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We study two-loop corrections to the scattering amplitude of four massive leptons in quantum
electrodynamics. These amplitudes involve previously unknown elliptic Feynman integrals, which we
compute analytically using the differential equation method. In doing so, we uncover the details of the
elliptic geometry underlying this scattering amplitude and show how to exploit its properties to obtain
compact, easy-to-evaluate series expansions that describe the scattering of four massive leptons in QED in
the kinematical regions relevant for Bhabha and Møller scattering processes.
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In recent years, particle physics has seen several inter-
esting developments in experiments at the low-energy
precision frontier. Among these are the discrepancy
between theory predictions and the experimental value
for the muon anomalous magnetic moment, most recently
measured to 0.20 ppm at Fermilab [1], as well as the so
called “proton radius puzzle.” The latter consists in a
discrepancy between the proton charge radius as determined
in [2,3] compared to previous results [4]. The upcoming
PRad-II experiment [5] will perform an independent meas-
urement to attempt to resolve this inconsistency.
This experimental program requires matching efforts on

the theoretical side to provide equally precise and reli-
able predictions. An important part of these efforts is the
recent development of the Monte Carlo event generator
McMule [6]. Leveraging next-to-soft stabilization [7,8] for
real-virtual corrections, McMule can describe Bhabha [9]
(eþe− → eþe−) andMøller scattering (e−e− → e−e−) at the
fully differential level up to next-to-next-to-leading order
(NNLO) in quantum electrodynamics (QED). Bhabha scat-
tering is important for luminosity measurements at lepton
colliders. Møller scattering is instead the main source of
systematic uncertainty for the PRad II experiment [5] and
relevant for parity-violation searches and for precise mea-
surements of the weak mixing angle [10]. Precision mea-
surements of Møller scattering at very low energies
(2.5 MeV) [11] have also been recently undertaken.
The remaining outstanding ingredient to make theoreti-

cal studies in NNLO QED at arbitrary energy scales
possible, are the two-loop virtual amplitudes for the

scattering of four massive leptons. Their calculation has
received much attention in the literature. They were first
computed in massless QED around two decades ago [12].
Event simulations at leading and next-to-leading order
(NLO) [13–15], as well as power-suppressed mass effects
up to NNLO [16–21] have been considered. Fermionic loop
corrections were computed with full mass dependence
in [22]. Logarithmically enhanced electroweak contribu-
tions have also been included to NNLO [23–26]. However,
despite the long-lasting efforts [27–38], complete results for
the massive two-loop virtual amplitudes are still not avail-
able, mostly due to the complexity of the integrals involved.
Here we move an important step towards the inclusion

of mass effects to Bhabha and Møller scattering up to
NNLO in QED, by performing the first calculation of the
two-loop QED corrections to the scattering amplitude of
four massive leptons. While the electron mass renders the
two-loop integrals considerably more complicated, it will
allow us to study the phenomenological impact of so-far
neglected mass effects in extreme regions of phase space. In
addition, these amplitudes also provide us with an invalu-
able playground to test recent developments in the theory of
elliptic generalizations of multiple polylogarithms [39–45]
and about canonical differential equations [46] for arbitrary
geometries [47–55].
Kinematics and tensor decomposition.—We work in

QED with one single type of massive lepton, which we
refer to as the electron. We study higher-order corrections
to the scattering of four electrons,

0 → eþðp1Þ þ e−ðp2Þ þ e−ðp3Þ þ eþðp4Þ; ð1Þ

where all momenta are outgoing and satisfy p2
i ¼ m2,

i ¼ 1;…; 4, as well as pμ
1 þ pμ

2 þ pμ
3 þ pμ

4 ¼ 0. The ampli-
tude Að1eþ ; 2e− ; 3eþ ; 4e−Þ can be parameterized as a func-
tion of the fermion mass m and three Mandelstam
invariants
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s¼ðp1þp2Þ2; t¼ðp1þp3Þ2; u¼ðp2þp3Þ2; ð2Þ

where sþ tþ u ¼ 4m2.
Following [56,57], we work in the ’t Hooft-Veltman

dimensional regularization scheme [58] (tHV) and decom-
pose the scattering amplitude into eight independent
Lorentz-covariant tensors Ti and respective form factorsF i,

