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The recently observed abnormal bifurcation of the double binding energy differences δVpn between the
odd-odd and even-even nuclei along the N ¼ Z line from Ni to Rb has challenged the nuclear theories. To
solve this problem, a shell-model-like approach based on the relativistic density functional theory is
established, by treating simultaneously the neutron-neutron, proton-neutron, and proton-proton pairing
correlations both microscopically and self-consistently. Without any ad hoc parameters, the calculated
results well reproduce the observations, and the mechanism for this abnormal bifurcation is found to be due
to the enhanced proton-neutron pairing correlations in the odd-odd N ¼ Z nuclei, compared with the even-
even ones. The present results provide an excellent interpretation for the abnormal δVpn bifurcation, and
provide a clear signal for the existence of the proton-neutron pairing correlations for nuclei close to the
N ¼ Z line.
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The double binding energy difference δVpn, is an
important mass filter for atomic nuclei, and has been
frequently used to isolate the residual proton-neutron (pn)
interaction [1,2]. It is closely related to many nuclear
structure phenomena, such as the onset of collectivity
and deformation [3–6], the evolution of the underlying
shell structure [7], and the phase transition behavior in
nuclei [4,8]. The study of δVpn, particularly along the line of
the nuclei with equal numbers of protons and neutrons, is of
great importance to deepen our understanding of the
nuclear force [9]. For example, the considerable enhance-
ment of δVpn for N ¼ Z nuclei in the light sd shell has been
regarded as the fingerprint for the Wigner’s SU(4) sym-
metry of the nuclear force [10]. For heavier nuclei in the sd
shell and even lower fp shell, the decrease of δVpn with
mass number is related to the breaking of the Wigner’s
SU(4) symmetry due to the increasing spin-orbit and
Coulomb interactions.
For the upper fp-shell nuclei, however, the δVpn shows

quite puzzling behavior. On one hand, restrengthening δVpn
values have been observed [11,12] for the odd-odd nuclei,
and this phenomenon might be attributed to the restoration
of the pseudo-SU(4) symmetry [13], the enhanced overlaps
of the proton and neutron wave functions [14–16] or the
nuclear deformation [6,17]. On the other hand, a recent
experiment has reported an abnormal bifurcation, namely,
opposite evolving trends of δVpn with mass number for the
even-even and odd-odd N ¼ Z nuclei from Ni to Rb [18],
which cannot be understood by the aforementioned physical
mechanisms and, thus, brought severe challenges to the
theoretical models, including the macroscopic-microscopic

models [19–23], the shell model [24], and the density
functional theories (DFTs) [25–27]. Note that the macro-
scopic-microscopic models and DFTs are quite successful
for a global description of nuclear masses over the whole
nuclear chart. Their failure in describing the observed δVpn
bifurcation indicates that important physics may be missing
in the current nuclear models.
The valence-space in-medium similarity renormalization

group calculations imply that the three-nucleon force has a
significant impact on the behavior of δVpn, but the obtained
amplitudes of the δVpn bifurcation between the even-even
and odd-odd N ¼ Z nuclei are dramatically overestimated
[18]. The inclusion of a phenomenological Wigner term in
the macroscopic-microscopic models [19–23] and DFT
[27] also results in a δVpn bifurcation between the even-
even and odd-odd N ¼ Z nuclei, but the δVpn for the odd-
odd nuclei are systematically underestimated [18].
ForN ¼ Z nuclei, it is very important to take into account

the pn pairing correlations. In particular, for odd-oddN ¼ Z
nuclei, the last valence neutron and proton could be paired
due to the pn pairing correlations, which are responsible for
the phenomenological Wigner terms [28–31]. To solve the
puzzle of the δVpn bifurcation, a microscopic model which
could treat the neutron-neutron (nn), proton-proton (pp),
and pn pairing correlations simultaneously and self-
consistently is necessary. The blocking effects for odd-
odd nuclei should be treated carefully.
The nuclear DFT starts from a universal density func-

