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We investigate the effects of two-body currents on magnetic dipole moments of medium-mass and heavy
nuclei using the valence-space in-medium similarity renormalization group with chiral effective field
theory interactions and currents. Focusing on near doubly magic nuclei from oxygen to bismuth, we have
found that the leading two-body currents globally improve the agreement with experimental magnetic
moments. Moreover, our results show the importance of multishell effects for 41Ca, which suggest that the
Z ¼ N ¼ 20 gap in 40Ca is not as robust as in 48Ca. The increasing contribution of two-body currents in
heavier systems is explained by the operator structure of the center-of-mass dependent Sachs term.
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Nuclear magnetic dipole moments are a key probe to
explore the structure of atomic nuclei. For odd-mass
systems, the simplest description of magnetic moments
is to consider only the contribution from the last unpaired
nucleon, known as the single-particle or Schmidt limit [1].
An experimental deviation from the Schmidt limit indicates
the impact of many-body contributions to the magnetic
moment, with important contributions from core-polariza-
tion effects [2–4]. Since the magnetic moments are sensi-
tive to shell structure, they provide an important probe of
nuclear structure and shell closures, complementary to high
2þ excitation energies, high separation energies, and more
inert radii at magic numbers. Recent experimental efforts
have thus focused on the evolution of magnetic moments
along isotopic chains [5]. From the theoretical side,
providing an accurate description of magnetic moments
in medium-mass and heavy nuclei has been a major
challenge. The comparison with experiments often requires
the use of adjustable parameters that are commonly fitted to

improve agreement with experimental data in specific
regions of the nuclear chart (see, e.g., Ref. [5]). For a
reliable description of magnetic dipole moments, it is
important to perform controlled nuclear structure calcu-
lations with many-body electromagnetic (EM) operators.
The goal of this work is a first global ab initio survey of
magnetic moments near doubly magic nuclei from oxygen
to bismuth.
In the past decades, great progress has been made in

advancing ab initio calculations to medium-mass and
heavy nuclei [6–11], culminating in the recent ab initio
calculation of 208Pb [12]. At the same time, ab initio
calculations have explored EM observables and weak
transitions including contributions beyond the standard
one-body operators [13–21]. However, these efforts have
so far focused on light nuclei, except for a global study of
beta decays of medium-mass nuclei up to 100Sn [19]. The
latter work showed that many-body correlations and two-
body currents (2BC) are key to explain the quenching
puzzle of beta decays. Here, we focus on magnetic
moments up to bismuth, including both many-body corre-
lations and for the first time the leading EM 2BC.
Another motivation for this work is the recent precision

measurements of the magnetic dipole moments of indium
isotopes [22]. The experimental results showed a striking
jump at N ¼ 82 towards the Schmidt limit, supporting the
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expected magic number atN ¼ 82. However, the size of the
magnetic moments could not be reproduced by ab initio
calculations using the valence-space in-medium similarity
renormalization group (VS-IMSRG) approach with only
one-body EM operators [22]. Similar deficiencies were also
seen in ab initio calculations of medium-mass nuclei (see,
e.g., Refs. [23–25]). As the VS-IMSRG approach takes into
account many-body correlations, such as core-polarization
effects, in a nonperturbative way, these deficiencies have
been attributed to the neglected higher-order two-body
contributions to EM operators from pion-exchange currents
as well as shorter-range contributions. For light nuclei
(A < 20), the significance of 2BC for magnetic moments
and electromagnetic transitions has been shown in quantum
Monte Carlo and no-core shell model calculations (see,
e.g., Refs. [16–18,26]). In this Letter, we provide a global
survey of the impact of the leading 2BC for magnetic dipole
moments from medium-mass to heavy nuclei using the
ab initio VS-IMSRG. Since the vector currents also enter
precision calculations of weak decays [27], testing 2BC
against EM observables is a critical test of electroweak
operators for applications to fundamental symmetry tests
with rare decays.
Chiral effective field theory (EFT) is a low-energy

expansion of quantum chromodynamics with nucleons
and pions as degrees of freedom. It provides a systematic
expansion of nuclear forces [28,29] and consistent
electroweak currents [30]. In the EM sector, one- and two-
body currents have been derived up to next-to-next-
to-next-to-leading order (N3LO) [13,17,31,32]. Here, we
focus on the magnetic dipole operator, which is defined as
μ ¼ −i limq→0∇q × jðqÞ=2 with the EM spatial current
jðqÞ, where q is the momentum transfer carried by photon.
In the following, we will consider the magnetic moment in
the z direction. In many-body calculations, usually only the
magnetic dipole operator at the one-body level, μ1B, is used.
This takes the well known form

