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Neutron stars contain neutron-rich matter with around 5% protons at nuclear saturation density. In this
Letter, we consider equilibrium between bulk phases of matter based on asymmetric nuclear matter
calculations using chiral effective field theory interactions rather than, as has been done in the past, by
interpolation between the properties of symmetric nuclear matter and pure neutron matter. Neutron drip
(coexistence of nuclear matter with pure neutrons) is well established, but from earlier work it is unclear
whether proton drip (equilibrium between two phases, both of which contain protons and neutrons) is
possible. We find that proton drip is a robust prediction of any physically reasonable equation of state, but
that it occurs over a limited region of densities and proton fractions. An analytical model based on
expanding the energy in powers of the proton density, rather than the neutron excess, is able to account for
these features of the phase diagram.
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Introduction.—In neutron stars, matter is extremely
neutron rich. Around nuclear saturation density,
n0 ¼ 0.16 fm−3, in the inner crust and outer core, it consists
primarily of neutrons, protons, and electrons, with typical
proton fractions ∼5% [1]. A detailed understanding of the
equation of state (EOS) and of the phases of matter under
such conditions is crucial for determining the properties
of the neutron star crust, among them whether or not the
so-called pasta phases with stringlike and platelike nuclei
can exist near the inner boundary of the crust.
The typical approach to calculating the properties of such

matter has been to make simple interpolations between
those of symmetric nuclear matter and those of pure
neutron matter. However, studies of dilute Fermi gases
show that the dependence of the energy density on proton
density np for small proton concentrations is more com-

plicated with, e.g., terms varying as n7=3p ln np [2]. Recently,
chiral effective field theory (EFT) calculations of asym-
metric nuclear matter with low proton concentrations
have been performed [3], which avoid such simplistic

interpolations. In this Letter, we combine these with
analytical considerations to determine the phase diagram
of low-density neutron star matter.
Indeed, one point on which there has been disagreement

over the years is the question of whether or not two bulk
phases, both of which contain protons as well as neutrons,
can coexist, so-called proton drip. In Ref. [4] no evidence
for proton drip was found, while in other works it did
occur [5,6]. We will show that proton drip is a universal
feature of any realistic EOS, but that it occurs over limited
ranges of densities and proton fractions.
Chiral EFT calculations.—We investigate the phase

structure of neutron-rich matter at zero temperature based
on our microscopic calculations of asymmetric nuclear
matter from chiral EFT interactions [3]. Using many-body
perturbation theory, we calculate the energy density
ε ¼ E=V ¼ hHi=V of the ground state of spatially uniform
matter, as a function of the neutron density nn and the
proton density np. The Hamiltonian H ¼ T þ VNN þ V3N

includes the kinetic energy T, two-nucleon (NN) inter-
actions VNN, and three-nucleon (3N) interactions V3N. We
include all chiral EFT interactions up to next-to-next-to-
next-to-leading order (N3LO) with the NN potentials from
Ref. [7] and 3N interactions fit to the 3H binding energy and
the empirical saturation region in Ref. [8]. Our main results
are based on N3LO NN and 3N interactions with a cutoff
Λ ¼ 450 MeV, but we also consider results at N2LO to test
the sensitivity to the chiral EFT truncation.
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The nuclear matter calculations include contributions to
the energy up to third order in many-body perturbation
theory around a Hartree-Fock reference state (for details see
Ref. [3]). In addition, we use a Gaussian process emulator
for the energy [3]. The Gaussian process allows the
evaluation of the EOS and derivatives of it for arbitrary
conditions within the calculated range without multidimen-
sional interpolation. The pressure is then given by P ¼
n2∂ðε=nÞ=∂njx, where n ¼ nn þ np is the baryon density
and x ¼ np=n the proton fraction, and the neutron
and proton chemical potentials by μn ¼ ∂ε=∂nnjnp and
μp ¼ ∂ε=∂npjnn , respectively.
Coexistence.—Since Coulomb and surface energies are

generally small compared with bulk energies, we focus on
equilibrium between bulk phases. For coexistence of two

phases, denoted by 1 and 2 with nucleon densities nð1Þn ; nð1Þp

and nð2Þn ; nð2Þp , the pressures and chemical potentials must
satisfy the conditions