tional and has achieved great successes in describing many
nuclear phenomena [32–37]. It is a promising framework to
consider the pn pairing correlations in a microscopic way.
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In the conventional Bardeen-Cooper-Schrieffer and
Bogoliubov methods, the particle number conservation is
violated and the Pauli blocking effects in odd-nucleon
systems cannot be treated exactly [38]. The shell-model-
like approach (SLAP), also known as particle number
conserving method, treats the pairing correlations and the
blocking effects exactly by diagonalizing the many-body
Hamiltonian in a properly truncated many-particle con-
figuration (MPC) space with good particle number [39,40].
It has been implemented in the relativistic [41–46] and
nonrelativistic [47,48] DFTs to treat the nn and pp pairing
correlations and widely used to investigate both the nuclear
ground-state and excited-state properties. Nevertheless, a
self-consistent treatment of the pn pairing correlations is
missing.
In this Letter, based on the relativistic DFT (RDFT), a

SLAP is developed, which allows a microscopic and self-
consistent treatment of the nn, pp, and pn pairing corre-
lations simultaneously. The developed approach will be
applied to investigate the abnormal δVpn bifurcation for the
N ¼ Z nuclei from Ni to Rb.
In the SLAP based on RDFT (RDFT-SLAP), the many-

body Hamiltonian reads

Ĥ ¼ Ĥ0 þ Ĥpair; ð1Þ

where Ĥ0 is the one-body part, and Ĥpair is the pairing part.
The one-body part reads

Ĥ0 ¼
X

k>0

½επkða†kak þ a†
k̄
ak̄Þ þ ενkðb†kbk þ b†

k̄
bk̄Þ�; ð2Þ

where k̄ represents the time conjugate of the state k, and

επðνÞk are the single-proton (neutron) energies obtained from
the Dirac equation,

½−iα · ∇þ βðmþ SÞ þ V�ψk ¼ ϵkψk: ð3Þ

Here, the scalar field S and vector field V are connected in a
self-consistent way to the scalar and vector densities, for
details see Ref. [41]. The pairing part reads

Ĥpair ¼
X

Tz¼0;�1

ĤTz
pair; ĤTz

pair ¼ −G
Xk≠k0

k;k0>0

P†
k;Tz

Pk0;Tz
; ð4Þ

where G is the effective pairing strength, and k ≠ k0 means
that the self-scattering for the nucleon pairs is forbidden
[41]. The nn and pp pair creation operators are P†

k;1 ¼ b†kb
†
k̄

and P†
k;−1 ¼ a†ka

†
k̄
for Tz ¼ �1, and the pn pair creation

operator is P†
k;0 ¼ ð1= ffiffiffi

2
p Þðb†ka†k̄ þ a†kb

†
k̄
Þ for Tz ¼ 0.

The nuclear wave functions are expressed as

jΨi ¼
X

i;fskg
Cfskg
i jMPCfskg

i i: ð5Þ

The many-particle configurations jMPCfskg
i i with exact

proton number Z and neutron number N are expressed as
jl1l2 � � � lNm1m2 � � �mZi ¼ b†l1b

†
l2
� � � b†lNa

†
m1
a†m2

� � � a†mZ j0i,
and the corresponding configuration energy is denoted as
Ei. Here, sk represents the eigenvalue of the seniority
operator ŝk for the state k [49], and it is a good quantum

number. The expansion coefficients Cfskg
i and, thus, the

wave functions are determined by diagonalizing the
Hamiltonian Ĥ in the MPC space.
Note that the obtained wave function jΨi is used to

determine the occupation probabilities for the single-
particle states, and thus the nucleon densities should be
updated, which in turn determines the scalar and vector
fields S and V in the Dirac equation (3). Therefore, the full
framework should be solved iteratively to achieve the self-
consistency [41,44,45]. Once a self-consistent solution is
obtained, one can calculate the pairing energy,

FIG. 1. Odd-even mass differences Δð3Þ
n (a) and Δð3Þ

p (b) for the N ¼ Z þ 2 nuclei from Ni to Rb calculated by RDFT-SLAP (lines)
in comparison with the data (symbols). The gray bands correspond to the odd-even mass differences for the pairing strength G
varying by 10%.
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Epair ¼ hΨjĤpairjΨi
¼