Að1eþ ; 2e− ; 3e− ; 4eþÞ ¼
X8
i¼1

F iTi: ð3Þ

We choose the tensors as

T1 ¼ m2 × t1; T2 ¼ m × ½t2 þ t3�
T3 ¼ t4; T4 ¼ m2 × t5;

T5 ¼ m × ½t6 þ t7� þ t8; T6 ¼ m × ½t6 þ t7� − t8

T7 ¼ m × ½t2 − t3�; T8 ¼ m × ½t6 − t7�; ð4Þ

where the spinor chains ti are defined as

ti ¼ Ūeðp2ÞΓð1Þ
i Veðp1Þ × Ūeðp3ÞΓð2Þ

i Veðp4Þ; ð5Þ

and Γi ¼ fΓð1Þ
i ;Γð2Þ

i g represent the following sets of Dirac
matrices:

Γ1 ¼ f1; 1g; Γ2 ¼ f=p3; 1g;
Γ3 ¼ f1; =p2g; Γ4 ¼ f=p3; =p2g;
Γ5 ¼ fγμ1 ; γμ1g; Γ6 ¼ f=p3γ

μ1 ; γμ1g;
Γ7 ¼ fγμ1 ; =p2γμ1g; Γ8 ¼ f=p3γ

μ1 ; =p2γμ1g: ð6Þ

External momenta and polarizations are considered four
dimensional, while loop momenta are treated in D dimen-
sions. The number of tensors is then equal to the number of
independent chirality configurations to all orders in pertur-
bation theory [56,57], 16, of which only 8 are independent
due to parity invariance. Furthermore, the process under
consideration is invariant under the simultaneous exchange
p2 ↔ p3 and p1 ↔ p4. Under this transformation t2 ↔ t3
and t6 ↔ t7, cf. Eq. (6), such that T7;8 are odd. Accordingly,
we conclude that F 7 ¼ F 8 ¼ 0 to all orders.
Following the standard approach, we compute the form

factors in Eq. (3), by defining a set of projectors Pi ¼
½ðT† · TÞ−1�ikT†

k as combinations of dual tensors T†
i . Here

“·” denotes the scalar product between tensors and their
dual, which is realized in practice by summation over spins
of the external fermions, such that F i ¼ Pi ·A. By
applying the projectors on the corresponding relevant
QED Feynman diagrams, we can express each form factor
as a linear combination of scalar Feynman integrals and
organize the one- and two-loop integrals into several
integral topologies.

Technically our computation proceeds as follows. We
generate the Feynman diagrams with QGRAF [59]. Using
the computer algebra system FORM [60–63], we insert
Feynman rules and apply projectors. We employ the public
tool REDUZE2 [64] to find mappings onto topologies and
expose their symmetries. Finally, we use Kira [65–67] to
solve the required integration-by-parts (IBP) relations [68,69]
and reduce all integrals to 267 master integrals. This is
achieved following Laporta’s algorithm [70], improved by
finite field techniques [71,72].
Canonical bases for the nonplanar Feynman inte-

grals.—While all planar two-loop topologies have been
known in fully analytic form for some time [37,38], their
nonplanar counterparts have remained elusive due to the
appearance of new mathematical functions of elliptic type.
In particular, we are interested in the nonplanar family of
integrals displayed in the left graph of Fig (1). We define
the integrals as

Ia1a2a3a4a5a6a7a8a9

�
D;

s
m2

;
t
m2

�

¼ e2γEϵðμ2Þ
P

9

j¼1
aj−D

Z
dDk1
iπ

D
2

dDk2
iπ

D
2

Y9
j¼1

1

P
aj
j

; ð7Þ

where γE denotes the Euler-Mascheroni constant, D ¼
4 − 2ϵ is the dimension of space-time, and μ is an auxiliary
scale that renders Feynman integrals dimensionless. The
propagators are