Pð1Þ ¼ Pð2Þ; ð1Þ

μð1Þn ≥ μð2Þn ; ð2Þ

and μð1Þp ≥ μð2Þp : ð3Þ

Here, we take phase 2 to be the higher-density phase that

contains both neutrons and protons, so that Pð2Þ, μð2Þn , and

μð2Þp depend on both neutron and proton densities. We first
consider the case in which phase 1 contains only neutrons
(neutron drip), and then Eq. (2) is an equality. For nuclear
matter to be in equilibrium with a pure neutron phase [with

nð1Þp ¼ 0], in addition to equal neutron chemical potentials,

it is necessary that μð1Þp > μð2Þp ; otherwise it is energetically
favorable for protons to start populating the initially pure
neutron phase until Eq. (3) becomes an equality. In the case
that the proton chemical potentials are also equal, the

proton density in phase 1 is finite, nð1Þp > 0, and phase 1
consists of dripped protons in addition to dripped neutrons.
The solutions to Eqs. (1)–(3) for the N3LO asymmetric

matter EOS are shown in Fig. 1 as a function of the neutron
chemical potential. The densities for the neutron drip phase,

nð1Þn , nð2Þn , and nð2Þp , are shown as blue lines, while the

densities for proton drip [with additional nð1Þp > 0] are
shown in red when coexistence is possible. The lower panel
shows the proton chemical potentials for the two phases.
For μn ≳ 14.47 MeV the proton chemical potential in

neutron matter μð1Þp ¼ μpðμn; np ¼ 0Þ is smaller than in
nuclear matter,

μð1Þp < μð2Þp ¼ μp
�
μn; n

ð2Þ
p

�
; ð4Þ

so that it is energetically favored for protons to move from
nuclear matter to neutron matter (proton drip). In this
region, low-density neutron and proton matter coexists
with high-density nuclear matter. With increasing neutron
chemical potential (increasing total density), the low- and
high-density solutions merge in the top panel of Fig. 1. This
is where the inhomogeneous proton drip phase ends and
matter becomes uniform.
Phase diagram.—The coexistence of dripped neutrons

and protons with nuclear matter occurs along lines in the
ðnn; npÞ plane with

nn ¼ nð1Þn ð1 − uÞ þ nð2Þn u; ð5Þ

np ¼ nð1Þp ð1 − uÞ þ nð2Þp u; ð6Þ

where u∈ ½0; 1� is the volume fraction [and nð1Þp ¼ 0 for
neutron drip]. The corresponding phase diagram in the
ðx; nÞ plane is shown in Fig. 2. As expected, neutron drip
(enclosed by the blue line) is possible for a large region in

FIG. 1. Upper panel: Coexistence of neutron matter with
nuclear matter (neutron drip, blue lines) and neutron and proton
matter with nuclear matter (proton drip, red lines) as a function
of the neutron chemical potential. The neutron and proton
densities in the two phases are shown as dashed and solid lines,
respectively. Lower panel: Proton chemical potentials for coex-
istence of neutron matter with nuclear matter. The vertical dotted
line shows the neutron chemical potential where both proton
chemical potentials are equal, so that proton drip occurs for
higher neutron chemical potentials. All results are for the N3LO
asymmetric matter EOS.
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proton fraction and density. The end of the neutron drip
region at x ≈ 0.37 is reached for μn ¼ 0. For larger proton
fractions and densities below the zero pressure, P ¼ 0,
dotted line, nuclear matter is self-bound but does not fill the
entire volume. In addition to these established features
of the phase diagram, we find a region at lower proton
concentration where proton drip is possible. This is shown
by the red-shaded region in Fig. 2. We have also checked
that the spinodal line, which marks the boundary of the
region where matter is unstable to density fluctuations, is
contained within the neutron and proton drip regions.
In order to explore whether proton drip is relevant to