X

ij

C�
i CjhMPCijĤpairjMPCji; ð6Þ

which is added to the total energy of RDFT.
In this work, the relativistic density functional PC-PK1

[50] is adopted. The Dirac equation (3) is solved in the
three-dimensional harmonic oscillator basis in Cartesian
coordinates [51] with ten major shells, and the quadru
pole deformation including triaxiality is considered self-
consistently.
The dimension of the MPC space and the corresponding

pairing strength G are determined by the odd-even mass
differences of theN ¼ Z þ 2 nuclei fromNi to Rb. In Fig. 1,

the calculated odd-even mass differences Δð3Þ
n ðN;ZÞ¼

½BðN−1;ZÞþBðNþ1;ZÞ�=2−BðN;ZÞ and Δð3Þ
p ðN; ZÞ ¼

½BðN; Z − 1Þ þ BðN; Z þ 1Þ�=2 − BðN; ZÞ [52] are shown,
in comparison with the experimental ones extracted from
AME’20 [53,54]. The experimental odd-even mass
differences are well reproduced by the calculation with
the pairing strength G ¼ 0.8 MeV. The corresponding
MPC space is truncated by Ecut ¼ 16 MeV, which means
only the MPCs with the energies Ei ≤ 16 MeV are included
in the model space. In addition, a variation of the pairing
strength by 10% does not change the odd-even mass

differences Δð3Þ
n and Δð3Þ

p significantly.
With the pairing strength G thus determined, the binding

energies for the N ¼ Z; Z � 1; Z � 2 nuclei around Ni and
Rb region are calculated. The differences between the
calculated binding energies and the data [53,54] are shown
in Fig. 2. As shown in Fig. 2(a), without the pairing
correlations, the deviations between the calculated binding
energies and the data are large. The root-mean-square (rms)
deviations are 3.388MeV forN ¼ Z nuclei and 3.380MeV
for N ≠ Z ones. After the inclusion of the nn and pp
pairing, as shown in Fig. 2(b), the descriptions of the
binding energies are improved. The rms deviation for
N ¼ Z nuclei changes to 1.460 MeV, and for N ≠ Z nuclei

changes to 0.832 MeV. After including the pn pairing, as
shown in Fig. 2(c), the agreements become better. The rms
deviation is 0.832 MeV for N ¼ Z nuclei and 0.671 MeV
for N ≠ Z nuclei [55]. These results illustrate the impor-
tance of the pairing correlations for nuclei near the N ¼ Z
line, in particular the pn pairing correlations.
From the binding energies, the δVpn can be extracted

as [10]

δVee
pnðN; ZÞ ¼ 1

4
½BðN; ZÞ − BðN − 2; ZÞ − BðN; Z − 2Þ

þBðN − 2; Z − 2Þ�; ð7Þ

for even-even nuclei with N ¼ Z, and

δVoo
pn ðN; ZÞ ¼ ½BðN; ZÞ − BðN − 1; ZÞ − BðN; Z − 1Þ

þBðN − 1; Z − 1Þ�; ð8Þ

for odd-odd nuclei with N ¼ Z. The extracted theoretical
results and data [18] are shown in Fig. 3. The experimental
δVee

pn (red circles) decrease smoothly with the mass number,
while the δVoo

pn (blue squares) exhibit a distinct tendency;
this is the challenging puzzle of the abnormal δVpn
bifurcation observed in Ref. [18]. When the nn, pp, and
pn pairing correlations are taken into account simultane-
ously (solid lines), the calculated results well reproduce the
evolution of δVpn for both the odd-odd and even-
even nuclei. The agreement remains even by changing
the pairing strength by 10%. In contrast, if the pn pairing
correlations are switched off (dashed lines), the calcu-
lated results cannot reproduce the bifurcation. As shown
clearly in Fig. 3, the successful reproducing for the
abnormal δVpn bifurcation is due to the enhancement of
the δVpn for the odd-odd N ¼ Z nuclei by the pn pairing
correlations.
To further understand why the pn pairing correlations

have more significant influence on the δVpn for the
odd-odd nuclei as compared to the even-even ones, in

