PHYSICAL REVIEW LETTERS 132, 231902 (2024)

First Study of Antihyperon-Nucleon Scattering Ap — Ap
and Measurement of Ap — Ap Cross Section

M. Ablikim er al.”
(BESIII Collaboration)

® (Received 11 January 2024; revised 4 May 2024; accepted 7 May 2024; published 4 June 2024)

Using (10.087 4 0.044) x 10° J /y events collected with the BESIII detector at the BEPCII storage ring,
the processes Ap — Ap and Ap — Ap are studied, where the A/A baryons are produced in the process

J/w — AA and the protons are the hydrogen nuclei in the cooling oil of the beam pipe. Clear signals
are observed for the two reactions. The cross sections in —0.9 < cos6,,3 <0.9 are measured to be
o(Ap = Ap) = (122 4 1.6y & 1.13) and o(Ap = Ap) = (17.5 £ 2.1, + 1.64) mb at the A/A
momentum of 1.074 GeV /¢ within a range of +0.017 GeV/c, where the ¢, 5 are the scattering angles of

the A/A in the Ap/Ap rest frames. Furthermore, the differential cross sections of the two reactions are also
measured, where there is a slight tendency of forward scattering for Ap — Ap, and a strong forward peak
for Ap — Ap. We present an approach to extract the total elastic cross sections by extrapolation. The study
of Ap = Ap represents the first study of antihyperon-nucleon scattering, and these new measurements will
serve as important inputs for the theoretical understanding of the (anti)hyperon-nucleon interaction.

DOI: 10.1103/PhysRevLett.132.231902

One of the main goals of nuclear physics is to understand
baryon-baryon interaction in a unified perspective. To
achieve this purpose, plentiful nucleon-nucleon (NN)
and antinucleon-nucleon (NN) scattering data have been
measured [1]. Therefore, the relevant theory of NN and NN
interactions is well established, and it can be tightly
constrained by experimental data. However, the under-
standing of hyperon-nucleon (YN) interaction has a large
uncertainty due to the lack of relevant measurements. The
YN interaction is studied mainly via three methods. The
first is to extract the YN correlation functions in heavy-ion
collisions [2-5], the second is to study hypernuclei [6-9],
and the third is to investigate YN scattering [10—12]. The
last method is the most direct way to study YN interaction,
but it is limited by the availability and short-lifetime
of hyperon beams, leading to a scarcity of YN scattering
data [1]. The study of YN interaction is also crucial to
determine the equation of state (EOS) of nuclear matter at
supersaturation densities and understand the so-called
“hyperon puzzle” of neutron stars (NS) [13—18]. To solve
these issues, more YN scattering data are desired to
constrain the calculations of YN interaction.
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Compared to the YN scattering, the situation is even
worse for antihyperon-nucleon (YN) scattering. Until now,
no YN scattering data have been obtained due to the
absence effective antihyperon sources [1], which results in
the very limited related theoretical research. Therefore, the
realization of YN scattering measurements can fill this gap,
and new measurements will motivate more effort for the
understanding of the YN interaction. More importantly, YN
scattering data can further constrain the YN interaction
theory from another angle.

In this Letter, we present a study of the reactions
Ap — Apand Ap — Ap, where A and A are reconstructed
via the decays A — pz~ and A — px™. The cross sections
and differential cross sections of the two reactions are all
measured. This is the first study of YN scattering.

The BESIII detector records symmetric e e~ collisions
at the BEPCII collider [19]. Details of the BESIII detector
can be found in Ref. [20]. The material of the beam pipe
is composed of gold ('*’Au), beryllium (°Be), and oil
('2C:'™H = 1:2.13), as shown in Fig. 1. With a sample of
(10.087 £0.044) x 10° J/w events collected by the
BESIII detector [21], intense almost monoenergetic A/ A
hyperons with a momentum of 1.074 GeV/c¢ within a
range of £0.017 GeV/c¢ can be produced via the decay
J/w — AA, the momentum spread is due to the small
horizontal crossing angle of +11 mrad for e* beams.
Afterwards the A/A baryons can interact with the material
in the beam pipe. A similar idea was proposed forty
years ago using pp collisions at a LEAR experiment [22].
Especially, Ref. [23] has used this method to perform the
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FIG. 1. Schematic diagram of the beam pipe, the length units

are centimeter (cm). The z axis is the symmetry axis of the MDC,
and the x axis is perpendicular to the e*e™ beam direction.

first study of YN interaction using Z°-nucleus scattering
at BESIII, and A-nucleus scattering was measured in
Ref. [24]. Furthermore, utilizing the almost static protons
in the 'H of the cooling oil of the beam pipe, the
information on the interaction between (anti)hyperon and
proton can be directly extracted via (anti)hyperon-proton
scattering in this way.

