, the oscillation frequency Δ ¼
2K½

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z20

p
Λþ ð1 − z20Þ−1�1=2. Note that the initial imbal-

ance z0 also depends on the lattice strength, and, as
ℏΩL → 0, one has z0 → −1 and K → 0, leading to a finite
Δ. A plot of z0 with respect to ℏΩL is shown in [42]. The
analytic expression agrees well with the numerical results in
(ii) but deviates from the experimental results and GP
simulation significantly in the large ℏΩL regime, where
higher-energy modes in the SOC band are coupled by the
optical lattice, leading to the failure of the two-mode
approximation. (iv) The zero quasimomentum gap of the
Bogoliubov excitation spectrum. The sudden quench of the
detuning leads to collective Bogoliubov quasiparticle exci-
tations of the BEC located at quasimomentum q ¼ 0 due to
the lack of momentum transfer. When the quench is weak,
only the lowest quasiparticle band is excited. Therefore, the
plasma oscillation frequency can be determined from the
lowest Bogoliubov band gap. Details of this analysis and its
connection with the pseudo-Goldstone mode are discussed
in the next section.
While the phase varies only within a small range for a

Josephson plasma oscillation, it can continuously vary
through ½0; 2π� for a regular Josephson oscillation. We
access this regime by choosing a larger quench δi ¼ 2π ×
100 Hz and δf ¼ −2π × 500 Hz with ℏΩL ¼ 0.2ER so that
the initial zi is far from the fixed point z0. Figure 4(a) shows
the spin-polarization oscillation as a function of the post-
quench time t, demonstrating a large amplitude of oscil-
lation with a change of sign in hσzi and an oscillation
frequency of ð0.275� 0.011ÞER. In Fig. 4(b), we show a

(a)

(b)

(c)

(d)

(e)

FIG. 3. Josephson plasma oscillation after Raman detuning
quench. (a)–(c) Oscillation of the spin polarization for three
different lattice coupling strengths (see the main text for param-
eters). The solid black (light blue) curves represent the sinusoidal
fitting of the experimental data (GP simulation results), while the
symbols with error bars are the experimental data points.
(d) Comparison between the observed Δ (symbols with error
bars) and predicted Δ obtained from analyzing the Bogoliubov
spectrum (solid green line), quench dynamics using the GP
equation (thick solid green line), perturbation analysis of the two-
mode Josephson model (densely dotted magenta line), and the
quench dynamics of Josephson model (dash-dotted red line).
(e) Comparison of the Bogoliubov spectrum analysis for
gn ¼ 0.25ER and final Raman detuning δf ¼ 2π × 500 (green
solid line), 400 (green dashed line), and 300 Hz (green densely
dash-dot-dotted line) with the experimental data points for
δf ¼ 2π × 500 Hz. The solid orange line represents the calcu-
lated variation of Δ with ℏΩL for δf ¼ 2π × 500 Hz and gn ¼ 0

(noninteracting case). The distinct markers represent the oscil-
lation frequency experimentally obtained for the corresponding
ℏΩL from the time-dependent hσzi plots in (a)–(c) and similar
additional plots in [42]. The star markers at ℏΩL ¼ 0 in (d)
and (e) are obtained from Bragg spectroscopic measurements on
a SOC BEC [42].

(a) (b)

FIG. 4. Regular Josephson oscillation after Raman detuning
quench. (a) Oscillation of the spin polarization. The solid black
(light blue) curve represents a sinusoidal fit of the experimental
data (GP simulation results). The dark blue curve represents the
GP simulation results for a Raman detuning quench of δi ¼
2π × 30 Hz to δf ¼ −2π × 570 Hz. (b) z − θ phase space dia-
gram for ℏΩL ¼ 0.2ER and gn ¼ 0.25ER along with the exper-
imental data. The points shown are obtained by calculating θ
theoretically for the experimentally measured z values according
to hσzi ¼ aþ bz [42]. Contour lines correspond to orbits with
different energy.
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contour plot for the variation of the phase θ with z. The data
points in Fig. 4(b) are obtained by calculating θ theoreti-
cally for the experimentally measured z values according to
hσzi ¼ aþ bz [42]. The error in z represents the standard
error calculated from the standard deviation in hσzi.
Figure 4(a) shows the regular Josephson oscillation in
momentum space, with a suboptimal agreement between
the theory and experiment. The dark blue curve shows the
numerical GP simulation results for a Raman detuning (δ)
shift of 70 Hz, which is within the range of �100 Hz
uncertainty and demonstrates a better agreement.
Connection with Bogoliubov spectrum and pseudo-