neutron stars, we must include the effect of electrons, which
we shall treat as a uniform background of negative charge.
The condition for β equilibrium in the homogeneous,
electrically neutral phase is μnðxðnÞ; nÞ ¼ μpðxðnÞ; nÞþ
μeðxðnÞ; nÞ. The density of electrons ne is equal to np
and their chemical potential is given by μe ≈ ð3π2npÞ1=3
since they are ultrarelativistic. This is shown by the green
dot-dashed line in Fig. 2. As the density decreases, the β
equilibrium line enters the proton drip phase, so that proton
drip is relevant for neutron stars. We also show in Fig. 2
the composition in β equilibrium in the proton drip and
neutron drip phases. Finally, we have checked that the
neutron and proton drip phases have the lowest energy for a
given density n.
Robustness.—Next we explore how the phase diagram

depends on the EOS. In Fig. 3 we enlarge the proton drip

region and compare the region for the N3LO asymmetric
matter EOS to the EOS calculated at lower order N2LO.
The proton drip region at N2LO extends to larger proton
fractions and densities but otherwise is very similar to that
at N3LO. This also indicates that the EFT expansion works
well, as it is to be expected at these densities [3,8].
We also compare the results of the EFT calculations

with those using a phenomenological parametrization of
the energy per particle ϵðn; xÞ from Ref. [9] [see Eq. (2)
therein], which includes the kinetic energy plus interaction
terms quadratic in the neutron excess ð1 − 2xÞ. The four
parameters of ϵðn; xÞ are fit to nuclear saturation,
ϵðn0; 1=2Þ ¼ −16 MeV and Pðn0; 1=2Þ ¼ 0, and by speci-
fying the symmetry energy Sv and its density derivative L at
saturation density. By varying Sv and L we can change the
properties of neutron-rich matter, and study whether the
proton drip region exists for reasonable ranges of Sv and L.
This is shown in Fig. 3 for the symmetry energy Sv ¼ 30
and 33MeVand L ¼ 40, 60, and 80MeV, which represents
a reasonable range based on ab initio calculations and
nuclear experiments (see, e.g., Refs. [10–12]). Figure 3
shows that the existence of proton drip is robust, but the
exact location and extent of the proton drip phase depend
on Sv and L.
Analytical considerations.—We now present a simple

model that captures the essential features of the phase
diagram. For low proton densities, the energy density of
nuclear matter may be written in the form

εðnn; npÞ≈ εð0ÞðnnÞ þ μð0Þp np þAn5=3p þ 1

2
Bð0Þn2p; ð7Þ

FIG. 2. Phase diagram as a function of the total density n and
the proton fraction x at N3LO. The neutron drip and proton drip
phases are given by the regions encompassed by the blue and red
lines. At high densities, matter is in the uniform phase, and for
proton fractions x ≳ 0.37, nuclear matter is self-bound (for
densities below the zero pressure, P ¼ 0, dotted line) but does
not fill the entire volume (nuclear matter þ vacuum). In addition,
we show the composition of matter in β equilibrium (green dot-
dashed line in the uniform phase, and green dashed and dotted
lines in the neutron and proton drip phases, respectively).

FIG. 3. Comparison of the proton drip region at N3LO (as
shown in Fig. 2) to results at lower order, N2LO (light red region
encompassed by the dash-dotted line), as well as from a
phenomenological parametrization of the energy [9] using
reasonable ranges of the symmetry energy Sv (solid and dashed
lines) and the L parameter (different colors).
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where εð0ÞðnnÞ is the energy density of pure neutron matter,

and μð0Þp ðnnÞ is the proton chemical potential in pure

neutron matter. The n5=3p term comes from the kinetic
energy of the protons with A ¼ 3ð3π2Þ2=3=ð10m�

pÞ and
proton effective mass m�

pðnnÞ. The Bð0Þ term is the proton-
proton interaction energy, and the superscripts ð0Þ indicate
that the quantities are for pure neutron matter. Inspired by
the work of Ref. [13] on dilute solutions of 3He in
superfluid 4He, we use the neutron chemical potential,
rather than the neutron density, as an independent variable,
in addition to np. In this way the condition for equality
of the neutron chemical potentials of the two phases is
satisfied automatically, thereby reducing by one the number
of equations to be solved to satisfy equilibrium. To first
order in np the neutron chemical potential is given by