In this analysis, simulated data samples are produced
with a GEANT4-based [25] Monte Carlo (MC) package,
which includes the geometric description of the BESIII
detector [20] and the detector response. They are used to
determine detection efficiencies and to estimate back-
grounds. The simulation models the beam energy spread
and initial state radiation (ISR) in the e®e™ annihilations
with the generator KKMC [26]. The inclusive MC sample
includes both the production of the J/y resonance and the
continuum processes incorporated in KKMC [26]. All
particle decays are modeled with EVTGEN [27] using
branching fractions either taken from the Particle Data
Group (PDG) [1], where available, or otherwise estimated
with LUNDCHARM [28]. Final state radiation (FSR) from
charged final state particles is incorporated using the
PHOTOS package [29]. The signal process considered in
this analysis is J/w — AA with either Ap — Ap or
Ap = Ap, A = pr~, A = pr. In the signal simulation,
the angular distribution of J/y — AA is generated accord-
ing to the measurement in Ref. [30]. We simulate the
reactions Ap — Ap/Ap — Ap by taking the proton to be
at rest, and the hyperon angular distribution is generated
using an isotropic phase-space distribution to obtain the
angle dependent detection efficiency.

Charged tracks detected in the multilayer drift chamber
(MDC) are required to be within a polar angle (0) range of
|cos | < 0.93, where @ is the angle between the charged
track and the z axis, which is the symmetry axis of the
MDC. Particle identification for charged tracks combines
measurements of the energy loss (dE/dx) in the MDC and
the flight time in the time-of-flight system (TOF) to form
likelihoods L(h) (h = p, K, x) for each hadron i hypoth-
esis. Tracks are identified as protons when the proton
hypothesis has the greatest likelihood [£(p) > L(x) and
L(p) > L(K)], while charged pions are identified by
comparing the likelihoods for the pion hypotheses,
[L(x) > L(K) and L(z) > L(p)].

Since the final states of the two reactions all contain
ppprtx~, candidate events must have five charged tracks,
and two p, one p, one '+, and one z~ are required to be
identified. For the decay A = prt, we perform a vertex fit
to the pz* combination, and the A signal region is defined
as |M(prt) —mjz| < 0.003 GeV/c?, where mj is the
nominal mass of the A. In this Letter, all nominal masses
are taken from PDG [1]. For the decay A — pz~, we
perform the vertex fit by considering both pz~ combina-
tions. The pz~ combination with the smallest value of
|M(pn~) — my|, where m, is the A nominal mass, is taken
as the A candidate. The A signal region is defined as
|M(pr~) —my| < 0.003 GeV/c?. Finally, a vertex fit is
performed to the combination of the A/A and the remain-
ing p for the reactions Ap — Ap/Ap — Ap.

To select the signal events of J/y — AA, the in-
variant mass recoiling against the A/A, Moi(A/A), is
required to be in the A/A signal region, defined as [m, JA—
0.020, m, 5 + 0.016] GeV/c?,  where M, eou(A/A) =

\/E%eam — |Pa/acl?/¢*, Epeam is the e* beam energy, and
P4, is the measured momentum of the A/ A candidate in the
ete” rest frame. The main background is J/y — AA,
A = pr~, A = pa", where no scattering of A/A with a
proton from the beam pipe occurred. To suppress this
background, the recoil mass of Ap /AP, Myeeoii(Apa/AD),
is obtained from the four-momenta of the initial e e~ system
and the A/A and p,/p candidates, where p, is the proton
from A decays. M,..oi(Apa/Ap) should be around the
nominal z~/z" mass for this background, so we require
Mot (App/AP) < 0 GeV/c? to remove these events. To
select those signal events that react with the cooling oil in the
beam pipe, the R, signal region is defined as [3.0, 3.5] cm,
taking into account the detector resolution, where R, is the
distance from the reconstructed Ap/Ap vertex to the z axis.
To remove the events from the reactions between A/A and
197Au/°Be/'*C nuclei, we define the momentum of the
proton in the 'H of the cooling oil as P(py;) = |}3 ARt
P b= (13€+e- -P A/a) |, Where P represents the momentum of
each particle in the lab frame. Because the proton in the 'H of
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FIG. 2. Distributions of M(Ap) (top) and M(Ap) (bottom) of
data (black dots with error bars) for the reactions Ap — Ap and
Ap — Ap, respectively. The red solid curve is the total fit result
and the blue dashed curve is the background component.