P1 ¼ k21 −m2; P2 ¼ ðk1 − k2−p2Þ2−m2;

P3 ¼ k22 −m2; P4 ¼ ðk2þp1þp2Þ2 −m2;

P5 ¼ ðk1þp1Þ2; P6 ¼ ðk1− k2Þ2; P7 ¼ ðk2 −p3Þ2;
P8 ¼ ðk2þp1Þ2; P9 ¼ ðk1−p3Þ2: ð8Þ
The integrals in Eq. (7) are functions of homogeneous
coordinates ½s∶t∶m2� on CP2 and, without loss of general-
ity, we set μ ¼ m, or equivalently work on the patch
½y∶z∶1� with y ¼ s=m2 and z ¼ t=m2. For definiteness,
we display our formulas in the region s > 4m2, t < 0,
though all results can also be easily continued to any other
kinematic region. All integrals can be expressed through
IBP reduction in terms of 52 independent master integrals
which fulfil a system of first-order partial-differential
equations [73–77] in the invariants

d⃗I ¼ Aðϵ; y; zÞ⃗I: ð9Þ

Notice that 52 is the number of master integrals associated
only to the nonplanar family in Eq. (7). To solve this
system, we search for a basis transformation to a so-called
ϵ-factorized form,

d⃗J ¼ ϵAðy; zÞ⃗J; ⃗J ¼ Uðy; z; ϵÞ⃗I; ð10Þ
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which can be formally solved by a path-ordered
exponential

⃗Jðy; z; ϵÞ ¼ P exp

�
ϵ

Z
γ
A

�⃗
J0ðϵ; y0; z0Þ; ð11Þ

where the path γ connects the initial boundary point ðy0; z0Þ
to a generic point ðy; zÞ. If the matrix A can be expressed
only through logarithmic differential forms, Eq. (10) is said
to be in canonical form, and the new integral candidates ⃗J
are called a canonical basis [46]. While canonical bases
beyond polylogarithms are not yet fully understood,
advances have been made in extending ϵ-factorized bases
to arbitrary geometries [48,49,52–54,78].
We obtained ϵ factorization by leveraging many of these

developments. For the planar topologies, and for all
polylogarithmic subsectors of the nonplanar topology, we
used unitarity cuts and multivariate residue analysis [79]

to select integral candidates with unit leading singu-
larities [37,38]. Starting from the six-propagator nonplanar
integrals, generalizations of these methods to genus-one
geometries become necessary. In fact, one can see that the
maximal cut of the irreducible six-propagator nonplanar
four-point graph (see right panel in Fig. 1) in Baikov
representation [80,81] can be expressed as

MaxCutC½I110111100� ∼
Z
C

dz2 ∧ dz1
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1 − s − z2Þðz1 − sþ 4m2 − z2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtz1 − stþ sz2Þ2 − 4m2½tz21 þ sðt − z2Þ2�

p : ð12Þ

By further taking the residue at z2 ¼ 0 in (12), one is left
with an integral over a family of elliptic curves

E4∶ Y2 ¼ ðX − e1ÞðX − e2ÞðX − e3ÞðX − e4Þ; ð13Þ

with the four roots given by

e1 ¼ y − 4; e2 ¼ −
yzþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yzðyþ z − 4Þp
4 − z

;

e3 ¼ −
yz − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yzðyþ z − 4Þp
4 − z

; e4 ¼ y: ð14Þ

We choose as first period for E4 the integral

Ψ0ðy; zÞ≡ 2

Z
e3

e2

dX
Y

¼ 4KðλÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðe1 − e3Þðe2 − e4Þ
p ; ð15Þ

where KðλÞ is the complete elliptic integral of the first kind
of argument

λ ¼ 4

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−yðyþz−4Þ

−z

q : ð16Þ

To determine an ϵ-factorized form, we first notice that
the integral sector I110111100 contains six master integrals.
We therefore expect two master integrals which satisfy

coupled differential equations and map to the generators of
the first de Rham cohomology group H1

dRðE4Þ, plus four
additional ones corresponding to independent punctures on
the elliptic curve [54]. Candidates for the first two integrals
can be found starting from the ansatz [82–84]