μnðnn; npÞ ¼
∂ε

∂nn
≈ μð0Þn ðnnÞ þ

∂μð0Þp

∂nn
np: ð8Þ

For fixed μn, on expanding μð0Þn to first order in nn − nn;0,
where nn;0 is the density of pure neutron matter for which

μð0Þn ðnn;0Þ ¼ μn, one finds

0 ¼ ∂μð0Þn

∂nn
ðnn − nn;0Þ þ

∂μð0Þp

∂nn
np; ð9Þ

where the partial derivatives are to be evaluated for neutron
density nn;0. Thus we have

nn − nn;0 ≈ −
∂μð0Þp =∂nn

∂μð0Þn =∂nn
np: ð10Þ

Increments in the pressure are given by dP ¼ nndμnþ
npdμp. At fixed μn, dP ¼ npdμp, and therefore

dP ¼ npd

�
μð0Þp ðnnÞ þ

5

3
AðnnÞn2=3p þ Bð0ÞðnnÞnp

�
: ð11Þ

Expanding about the neutron density nn;0, inserting Eq. (10)
into Eq. (11), and integrating with respect to np, one finds
for fixed μn and to second order in np that

P ¼ Pð0Þ þ 2

3
AðnnÞn5=3p þ 1

2
Bn2p; ð12Þ

where Pð0Þ is the pressure of pure neutrons with chemical
potential μn and

B ¼ Bð0Þ −

�
∂μð0Þp =∂nn

�
2

∂μð0Þn =∂nn
ð13Þ

is an effective proton-proton interaction when the neutron
chemical potential is held constant, thereby allowing for the
adjustment in the proton density due to the presence of

protons. In nuclear physics terminology, Bð0Þ corresponds to
the “direct” interaction and the second term to the “induced”
interaction due to exchange of density fluctuations [14]. The
discussion here parallels that for the interaction between two
3He atoms in superfluid liquid 4He [13].
With the pressure given by the form (12), it is impossible

to satisfy the conditions for phase equilibrium: if B is
positive, the pressure increases monotonically with np, so
the condition for pressure equilibrium cannot be satisfied,
while if B is negative, there are two values of np for which
the pressures are equal, but the state with higher np is
unstable, in that ∂P=∂npjμn is negative and the system will
collapse to high proton densities. To satisfy the conditions
for phase equilibrium, it is necessary to have an additional
positive contribution to the pressure that increases with np
faster than n2p. For definiteness, we add a contribution 2Cn3p
to the pressure (corresponding to a term Cn3p in the energy
density), although the qualitative form of the phase diagram
does not depend on the choice of the power. The first term
in Eq. (12) plays no role in the conditions for coexistence
of two phases, and we shall drop it. On introducing
dimensionless variables, we may write the pressure due
to the protons as

Ppðy; νÞ ¼
2

3
Añ5=3ðy5=3 − 2νy2 þ y3Þ; ð14Þ

where y ¼ np=ñ with ñ ¼ ðA=3CÞ3=4, and ν ¼ −33=4B=
ð8A3=4C1=4Þ. The proton chemical potential μ̃p relative to

μð0Þp ðnnÞ is given from Eq. (11) by

μ̃pðy; νÞ ¼
2

3
Añ2=3

�
5

2
y2=3 − 4νyþ 3

2
y2
�
: ð15Þ

Thus, a single dimensionless parameter ν governs the
phase diagram.
Let us consider how the proton density varies with ν

starting from large values. The condition for equilibrium of
nuclear matter with pure neutrons is that the pressure due to
the protons is zero, or y5=3 − 2νy2 þ y3 ¼ 0. The lowest
value of ν for which this equation has a solution is
ν ¼ 2=33=4 ≈ 0.8774. However, for ν ¼ 1 (when y ¼ 1)
the proton chemical potential in nuclear matter becomes

equal to that in the pure neutron phase μð0Þp ðnnÞ (or μ̃p ¼ 0),
and for lower values of ν the two phases in equilibrium both
contain protons. The proton densities in the two phases,
ñy1 and ñy2, are given from the equality of pressures and
proton chemical potentials,