the cooling oil is practically static, while the proton in the
197Au/°Be/'*C nuclei has Fermi momentum, the P(p.;)
should be around zero for signal processes but hundreds of
MeV /¢ for background processes. To remove these events,
the requirement P(p.;) < 0.04 GeV/c is applied.

For the signal reactions Ap — Ap and Ap — Ap pro-
duced from the decay J/w — AA, the center-of-mass
energies for the incident A/A and a static p are all
2.243 GeV/c?* within a range of +0.005 GeV/c?. Figure 2
shows the M(Ap) and M(Ap) distributions from data after
the final event selection. Clear enhancements are seen
around 2.243 GeV/c?, corresponding to the reactions
Ap = Ap and Ap — Ap, respectively. A detailed study
of the J/w inclusive MC sample shows that there is no
peaking background in the signal region. To determine the
signal yield, an unbinned maximum likelihood fit is per-
formed to the M(Ap) distribution and M (A p) distribution,
respectively. We use the MC-determined shape convolved
with a free Gaussian function to describe the signal, where
the yield acts as a free fit parameter. The free Gaussian
function is used to describe the difference in the data and
signal MC resolutions. The background is described by a
uniform distribution with the number of events as free

TABLE I. Relevant parameters for the differential cross sec-
tions, where cos 6, / is the scattering angle, N *€ is the number of
signal events, ¢, is the efficiency, (do/dQ) is the differential cross
section, and i represents the different cos0,,5 bins. The first
value in parentheses is for Ap — Ap, and the second for
Ap = Ap.

cos 0,4 N}E

=0.9,-0.7] (5.0175.0.0%y5)

€; (%)
(6.94,4.93)

(do/dQ) (mb/sr)

0.9 0.5
1.7%57.0.0%57)

[

(=0.7,-0.5] (1.052.0.07}) (14.13,10.44) (0.2+020.0103)
(=0.5.-03] (1044, 1.0114) (17.32,13.27) (0.2+02,0.2+03)
(_037 —0. 1} (11 0+:g,0 0+1(;) (17.74,14.66) 5+82,0 Ofgg)
(-0.1,0.1] )

(0.1,0.3]  (5.0128,2.01]%) (19.53,16.82) (0.673,0.3%03

(

(0

(

(1
(6.9539,0.0704) (19.11,15.79) (0.970%,0.0702
-1.9° ( 2)
(1 5+05 1. 0+04)
(
(

03,051 (12013}, 7o+30) (19.21,17.68) (1.5303, 4
0.5, 071 (13.0733,25.0137) (19.71,17.60) (1.6107.3.470¢)
(0.7, 0.9] (60+§§,37 0704) (9.80,9.93) (1.5%07,9.0719)

parameter. The fit results are shown in Fig. 2. The signal
yields returned by the fits are N® = 60.9 + 7.8 and N j-\li =

72.0 £ 8.5 for the reactions Ap = Ap and Ap — Ap,
respectively, and the goodness of the fits for the two
reactions are y?/ndf = 4.8/4 = 1.2 and 0.8/4 = 0.2 with-
out considering empty bins.

To extract the differential cross sections for the two
reactions, we need the signal yields as a function of
cos 05/, where 0, /5 is the scattering angle of the scattered
A/A in the Ap/Ap rest frames with the z axis defined by
the incident A/A momentum. Because the efficiency is
very low and it is hard to obtain accurate experimental
information near the regions cos 6,5 = %1 due to the low
momentum of scattered A/ A or p, the measurements are
restricted to —0.9 < cos 6,5 < 0.9. To obtain the number
of signal events, we perform a simultaneous fit to the
M(Ap) and M(Ap) distributions in nine different cos 6, /A
regions, where the signal shape and background shape are
the same as mentioned above. The obtained number of
signal events in the nine cos 6, 5 regions are summarized
in Table I. It is worth mentioning that no events survived in
the —1.0 < cos )3 < —0.9 and the 0.9 < cos@,,3 < 1.0
regions for data.