μ1B ¼ μN
X
i

ðglili;z þ gsiσi;zÞ; ð1Þ

with the magneton of the proton, μN ¼ ðeℏ=2mpÞ with unit
charge e and proton mass mp, and li;z and σi;z are the z
component of orbital angular momentum and spin oper-
ators for the ith nucleon. gli and g

s
i are the orbital and spin g

factor, with glproton ¼ 1, glneutron ¼ 0, gsproton ¼ 2.792, and
gsneutron ¼ −1.913 [33]. In this work, we consider the
leading 2BC, μ2B, given by the parameter-free pion-
exchange contributions [30]. In coordinate space, these
are given by the intrinsic and Sachs terms:

μ2B ¼
X
i<j

μintrij þ μSachsij ; ð2Þ

μintrij ¼ μNðτi × τjÞzVintr;zðrijÞ; ð3Þ

μSachsij ¼ μNðτi × τjÞzðRij × rijÞzVSachsðrijÞ: ð4Þ

Here, rij ≡ ri − rj and Rij ≡ ðri þ rjÞ=2 are the relative
and center-of-mass coordinates of the nucleons i and j,
respectively. τi is the isospin operator of the i-the nucleon,
and the detailed expressions for VintrðrijÞ and VSachsðrijÞ
are, e.g., given in Ref. [34]. The numerical implementation
of μ2B is also provided in the NuHamil code [35] used in
this work.
In this Letter, we employ the VS-IMSRG [36–40] to

compute the magnetic dipole moments for various
near doubly magic nuclei. The VS-IMSRG calcu-
lation starts from nucleon-nucleon (NN) plus three-
nucleon (3N) interactions based on chiral EFT, which are
expressed in spherical harmonics-oscillator basis states. We
use the 1.8=2.0 (EM) interaction [41,42], which is fitted to
NN scattering phase shifts, the 3H binding energy, and
the 4He charge radius. This interaction can reproduce
the experimental ground-state energies up to A ∼ 100
[6,10,11,43,44], while it provides somewhat too small radii.
The Hamiltonian is first normal ordered with respect
to the ensemble reference state [39]. Then, we construct
an approximate unitary transformation [45] with the
VS-IMSRG at the normal-ordered two-body level to decou-
ple a selected valence space from the remaining many-body
configurations, referred to as the VS-IMSRG(2). With the
same transformation, the μ1B and μ2B operators are evolved
consistently with the Hamiltonian [46]. Note that a relax-
ation of the two-body approximation is important to quantify
the many-body uncertainties of the VS-IMSRG(2).
This has been achieved recently for the Hamiltonian [47],
but is an ongoing development for general operators.
The calculational setup and convergence for the heaviest
nucleus studied, 209Bi, is summarized and discussed in
Supplemental Material [48]. This demonstrates that the
magnetic dipole moments are well converged in terms of the
many-body basis space. The ground-state energies for the
heaviest systems, 207Tl and 209Bi, are −1660� 19 and
−1671� 19 MeV, respectively, after the model-space
extrapolation based on Refs. [11,49] and adopting a 3%
error of the correlation energy from the VS-IMSRG(2)
approximation [47]. Compared to experiment, the employed
1.8=2.0 (EM) interaction provides slight overbinding in the
A ∼ 200 region, which is consistent with the overbinding
found in infinite matter calculations [42]. Finally, we also
checked that the μ2B contribution is decreased by ≲10% in
37Ca through momentum-space regulators, which is a small
effect for the total magnetic moment. We have thus used the
unregularized coordinate-space μ2B operator in this work.
The top panel in Fig. 1 shows our results for the magnetic

dipole moments of near doubly magic nuclei from
A ¼ 17–209 computed with the VS-IMSRG(2) relative
to the experimental values. The simple single-particle limit
is a reasonable starting point for all cases, but cannot
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explain experiment due to the neglected contributions from
many-body correlations and 2BC. Our VS-IMSRG calcu-
lation at the one-body level, μ1B, provides an improvement
in several cases due to the inclusion of many-body
correlations, primarily from core-polarization effects.
However, only after 2BC are included, with μ1B þ μ2B,
we find an overall significantly improved agreement with
experiment. The improved agreement is present in all cases,