J47 ¼
I110111100

Ψ0

; J46 ∼
1

ϵ

Ψ2
0

2πiWz
∂zJ47 þ…; ð17Þ

where Wz ¼ ð1=2πiÞ½1=z2ðyþ zÞðyþ z − 4Þ� is the
Wronskian of the second-order Picard-Fuchs equation
associated with the elliptic curve. The explicit expression
of J46 is immaterial for this discussion, and is given in the
Supplemental Material [85]. The remaining four candidates
can be identified by analyzing their integrand representa-
tion and the resulting differential equations. As a last step,
in order to obtain a fully ϵ-factorized form, one needs to
integrate out some inhomogenous entries in the differential
equation matrix, which leads to the appearance of addi-
tional transcendental integrals. In this way, the final
ϵ-factorized system (10) is expressed in terms of 87 distinct
one-forms ωi. It is easy to verify that the integrability
condition dA ¼ A ∧ A is satisfied and that all ωi are
closed dωi ¼ 0.
The individual differential forms can be simplified by

exploiting the underlying geometry of the family of elliptic
curves in (13). As an example, consider the following two
functions

FIG. 1. The nonplanar topology (left) and its next-to-top sector
(right) with six master integrals. Solid lines correspond to
massive propagators, dashed lines to massless ones.
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T1ðy; zÞ ¼
Z �

dy

�
−z
y
ð4y2 þ 4yðz − 4Þ þ zðz − 4ÞÞΨ0 − 8z

ðyþ z − 4Þðyþ zÞ
ðtþ 2y − 4Þ ∂yΨ0

�

þ dz

�
−z
4 − z

−48þ 4yþ 2y2 þ 12zþ yz
zþ y − 4

Ψ0

��
;

T2ðy; zÞ ¼
Z �

dy
ffiffiffiffiffiffiffiffiffiffi
4 − z

p ffiffiffiffiffiffi
−z

p �
z
y
4þ 2y − y2 − z − yt

2ðyþ z − 4Þ Ψ0 −
1

2
zð1þ yÞ∂yΨ0

�

þ dz
ffiffiffiffiffiffi
−z

p ffiffiffiffiffiffiffiffiffiffi
4 − z

p �
Ψ0

y − 4

2ðyþ z − 4Þ þ
ðy − 4Þyð1þ yÞ
2ð−4þ 2yþ zÞ ∂yΨ0

��
; ð18Þ

which are among the objects required to express the matrix
A in (10). Again, formulas assume y > 4 and z < 0. While
the details of the construction are immaterial here and are
discussed elsewhere [86,87], it suffices to say that one can
parameterize the kinematical variables by

y ¼ 2
ð1 − xÞð1þ t4Þ

t4 − x
; z ¼ 4

t4ð1 − x2Þ
x2 − t24

; ð19Þ

where f½x∶Y∶1�; t4g are the canonical coordinates on the
moduli space of elliptic curves given by
Y2 ¼ ðx2 − 1Þðx2 − t4Þ. In these coordinates, the period
in (15) becomes

Ψ0ðx; t4Þ ¼
2ðx2 − t4Þ

−Y
Kðt4Þ: ð20Þ

We can identify t4 with a Hauptmodul for the congruence
subgroup Γ1ð4Þ ⊂ SL2ðZÞ [88]. Strikingly, by using
Eq. (19) the two transcendental integrals in Eq. (18) turn
into combinations of simpler functions

T1ðx; t4Þ ¼ 8t4
Kðt4Þ
π

�
ð1 − t4ÞF ðx; t4Þ −

x2 − 1

ð1þ t4ÞY
�
;