Ppðy1; νÞ ¼ Ppðy2; νÞ and μ̃pðy1; νÞ ¼ μ̃pðy2; νÞ: ð16Þ

The lowest value of ν for which a real solution is possible is
53=4=35=4 ≈ 0.8469 (this is also the same for which the
spinodal instability condition ∂Pp=∂npjμn ¼ 0 has a
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solution). The results of our calculations are shown
graphically in Fig. 4. In summary, stable equilibrium is
possible between nuclear matter and pure neutron matter
for ν > 1 and between two phases both of which have non-
zero proton concentrations for 53=4=35=4 < ν < 1. For
ν < 53=4=35=4 matter consists of a single phase. We have
checked that fits of A, B, and C to our asymmetric matter
calculations at densities around n0=2 lie within the range
where proton drip occurs in the analytical model.
Therefore, we conclude that our simple model also exhibits
a stable proton drip phase.
Discussion and conclusions.—In this Letter we have

used state-of-the-art chiral EFT calculations of asymmetric
nuclear matter to explore the phase diagram for neutron-
rich conditions at zero temperature, relevant for cold
neutron stars. This automatically takes into account the
nonanalytical features of the EOS at low proton concen-
trations, unlike essentially all earlier works, which were
based on a simple interpolation between the properties of
symmetric matter and pure neutron matter.
A striking finding of our work is the occurrence of proton

drip, the coexistence of two phases of bulk nuclear matter
with different nonzero concentrations of protons. We have
shown that this is a general feature of a variety of EOSs,
including ones based on interpolation between symmetric
nuclear matter and pure neutron matter. At nonzero temper-
ature, the low-density matter in the proton drip phase would
also include clusters (deuterons, 3H, 3He, 4He) [15,16]. This
will be an interesting topic for future explorations. However,
proton drip occurs over a limited range of conditions. In

Ref. [5], the uppermost pressure for which proton drip
occurred was only 7% greater than the lowest pressure for
proton drip. We thus attribute the fact that proton drip was
not found in Ref. [4] to the pressures for which it occurs
lying between those of the grid points used.
We have also shown how proton drip can be understood

on the basis of a simple analytical model. The starting point
of the model is the energy of the uniform phase as a
function of the proton density at constant neutron chemical
potential. The basic ingredients are the proton kinetic
energy, an effective two-body attraction between protons,
and a repulsive contribution to the energy varying as the
proton density to a power higher to ensure that the system
does not collapse to high proton density.
Armed with the new results for the EOS, it is now possible

to make a renewed attack on the problem of whether or not
phases with stringlike and platelike nuclei (pasta phases) are
stable in neutron stars. Pasta phases in neutron stars could
have a significant effect on observable properties. Pasta
phases are stable at higher proton concentrations, but for
the low proton concentrations in neutron star matter in β
equilibrium, the energy difference between the uniform
phase and the two-phase state is much smaller: it could
be less than the Coulomb and surface energy cost of making
the two-phase state, as was found in Ref. [17].
We have performed preliminary calculations of the

filling factor u for neutron star matter in the phase of
neutron and proton drip, i.e., along the β-equilibrium line in
Fig. 2 neglecting surface and Coulomb effects. We find that
the filling factor increases with increasing density toward
the boundary of the neutron drip phase to u ≈ 0.2. In the
proton drip phase it increases further to maximum values
around u ≈ 0.4. The larger the filling factor, the more likely
pasta phases are, so that proton drip aids the existence of
pasta phases (see, e.g., Fig. 1 of Ref. [18], where n=ns
corresponds to u). An important future task is thus to
evaluate the nuclear surface energy for matter with low
proton concentrations consistently in chiral EFT. Moreover,
it would be interesting to explore magnetic properties in the
neutron star crust for which superfluid protons in the proton
drip phase can play an important role.
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FIG. 4. Proton densities y (in units of ñ) of phases in
equilibrium as a function of ν in our simple model. The solid
red line shows the two nonzero proton densities for which
coexistence (proton drip) is possible. The blue line shows the
values of the proton density for which pressure equilibrium of
nuclear matter and pure neutron matter (neutron drip) is possible
(Pp ¼ 0); the solid line indicates where the equilibrium is stable
and the dashed line where it is unstable. The dashed orange curve
is the spinodal line, ∂Pp=∂npjμn ¼ 0, where uniform matter would
become unstable.
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