except for a small 2BC effect in 207Tl and a small
deterioration in 41Ca, which can be explained by multishell
effects, as discussed next. We observed that the improve-
ment does not depend on the employed interaction. In the
bottom panel of Fig. 1, the magnetic dipole moment for
the ground state of 37Ca is shown for other established
NNþ 3N interactions [50,51]. We note that the 2BC
contributions are always positive (negative) in the odd
Z (N) systems studied here, reflecting the isovector nature
of the intrinsic and Sachs terms, Eqs. (3) and (4).
A possible reason for the deterioration with 2BC in 41Ca

is that excitations across the N ¼ Z ¼ 20 shell closure are
not fully taken into account in the pf-shell valence space.
As shown in Ref. [53], the behavior of charge radii in the
calcium isotopes suggests that the 40Ca core is not as robust
as 48Ca. In Ref. [54], we also observed particle-hole
excitations across the N ¼ Z ¼ 20 gap. To include these
excitation effects explicitly, we perform the calculations
with a multishell valence space above the 28Si core (see
Ref. [54] for details). Figure 2 shows the magnetic dipole
moments with 2BC for the calcium isotopes for the
calculations based on a single major-shell and a multishell
valence space. The single major-shell results are for the sd
shell for A < 40 and pf shell for A > 40. They show
reasonable agreement with experiment especially in
A < 40 while they significantly underestimate experiment
except for 47Ca, which is expected from the doubly magic
nature of 48Ca. As we extend the valence space to capture
the excitations across N ¼ Z ¼ 20, the multishell results in
A > 40 are greatly improved. This shows that the repro-
duction of experiment at the one-body level for 41Ca, μ1B
computed in the single major shell in Fig. 1, is accidental,
and the 40Ca core is broken. Moreover, our results in Fig. 2
show that the shell closures of the 48Ca are more robust than

FIG. 1. Magnetic dipole moments of near doubly magic nuclei
from A ¼ 17–209 computed with the 1.8=2.0 (EM) interaction
relative to the experimental values (top) and of 37Ca with the
1.8=2.0 (EM), ΔN2LOGOð394Þ [50], and N2LOsat [51] inter-
actions (bottom). Results are shown at the one-body level, μ1B
(blue squares), and including 2BC, μ1B þ μ2B (red circles)
obtained with the ab initio VS-IMSRG(2). The experimental
dipole moments (stars) are taken from Refs. [22,52]. In addition,
we show the simple single-particle (sp) limit (without many-body
correlations and without 2BC).

FIG. 2. Magnetic dipole moments of the odd-mass calcium
isotopes computed with the VS-IMSRG(2) including 2BC, in
comparison to experiment [55]. In addition to the single major-
shell results (shown for 41Ca in Fig. 1) we present results for the
multishell valence-space calculations.
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40Ca, since both calculations nearly coincide in 47Ca.
Finally, we have checked that this effect is small for
41Sc, where the single-shell calculation agrees well with
experiment, as shown in Fig. 1. In this case, the multishell
calculation changes the magnetic moment only by 6%.
Note, however, that this does not mean that the single- and
multishell wave functions are similar. In fact, the 40Ca core
in 41Sc is broken by the same amount as in 41Ca, which
shows that the robustness of the shell closure cannot be
solely concluded from the behavior of the magnetic
moments.
Analyzing the two contributions from 2BC for the odd-

mass nuclei studied in Fig. 1, we observe that the Sachs
contribution, Eq. (4), becomes larger with increasing mass
number. For example, the ratio jhμSachsi=hμintrij for the
ground state is about 0.1 for 3H, while it is 10 for 131In. This
can be understood by taking the simple single-particle
limit, i.e., approximating the ground state by closed-shell
core with the last unpaired nucleon occupying a single-
particle orbit with collective index p. In this limit, the 2BC
contribution to the magnetic moment is given by

hμ2Bi ≈
X

q∈Core

hpqjμ̃2Bjpqi; ð5Þ

where hpqjμ̃2Bjpqi is a two-body matrix element of μ2B
with the appropriate angular momentum coupling factors.
The matrix element hpqjμ̃2Bjpqi can only be significant if
the single-particle states p and q have a large overlap,
because the 2BC contribution is of pion range. Therefore, if
the nucleon is in a high orbital angular momentum state p
located near the surface of the nucleus (e.g., with l ¼ 4 in
131In), the center-of-mass coordinate of the two nucleons in
orbits p and q should also be near the surface at large R.
Since the Sachs term is proportional to the center-of-mass
coordinate R, this explains that its expectation value grows
with increasing A.
To test this picture, we have calculated the Sachs term

distribution μðRÞ as a function of the center-of-mass
position of the two nucleons R relative to the center of
the nucleus, which can be computed as