T2ðx; t4Þ ¼
1

π

ffiffiffiffiffiffiffiffiffiffiffiffi
t4

1þ t4

r
t4ð3 − 2xÞ − 3xþ 2

t4 − x
Kðt4Þ −

fðt4Þ
2π

;

ð21Þ

where fðt4Þ is given by

∂t4f ¼ 2
1 − t4ffiffiffiffi

t4
p ð1þ t4Þ3=2

Kðt4Þ; ð22Þ

and F ðx; t4Þ is the derivative of the Abel map:

F ðx;t4Þ¼Kðt4Þ∂t4
�

1

Kðt4Þ
Z

x

−1

dXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2−1ÞðX2− t4Þ

p
�
: ð23Þ

Other differential forms in the alphabet can also be
substantially simplified and all double integrals over the
periods can be rewritten in terms of rational functions of T1

and T2. With this, all differential forms are given by
combinations of five algebraic functions f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − t4
p

;
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t4

p
;

ffiffiffiffi
t4

p
;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t4

p g, and three transcenden-
tal functions fKðt4Þ; fðt4Þ;F ðx; t4Þg.
We stress that the choice of canonical coordinates in

Eq. (19) is not merely an academic curiosity, and the final,
simplified form is essential to implement the numerical
evaluation of the iterated integrals described below. To
explicitly solve the integrals, we first expand Eq. (11) in ϵ.
At each order, we fix all boundary conditions imposing
regularities at different phase-space points and obtain fully
analytic results for the nonplanar master integrals in terms
of Chen iterated integrals [89].
Currently, there are no public numerical routines to

evaluate the special functions that appear in the nonplanar
sector. We therefore obtain generalized series expansions
for all master integrals. More precisely, we start from the
differential equations in ϵ-factorized form in order to
algorithmically obtain a small mass expansion for the
individual master integrals. In particular, we obtain a
generalized power series (including logarithms of the
mass), whose coefficients can be expressed in terms of
harmonic polylogarithms [90]. We obtain results that are
valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [91], both for Bhabha and Møller scattering
kinematics, and found agreement to high precision. Our
series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise
description of the numerical implementations can be
obtained with the ancillary files provided in [92]. We stress
that in principle, starting from our analytic result, series
expansions in other physically relevant limits can be
obtained to complement the convergence of the small mass
expansion.
UV renormalization and IR factorization.—Using the

master integrals calculated above, as well as the planar
integrals from [37,38], we can obtain an analytic result for
the bare amplitude for both polarized and unpolarized
scattering. We renormalize UV divergences according to
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Arðαe; m; s; t; ϵÞ ¼ Z2
2Aðα0e; mb; s; t; ϵÞ; ð24Þ

with the relation between bare and physical quantities

e2

4π
¼ α0e ¼

�
eγE

4π
μ2
�

ϵ

ZeαeðμÞ; mb ¼ Zmm: ð25Þ

Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are taken from [36,93–97]
and collected in the Supplemental Material. As expected
[98], after UV renormalization we are left with one-loop
exact IR poles

AOSðα; m; s; t; ϵÞ ¼ e
α
4πZ

IR
1

ϵ Cðα; m; s; t; ϵÞ; ð26Þ

where C is the finite remainder function, α is the on-shell
electromagnetic coupling, and ZIR

1 is the anomalous
dimension which controls the soft singularities of the
amplitude to all-orders through exponentiation [99,100].
The exact form of ZIR is immaterial and we report it for
completeness in the Supplemental Material.
We performed several checks on our results. First of all,

we verified that our two-loop amplitudes have the correct
UV and IR behavior, as illustrated above. In addition, we
compared both bare and renormalized one-loop amplitudes
against OpenLoops [101,102] and found perfect agreement.
We stress here that the unpolarized finite remainders in
Conventional Dimensional Regularization equal those in
the tHV scheme, while the bare and UV-renormalized
amplitudes in general differ. The equality of the finite
remainders provides another check of our calculation.
Discussion and conclusions.—Our results for the two-