Using the same method as in Ref. [23], the cross sections
of the reactions Ap = Ap and Ap — Ap can be deter-
mined, the only difference is that we use the proton in the
'H of the cooling oil of the beam pipe as the target material.
The total elastic cross sections are calculated with

sig
Ap/Ap 1

o(Ap - Ap/Ap - Ap) = ,
( €Ap//_\pB£eff

where €5,/x, = D €i(do/dQ);/ > (do/dQ);] is the
weighted selection efficiency according to the differential
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TABLE II. Input parameters for the cross section calculations.
The first value in brackets is for Ap — Ap, and the second is for
Ap = Ap.

Parameter Result

Niimp (60.9 4 7.8,72.0 + 8.5)

€np/Ap (15.29%,12.55%)
(40.8321 4 0.4518)% [1]

Ny, (10.087 £ 0.044) x 10° [21]

By (0.189 £ 0.009)% [1]

a 0.475 £ 0.004 [30]

L (7.89 4 0.06) cm [1]

Ebeam 1.5485 GeV

My /A (1.115683 £ 0.000006) GeV/c? [1]

a 3.23 cm [20]

b 3.31 cm [20]

Ny 7.35 x 10?2 cm™3

cross section distribution, which will be introduced later. B
is the product of the branching ratios of the intermediate
states, defined as B = B(A — pa~)B(A — pa™*), and L
is the effective luminosity of the reaction of the A/A flux
produced from J/y — AA with the target material:

N, B b = o
Leit _LQJ/W/ / (1+ acos®0)e ™ INydOdx.  (2)
2+§a a JO

In the integral of this formula, the angular distribution of
the A/A flux, the attenuation of the A/A flux, and
the number of target nuclei are considered. N, is the
number of J/y events, B,,, is the branching fraction of

J/w = AA, and a is the parameter of the angular distri-
bution of J/y — AA, By = (\/Eteyn — mi/]\c“/m,\/;\cz)

is the ratio of the momentum to the mass of the A/A, and
L = cz is the product of the speed of light and the mean
lifetime of the A/A [1]. Ny is the number of target nuclei
per unit volume, a and b are the distances from the
inner surface and outer surface of the cooling oil in the
beam pipe to the z axis, € and x are the angle and distance to
the z axis, as shown in Fig. 1. The beam pipe can be
regarded as infinitely long with respect to the product of
pyL for A/A. The parameters are listed in Table II, and
the corresponding total elastic cross sections in —0.9 <
costy 5 <09 are measured to be o(Ap—Ap)=
(12.24 1644 £ 1.15y5) and o(Ap—Ap)=(17.5£2.14%
1.645) mb at a A/A momentum of 1.074 GeV/c within a
range of +0.017 GeV/c.

The differential cross sections for the reactions
Ap — Ap and Ap — Ap are calculated with

4r

—~ [ Ap—Ap

& 3f

_(EJ i

T 4,

s T ‘+‘+
OI s _H— Ll Ll L
- -0.5 0 0.5 1

coso,

~ . | Ap=A

5 10f p—Ap +

S L

E
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FIG. 3. Differential cross sections of the reactions Ap — Ap

(top) and Ap — Ap (bottom) at the A/A momentum of around
1.074 GeV/c.

do NSE
= =" o (3)
dQ i EiB,CeffAQ

where N} and ¢; are the number of signal events and
efficiency, i represents different cos 6,5 bins, and AQ =
2rAcos by 5 = 0.4x represents the solid angle. The mea-
sured results are listed in Table I and shown in Fig. 3. We
can see there is a slight tendency of forward scattering for
Ap — Ap, while there is a strong forward peak for
Ap — Ap. The different behaviors indicate that the reac-
tion mechanisms of these two processes are different.
We also tested an extrapolation for the regions
of [cos@,,z| > 0.9 for the differential cross sections of