(a) (b) (c)

FIG. 2. Differences between the calculated binding energies and the data for the N ¼ Z; Z � 1; Z � 2 nuclei around Ni and Rb region
without pairing (a), with the n-n and pp pairing (b), and with the nn, pp, and pn pairing (c). The root-mean-square deviation for the
N ¼ Z (N ≠ Z) nuclei σN¼Z (σN≠Z) is also given.
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Fig. 4(a), the calculated pn pairing energies, Epn
pair¼

hΨjĤTz¼0
pair jΨi¼P

ijC
�
i CjhMPCijĤTz¼0

pair jMPCji, are shown
as functions of the sums of the configuration energies for
N ¼ Z odd-odd nucleus 66As and even-even nucleus 64Ge.
For 66As, the nonvanishing value of Epn

pair starts at about

3.5 MeV, while for 64Ge, about 6.9 MeV. This can be
understood from the lowest MPC and the lowest excitation
contributing to the pn pairing energy for 66As and 64Ge as
shown in Figs. 4(b) and 4(c). With the increase of Ei þ Ej,
the pn pairing energy for 66As is significantly larger than
that for 64Ge. Changing the pairing strength G by 10% will
influence the pn pairing energy by around 1 MeV for 66As,

and by around 0.4 MeV for 64Ge. These results in Fig. 4
suggest that the pn pairing correlations have more influence
on the odd-odd nuclei than on the even-even nuclei, and
this explains why the pn pairing correlations would
significantly enhance the δVpn for the odd-odd N ¼ Z
nuclei in Fig. 3, and thus result in the abnormal δVpn
bifurcation.
In summary, a shell-model-like approach is developed

based on the relativistic density functional theory, which
allows a microscopic and self-consistent treatment of the
neutron-neutron, proton-proton, and proton-neutron pair-
ing correlations simultaneously. The challenging puzzle of
the abnormal δVpn bifurcation between the odd-odd and
even-even nuclei along the N ¼ Z line from Ni to Rb is
found to be originated from the proton-neutron pairing
correlations. The proton-neutron pairing correlations would
significantly enhance the δVpn for odd-odd N ¼ Z nuclei,
and thus result in the δVpn bifurcation. The proton-neutron
pairing correlations improve the description of the masses
not only for N ¼ Z nuclei, but also for these nuclei near the
N ¼ Z line. These conclusions remain true even if the
pairing strength is changed by 10%. The present results
provide an excellent interpretation to the challenging
puzzle of the abnormal δVpn bifurcation, and provide a
clear signal for the existence of the proton-neutron pairing
correlations for N ¼ Z nuclei.

This work was partly supported by the National Natural
Science Foundation of China (Grants No. 11935003,
No. 12105004, No. 12141501), the High-performance
Computing Platform of Peking University, and the State
Key Laboratory of Nuclear Physics and Technology,
Peking University.

FIG. 3. Calculated δVpn for the even-even (red lines) and odd-
odd (blue lines)N ¼ Z nuclei from Ni to Rb with (solid lines) and
without (dashed lines) the pn pairing, in comparison with the data
(symbols) [18]. The gray bands correspond to the results with the
pairing strength G varying by 10%.

(a) (b) (c)

FIG. 4. (a) Calculated pn pairing energies Epn
pair as functions of the sums of the configuration energies for the ith and jth MPC, Ei þ Ej,

for 66As and 64Ge. The gray bands correspond to the results for the pairing strengthG varying by 10%. (b) Single-particle energies for the
odd-odd nucleus 66As. The single-proton levels are renormalized to the first single-neutron level above the N ¼ Z ¼ 28 shell. The
lowest-energy MPC and the lowest excitation with nonvanishing contribution to the pn pairing energy Epn

pair are schematically shown.

(c) Same as (b), but for the even-even nucleus 64Ge.
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