loop amplitudes for Bhabha and Møller scattering are given
as generalized series expansion in x ¼ m=ECM. They are
provided as computer-readable files in [92] for both the
polarized and unpolarized scattering amplitudes. We pro-
vide sufficiently high orders to obtain reliable predictions
for the low-energy experiments mentioned in the introduc-
tion, where we expect the mass effects to be the largest. In
the following we discuss some of the phenomenological
implications of our results focusing on unpolarized Møller
scattering.
Let us start by assessing the accuracy of the small-mass

expansion. We begin by noticing that we expect the
expansion to become unreliable in the extreme forward
or backward regions, where the coefficients of the series in
x develop large logarithms in ð−tÞ=s which can invalidate
the convergence of the expansion [103]. To quantify the
region of convergence, we compare the exact results for the
one-loop amplitude A1l

exact with the corresponding
expansion A1l

20 to Oðx20Þ and study the ratio δ1lexact;20 ¼
ðA1l

exact − A1l
20Þ=A1l

exact. Depending on the scattering energy

ECM ¼ ffiffiffi
s

p
, we find that δ1lexact;20 ≤ 1% for different ranges

of the scattering angle θ:

ECM ¼ 150m → 2° < θ < 179°;

ECM ¼ 32m → 9° < θ < 174°;

ECM ¼ 5m → 70° < θ < 130°; ð27Þ

where the energy values match those probed at present and
future experiments. This shows that at very low energies the
expansions must be interpreted with care outside of the
central region. To extend the analysis to the two-loop
amplitudes, we compare the series expanded to order 20
with the one expanded to order 18. We find that the same
applies: for L ¼ 1, 2 ðALl

20 − ALl
18Þ=ALl

20 ≤ 1% for the same
values of θ as in (27). In Fig. 2 we display the various
orders of the series for the two-loop amplitude, for different
values of the scattering at the intermediate energy of
ECM ¼ 32m. We highlight the lack of convergence for θ
not in the range ½9°; 174°� in the two subplots.
Having assessed the validity of our small-mass expan-

sions, let us comment on the phenomenological relevance
of the mass effects. So far two-loop mass effects had only
been included to leading power, Oðx0Þ. We expect that the
finite-mass effects are more pronounced for small values of
ECM. In Fig. 2 we see that, for ECM ¼ 32m, the two-loop
leading-power approximation does not capture the full
extend of the mass effects for θ ≳ 150° [for small angles,
we are outside the region of (27)]. We therefore expect that
in that region precise NNLO results can only be obtained
by including the subleading terms we have computed. The
effect is even more pronounced for ECM ¼ 5m: in Fig. 3 we
show that, even in the range of intermediate angles in
Eq. (27), the leading-power approximation does not pro-
vide a reliable prediction of the finite-mass effects. At the
same time, we observe a very nice convergence of the mass
expansion, corroborating that we can provide reliable and
precise predictions for the two-loop corrections even at

FIG. 2. Convergence of the mass expansion. Plotted are the
two-loop finite remainders C†ð2ÞCð0Þ as functions of scattering
angle in degrees, at various truncation orders.
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such low energies. A full discussion of the size of the
NNLO QED corrections will be presented elsewhere.
To conclude, in this Letter we have addressed the

calculation of the two-loopQEDcorrections to the scattering
of four identical massive leptons, retaining full dependence
on the lepton mass. This constitutes the last outstanding
ingredient necessary to perform NNLO QED phenomeno-
logical studies for standard processes as Bhabha and Møller
scattering. In addition to the phenomenological interest
behind these calculations, the scattering amplitudes com-
puted in this Letter are an important example of physical
processes that receive nontrivial contribution from elliptic
Feynman integrals.Wepresented a strategy to compute these
amplitudes analytically through the differential equations
method and provided a robust numerical implementation.
We demonstrated that for low values ofECM, the mass effect
can be sizable and is not captured by the leading-power
approximation.We therefore expect that our resultswill play
an important role in making precise predictions for low-
energy lepton collider experiments possible.
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