μðRÞ ¼
�X

i<j

μSachsij
1

R2
δðR − RijÞ

�
: ð6Þ

Note that one obtains the Sachs 2BC contribution after
integrating over R,

hμSachsi ¼
Z

dRR2μðRÞ: ð7Þ

As shown in Fig. 3 and expected based on the arguments
given above, the maximum of the Sachs term distribution
moves to a larger R as the mass number increases. Since the
Sachs term is dominant for medium-mass nuclei and tends

to grow towards heavier systems, the inclusion of the 2BC
contribution is critical to reproduce magnetic dipole
moments in heavy-mass nuclei.
Finally, we show the magnetic dipole moments of the

9=2þ ground state for the indium isotopes in Fig. 4, where
previous VS-IMSRG calculations with μ1B underestimated
the magnetic moments [22]. The calculational setup over
the isotopic chain is the same as for 131In in Fig. 1
(for details see Supplemental Material [48]). We also
computed the magnetic moments with the ΔN2LOGOð394Þ
interaction [50] and observed that the interaction depend-
ence is about a few percent, averaging over the isotopes,
which is significantly smaller than the 2BC contribution.
The results with ΔN2LOGOð394Þ can be found in
Supplemental Material [48]. The 2BC contributions μ2B
systematically increase the results towards experimental
values, and the sudden increase to the shell closure at
N ¼ 82 is excellently reproduced with 2BC included. The
nearly constant 2BC contribution may be attributed to the
dominance of Sachs term in heavier nuclei. Since the
increase of nuclear radii along the studied indium chain is
weak, the Sachs term contribution approximately remains
constant. However, the detailed behavior around N ¼ 70 is
not satisfactory, and a more sophisticated many-body treat-
ment, through an explicit inclusion of deformation, for
these midshell isotopes would be needed [22]. Moreover,
the behavior of magnetic moments towards N ¼ 50 is
intriguing. Naively, theN ¼ 50magic number should show
similar jump as for N ¼ 82, which is also found in results
from density-functional theory [22]. In our calculations, the
behavior towards N ¼ 50 is already different at the μ1B
level, where magnetic moments increase smoothly with
relatively large N ¼ 52 and N ¼ 54 results. This is because

FIG. 3. Contributions from the Sachs term for the single proton-
hole systems 3H, 39K, and 131In as a function of the center-of-mass
position of the two nucleons R relative to the center of the
nucleus. The results for 39K and 131In are obtained with VS-
IMSRG(2), while 3H is computed with the no-core shell model
[34] at Nmax ¼ 20 and ℏω ¼ 16 MeV.
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the single proton-hole configuration jðπg9=2Þ−1i is
more pronounced in these isotopes. This favored spherical
structure at N ¼ 52 and 54 may, however, be due to the
difficulty of the VS-IMSRG to capture deformation, that
would arise from the near degeneracy of the neutron
g7=2 and d5=2 orbitals. Exploring this requires further
experiments and theoretical calculations with methods
based on deformed reference states (see, e.g., Ref. [56]).
In summary, we have explored the impact of the leading

2BC on magnetic dipole moments from medium-mass to
heavy nuclei using the ab initio VS-IMSRG. The 2BC
contributions globally improve the agreement with exper-
imental magnetic moments of near doubly magic nuclei
from oxygen to bismuth. For the case of 41Ca, in addition
to 2BC, we found that multishell effects are important, due
to the weaker closed-shell nature of the 40Ca core.
Moreover, we have found that the 2BC contributions
increase in heavier systems. This could be understood by
the structure of the center-of-mass dependent Sachs term,
which is enhanced near the nuclear surface. Finally,
including 2BC leads to an excellent reproduction of the
magnetic moments of the indium isotopes near N ¼ 82
and around N ¼ 60. Further work is needed to better
include deformation effects for heavy open-shell nuclei
and to shed light on the evolution towards N ¼ 50 in
indium isotopes. Our work shows that the inclusion of
2BC for the exploration of EM observables is a frontier.
This opens up exciting opportunities after our first global
survey of magnetic moments, exploring other EM proper-
ties of nuclei and including higher-order 2BC consistently
in chiral EFT, enabling us to perform a full uncertainty
quantification and detailed comparisons with experimen-
tal data.
For the VS-IMSRG and subsequent configuration-

interaction calculations, IMSRG++ [58] and KSHELL [59]
codes were used.

Note added.—In a parallel submission, Acharya et al. [60]
investigated the impact of 2BCs on the magnetic dipole
transition in 48Ca and on the magnetic moments of 47;49Ca
using the coupled-cluster method.
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