Goldstone mode.—As discussed in (iv), a small sudden
Raman detuning quench generates collective excitations of
the BEC from the ground band to the first excited band. The
modified band structure with the incorporation of the
optical lattice and mean field interaction is shown in
Fig. 5(a). Without the optical lattice and in the absence
of a Raman detuning δ, the system has translational
symmetry, and the interaction leads to two gapless
Goldstone modes for the stripe phase [48]. The weak
optical lattice breaks the translational symmetry explicitly,
causing one Goldstone mode to become gapped at zero
quasimomentum q ¼ 0. This mode is then referred to as a
pseudo-Goldstone mode, which is highly relevant in the
context of particle and condensed matter physics [40]. The
dependence of this pseudo-Goldstone gap on the mean-
field interaction is shown in Fig. 5(b). The comparison
between the experimentally measured Josephson plasma
oscillation frequency and the Bogoliubov excitation gap is
shown in Figs. 3(d) and 3(e). We see that the Bogoliubov
gap agrees well with the experimental measurement as
well as the GP simulation. Clearly, mean-field interactions
play an important role in the zero quasimomentum band
gap [42]. As expected, the Bogoliubov gaps agree with
those obtained from two-mode Josephson dynamics in
shallow lattice regimes. The gap deviates significantly in
deep lattice regimes due to the coupling with higher-
momentum modes.
The connection between the Josephson oscillation fre-

quency and the pseudo-Goldstone gap can be understood as
follows. Consider a small deviation of the wave function
away from the ground state

ψ ¼ ½ðϕ0
l þ δϕlÞχle−ikLx þ ðϕ0

r þ δϕrÞχreikLx�eikbx; ð5Þ

that is, Bogoliubov excitations with the two-mode approxi-
mation. δϕl and δϕr can be obtained by solving their
corresponding Bogoliubov equation [42,49]. Comparing
with Eq. (4), we find δz ¼ −2

P
j Re½ð−1Þjδϕ�

jϕ
0
j � and

δθ ¼ −
P

j Im½ð−1Þjδϕj=ϕ0
j �. By examining the two low-

est modes at q ¼ 0, one finds that the gapped (gapless) one
gives rise to nonvanishing (vanishing) δz and δθ. Therefore,
the Josephson plasma oscillation frequency is just the zero
quasimomentum Bogoliubov roton gap.
The symmetry-breaking origin of the pseudo-Goldstone

mode can also be intuitively understood in the effective
two-mode dynamics. Without the coupling K (induced by
the optical lattice), Eq. (3) has a Usð1Þ ×Uað1Þ symmetry,
where Usð1Þ corresponds to the simultaneous rotation of
two modes and Uað1Þ represents equal but opposite phase
rotation of two modes. The spontaneous symmetry break-
ing leads to two uncoupled gapless modes (i.e., the
Goldstone modes). The introduction of a coupling K ≠ 0
breaks the symmetry Uað1Þ and reduces the system
symmetry to Usð1Þ. ThisUsð1Þ symmetry is spontaneously
broken, and the attendant Goldstone boson is absorbed and
removed from the spectra via the Higgs mechanism [43].
Only the second Goldstone boson corresponding to sym-
metry Uað1Þ appears. The parameter K is the soft breaking
parameter of the symmetry Uað1Þ, and the corresponding
excitations become pseudo-Goldstone bosons.
Conclusion and discussion.—Our Letter offers a new

experimental platform for designing exotic quantum matter
and engineering quantum simulators utilizing momentum
states as a synthetic degree of freedom. For instance,
applying Bragg scattering to the superfluid stripe ground
state, one can measure the Bogoliubov excitation spectrum
at finite quasimomentum, leading to the full characteriza-
tion of the long-sought pseudo-Goldstone mode. Because
of the spin-momentum coupling, the density interaction in
the superfluid stripe phase could induce strong spin
squeezing, which may be realized in our platform and
used for quantum sensing. Applying small but periodic
modulations of the Raman detuning can lead to the
observation of a Shapiro resonance in the momentum
space Josephson junction. These novel quantum phenom-
ena enabled by the momentum space Josephson junction
could potentially be useful for quantum technologies.
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