Ap = Ap and Ap — Ap to determine the total elastic
cross sections. For the reaction Ap — Ap, we assume the
differential cross sections in —1.0 < cosf, < —0.9 and
0.9 < cos@, < 1.0 to be the same as those in neighboring
bins. For the reaction Ap — Ap, the differential cross
section is fitted using a piecewise polynomial function,
which is a constant for cosf; <0 and a third-order
polynomial function for cos @5 > 0. The differential cross
section in the regions of | cos 85| > 0.9 is obtained accord-
ing to the fit function. Therefore, the total elastic cross
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TABLE III. Summary of systematic uncertainties (in %).
Source o(Ap = Ap/Ap = Ap)
Tracking efficiency 5.0
PID efficiency 5.0
Track number 2.2
Branching fractions 4.9
e"e” interaction point 2.0
Sum 9.1

sections integrated over the full angular region are deter-
mined to be 6,(Ap — Ap) = (14.2 £ 1.8, & 1.3y) and
6,(Ap = Ap) = (2744324, +2.5,) mb. The result of
the total elastic cross section on the reaction Ap — Ap
is consistent with those measured from other experi-
ments [10-12,31-42]. The strong forward rise of the
differential cross section of Ap — Ap is compatible with
the expectation for the case of scattering in the presence of a
strong absorption [43-45], which is given by the annihi-
lation part of the potential. Especially, this behavior is very
similar to pp elastic scattering in a comparable incident
momentum region [44], in contrast, such a strong forward
rise does not appear in pp elastic scattering [46]. This
indicates that the strong absorption mechanism is not only
important in NN scattering, but also in YN scattering. If we
assume the reaction Ap — Ap is a pure “black sphere”
scattering, the total elastic cross section is given by
o,(Ap — Ap) = zR* [43], where R is the interaction
radius. This gives R = (0.93 £ 0.07) fm, which is com-
parable to the proton radius [1].

The sources of systematic uncertainties related to the
measured cross sections are discussed in the following. The
uncertainties in the tracking efficiency and PID efficiency
are 1% per track [23]. The uncertainty of the track number
requirement is estimated with the control sample
J/w = AA — pr~pn". The uncertainties for the branch-
ing fractions are taken from the PDG [1]. To estimate the
uncertainty from the position of the e™e™ interaction point,
we change the integral range by 0.1 cm, which is from
(a,b) to (a+0.1,b+0.1) or (a—0.1,b—0.1), and the
larger difference in the result is taken as the uncertainty.
The systematic uncertainties from A/A mass windows,
M ecoit(APA)/Myecon(AP) requirement, R,, requirement
and P(p.;) requirement are tested using a Barlow test
method [24], and these items can be considered negligible.
The systematic uncertainties from the fit procedure, the
number of J/y events, the angular distribution of
J/w = AA, and the A mean lifetime are all less than
1% and can be ignored. A summary of the main systematic
uncertainties is presented in Table III, and the total
systematic uncertainty is obtained by adding all the
individual components in quadrature.

In summary, using (10.087 4 0.044) x 10° J/y events
collected with the BESIII detector operating at the BEPCII

storage ring, the reactions Ap — Ap and Ap — Ap are
measured, where A/A are from the process J/y — AA and
p is from the cooling oil in the beam pipe. The cross
sections in —0.9 <cosf),3 <0.9 are measured to be
o(Ap—Ap)=(122£1.64,£1.1) and 6(Ap—Ap)=
(1754214 +1.64)mb at the A/A momentum
of 1.074 GeV/c within a range of +0.017 GeV/c.
Furthermore, the differential cross sections of the two
reactions are also measured. There is a slight tendency
of forward scattering for Ap — Ap, while a strong forward
peak for Ap — Ap is observed. If we make an extrapo-
lation for the regions of | cos 6, /3| > 0.9 for the differential
cross sections of Ap — Ap and Ap — Ap, the total elastic
cross sections integrated over the full angular region are
determined to be 6,(Ap — Ap) = (14.2 £ 1.8, £ 1.345)
and 6,(Ap » Ap) = (274 £ 3.2, £ 2.5,) mb. These
constitute the first result of YN scattering, and will serve
as input for the theoretical understanding of the (anti)
hyperon-nucleon interaction. This work is the first study of
(anti)hyperon-nucleon elastic scattering at an electron-
positron collider, and demonstrates the feasibility for
studying other antihyperons, such as £p — Xp and
Ep — Zp. The momentum dependence of these cross
sections could be studied at a future super tau-charm
factory [47,48] by exploiting multibody processes or other
charmonium decays.
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